
ARTICLE

Incorporating local ancestry improves identification
of ancestry-associated methylation signatures
and meQTLs in African Americans
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Hongyu Zhao 1,2,8✉ & Ke Xu 2,7,8✉

Here we report three epigenome-wide association studies (EWAS) of DNA methylation on

self-reported race, global genetic ancestry, and local genetic ancestry in admixed Americans

from three sets of samples, including internal and external replications (Ntotal= 1224). Our

EWAS on local ancestry (LA) identified the largest number of ancestry-associated DNA

methylation sites and also featured the highest replication rate. Furthermore, by incorporating

ancestry origins of genetic variations, we identified 36 methylation quantitative trait loci

(meQTL) clumps for LA-associated CpGs that cannot be captured by a model that assumes

identical genetic effects across ancestry origins. Lead SNPs at 152 meQTL clumps had sig-

nificantly different genetic effects in the context of an African or European ancestry back-

ground. Local ancestry information enables superior capture of ancestry-associated

methylation signatures and identification of ancestry-specific genetic effects on DNA

methylation. These findings highlight the importance of incorporating local ancestry for

EWAS in admixed samples from multi-ancestry cohorts.
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D ifferences in DNA methylation across ancestral popula-
tions have been observed in different tissues, across health
status, and over the life course1–3. Early studies identified

population differences in DNA methylation at genes of interest in
tumor tissues for multiple cancers including breast cancer, non-
small cell lung cancer, prostate cancer, and colorectal cancer4–8.
In noncancerous cells, epigenome-wide association studies
(EWAS) have identified thousands of ancestry-associated
methylation biomarkers across diverse populations2,3,9,10. In
neonatal cord blood samples, methylation of over 3000 CpGs
showed significant differences between African American and
European descent newborns1,11. In adult DNA samples from
peripheral blood, African American women tend to have overall
lower methylation levels when compared with women of Eur-
opean or Hispanic ancestry12. Through the analysis of family trio
data, 8475 CpG sites in lymphoblastoid cell lines showed different
methylation levels between family trios with Northern European
ancestry and those with West African ancestry2. However, these
studies used self-reported race and ethnicity, which are social
constructs and typically reflect a complex set of biological and
non-biological exposures. Moreover, employing self-reported race
or ethnicity may be a low-precision proxy of genetic hetero-
geneity within each group, particularly in admixed populations,
including African Americans and Hispanic Americans.

Ancestral alleles can be estimated for admixed individuals by
comparing their genetic data to reference samples collected from
individuals from geographically and/or historically anchored
ancestry backgrounds. Genetic admixture can be further classified
into global ancestry (GA) (by considering markers over the entire
genome and deriving an average estimate of ancestry) and local
ancestry (LA) (by considering markers over a small segment of
the genome and deriving a most probable estimate of ancestry for
that segment) components. Methods have been developed to infer
population structures for methylation analysis13,14. Rahmani et al.
developed EPISTRUCTURE, a GA inference approach that
identifies DNA methylation signatures associated with nearby
genetic variants in reference samples in which both methylation
and genotype data are available14. Principal components (PCs) of
the identified methylation signatures are then computed and
shown to be correlated with genotype PCs and thus can be used
as proxies to capture population structure14. Recently, an EWAS
on the GA components identified 194 ancestry-associated
methylation sites among individuals with diverse Hispanic
origins15. Although GA inference provides estimated ancestry
origin at the individual level, it is unable to capture the localized
admixture heterogeneity across genomic regions that can differ
among individuals from admixed groups. LA inference addresses
the limitation of GA inference by iteratively estimating the
ancestry origin of segments of the genome. It accommodates the
fact that admixture is the result of inheriting segments of the
genome which generally shows significant interindividual varia-
bility and thus enables fine mapping of substructure for each
individual.

The development of computational approaches to infer LA
using genotype information has permitted inference of ancestry
origin at the haplotype level resolution and capture of the
admixture across genomes for admixed individuals16–19. Multiple
studies have shown that local ancestry is linked to global ancestry
in the sense that the average of local ancestry estimates
approximated global ancestry estimates20–22. RFMix adopted a
discriminative approach that simultaneously models the reference
panel and admixed samples19 and demonstrated accuracy of
ancestry inference in diverse simulation settings23,24. LA infer-
ence has been incorporated in the identification of genetic asso-
ciations for a number of complex phenotypes and improved
admixture mapping of population-specific signals24–29. Genetic

association studies integrating local ancestry have facilitated the
estimation of population-specific genetic effects and detected
additional signals that may have been missed by overlooking the
ancestry background of genetic variations24,28.

Accounting for LA in epigenetic studies of DNA methylation is
nascent. Galanter et al. showed that the effects of GA on DNA
methylation were partially attributed to cis-acting LA and esti-
mated that LA explained a median of 10% of the variations in
GA-associated DNA methylation30. Rawlik et al. investigated
tissue-specific effects of LA on DNA methylation, identifying 552
CpG sites in whole blood and 337 CpG sites in colorectal tissue
from Colombian individuals21. Although LA analysis of DNA
methylation has the potential to capture heterogeneity in genetic
admixture with high resolution, there remain few exemplars
incorporating LA into EWAS, and no study could be identified
that empirically compares the impact of how ancestry is estimated
(i.e., self-reported race, GA, and LA) on EWAS findings.

In this study, we investigate DNA methylation in blood asso-
ciated with different ancestry variables (self-reported race, GA,
and LA), using samples from the Veterans Aging Cohort Study
(VACS)31 and the Women’s Interagency HIV Study (WIHS)32

where both genotype and methylation data are available. We
characterized ancestry-associated DNA methylation by perform-
ing enrichment analyses on multiple genomic features and esti-
mating the SNP-based heritability for the identified signals.
Furthermore, we incorporated LA in the identification of
methylation quantitative trait loci (meQTL) and identified sig-
nificant differences in the genetic effects based on an approach
accounting for ancestry origins. Our results demonstrate the
utility of LA inference in the characterization of genetic admix-
ture and the identification of ancestry-associated methylation
signatures. Our findings have important implications for the
conduct of epigenetic studies in admixed populations and for the
impact of how ancestry is incorporated into epigenetic studies of
DNA methylation.

Results
We studied DNA methylation and genetic data among African
American (AA) and European American (EA) participants from
the VACS (N= 994) and WIHS (N= 230). The VACS samples
were randomly divided into two groups and DNA methylation
data were collected separately using the Illumina HumanMethy-
lation 450 K (HM450 K) and MethylationEPIC (EPIC) beadchips
at different processing times. Even though the two arrays pro-
duced highly correlated methylation levels, the array-specific
batch effects may confound the EWAS associations if combined
and analyzed together. To investigate the batch effects induced by
HM450K and EPIC arrays, we analyzed DNA methylation at
408,583 common probes shared by two arrays among 176 sam-
ples that were measured with both arrays. Of note, these
176 samples were only included in the discovery group and
excluded from the internal replication cohort later in the EWAS
and meQTL identifications. Using principal component analysis
(PCA), we found that the top 3 PCs explained more than 50% of
the methylation variance (Supplementary Fig.1a) and HM450K
and EPIC methylation showed distinct clusters in the same
samples (Supplementary Fig. 1b). The separation between arrays
indicated that even for the same individuals at the shared probes,
the measured methylation can be different between the two arrays
due to batch effects. Thus we designated the subgroup of samples
measured using the HM450K as the primary discovery (NAA=
478, NEA= 49) group and the subgroup measured using the
EPIC as the internal replication (NAA= 422, NEA= 45) group.
The DNA methylation data in WIHS samples were measured
using the EPIC and served as an external replication cohort
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(NAA= 131, NEA= 99). Demographic and clinical characteristics
for the three groups are summarized in Table 1.

Comparison of self-reported race, global genetic ancestry, and
local genetic ancestry. We estimated the African and European
ancestry compositions from genotype data for self-reported AAs
and EAs in the groups (methods). The individual-level global
African (AFR%) and European (EUR%) ancestry proportions
were estimated using the 1000 Genomes Project as the reference
genotype panel. The global genetic ancestry of self-reported EA
samples is predominately made up of European ancestry (Fig. 1).
Among the 193 genotyped samples from self-reported EA span-
ning the three groups, 185 samples had a European ancestral
proportion (EUR%) greater than 90%, 3 samples had EUR% that
ranged from 70 to 90%, 2 samples had EUR% that ranged from
30 to 60%, and 3 samples had EUR% less than 20%. In com-
parison, the AA samples displayed more admixed genetic
ancestry compositions (Fig. 1). Among the 1031 genotyped
samples from self-reported AA spanning the three groups,
1027 samples had an African ancestral proportion (AFR%) that
ranged from 15 to 100%, 4 samples had AFR% less than 5%. The
wide range of genetic ancestry composition among the self-
reported AA samples highlights the high degree of diversity in
genetic admixture in the self-reported AA population.

We further estimated the most probable ancestral origin (African
or European) at each locus for all samples (methods). Because our
goal was to understand the impact of ancestry on DNAmethylation,
local ancestry estimates were anchored by measured CpG sites. Local
ancestry at each methylation position (CpG) was defined as a
weighted average of local ancestry composition based on genetic
variants within a flanking region of 1 megabase (Mb) pairs of a CpG
site. The weights were inversely proportional to the distance between
a given genetic variant to the CpG site. It is worth noting that for AA
samples with a comparable global African ancestry proportion, the
distribution of African ancestry across 22 chromosomes varied
greatly (Fig. 2). We then evaluated the consistency between the
global and local ancestry. Similar to previous report30, the proportion
of genetic loci with local African ancestry (estimated using the
average of local ancestry across the genome) was highly correlated
with the global African ancestry in VACS samples (Pearson
correlation= 0.999, p-value < 2e–16)(Supplementary Fig. 2a) and
WIHS samples (Pearson correlation= 0.999, p-value < 2e–16)
(Supplementary Fig. 2b).

In addition to genetic ancestry, the PCA is a widely employed
approach to identify global population structure in the samples.
The first PC explained 4.5% of genotype variance in the VACS
cohort and was highly correlated with the global African ancestry
(Pearson correlation= 1, p-value < 2e–16) (Supplementary
Fig. 2c). Each of the remaining PCs explained less than 0.2% of
genotype variance. We observed similarly patterns in WIHS
samples. The first PC explained 7.7% of genotype variance and
was highly correlated with the global African ancestry (Pearson
correlation= 1, p-value < 2e–16) (Supplementary Fig. 2d). Each
of the remaining PCs explained less than 0.4% of genotype
variance. This indicated that the first PC would suffice to
distinguish AAs and EAs in the two cohorts and the remaining
PCs captured more subtle within-population structure that
contributed minimally to the differentiation of the two ancestries
(African and European).

Epigenome-wide association studies identified ancestry-
associated DNA methylation. We performed an EWAS on the
self-reported race (binary coded: AA as 1, EA as 0) in EA and AA
samples in the VACS discovery group. The global and local
ancestry-based EWAS were performed in AAs only to pinpointT
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methylation signatures associated with genetic ancestry. Because
the VACS and WIHS cohorts originally focused on persons living
with HIV, our EWAS controlled for risk factors that have been
associated with differential methylation in the literature. Age,
HIV-related covariates (viral load and adherence to medication),
smoking status, alcohol use, white blood cell counts, cell type
proportions, methylation PCs at control probes, and residual PCs
were included as covariates in the association model for all
EWASs (methods). We used 1.16e–7 as the epigenome-wide
significance cutoff to declare statistically significant associations.
The replication significance cutoff was determined by applying
Bonferroni correction to the number of signals identified in the
discovery group.

In the VACS discovery group, we identified 708 CpGs
(genomic inflation λ= 1.18), 30 CpGs (genomic inflation
λ= 1.02), and 1284 CpGs (genomic inflation λ= 1.14) signifi-
cantly associated with self-reported race (N= 527) (Fig. 3a and
Supplementary Data 1), GA (N= 478) (Fig. 3b and Supplemen-
tary Data 2), and LA (N= 478) (Fig. 3c and Supplementary
Data 3), respectively. The EWAS of LA identified the largest
number of ancestry-associated DNA methylation that partially
overlapped with those identified for the self-reported race and
GA. Specifically, among 708 race-associated CpG sites, 350 (43%)
of them overlapped with CpG sites significantly associated with
LA. Among 30 GA-associated CpG sites, 15 (50%) of them were

also significantly associated with LA. We further compared the
coefficient estimates for the overlapped CpG sites. The correlation
of estimated effects between LA- and GA-associated CpG sites
was 0.985 (n= 15 CpG sites, p-value= 3.6e–11). The correlation
of estimated effects between LA- and race-associated CpG sites
was 0.975 (n= 350 CpG sites, p-value < 2.2e–16). All overlapping
CpG sites displayed concordant directions of effects.

The most significant CpG site associated with LA was cg04922029
(p-value= 2.2e–145) that mapped to DARC on chromosome 1. A
higher proportion of local African ancestry around cg04922029 was
associated with an increased level of methylation at this CpG site.
Specifically, a 25% increase in the local African ancestry proportion
was associated with an increased methylation M-value of 0.77
conditional on the adjusted covariates. Methylation at DARC
cg04922029 also showed significant associations with self-reported
race (p-value= 8.3e–28) and GA (p-value= 2.7e–16). African
ancestry was consistently associated with increased methylation at
cg04922029. Specifically, in the EWAS of self-reported race, AAs
had an average increase of 1.9 in the methylation M-value than
EAs at this CpG site. In the EWAS of GA among AAs, a 25%
increase in the global African ancestry was associated with an
increased methylation M-value of 0.87 at this CpG site. It is
noteworthy that Galanter et al. previously reported that hyper-
methylation at DARC cg04922029 was associated with global
African ancestry and each 25% increase in the global African

Fig. 1 Global ancestry estimated using ADMIXTURE for African Americans and European Americans in the Veterans Aging Cohort Study (VACS)
discovery group, VACS internal replication group, and the Women’s Interagency HIV Study (WIHS) external replication group. Yoruba in Ibadan,
Nigeria (YRI) and Utah Residents (CEPH) with Northern and Western European Ancestry (CEU) samples from the 1000 Genomes Project are used as the
African and European reference panels.

Fig. 2 Self-reported race, global ancestry, and local ancestry across 22 chromosomes for 3 self-reported African Americans in the Veterans Aging
Cohort Study cohort. Race was extracted from self-reported survey data. Global ancestry was estimated using ADMIXTURE. Local ancestry was estimated
using RFMix. The horizontal axis represents genomic coordinates in centimorgans and the vertical axis represents 22 chromosomes, each has two strands,
and the color indicates local ancestry designation inferred from RFMix. Yoruba in Ibadan, Nigeria (YRI) and Utah Residents (CEPH) with Northern and
Western European Ancestry (CEU) samples from the 1000 Genomes Project are used as the African and European reference panels for global and local
ancestry estimations.
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ancestry was associated with an increase of 0.98 in the methylation
M-value30.

We performed a sensitivity analysis for LA EWAS accounting
for different flanking regions used in the LA definition. By
default, the LA at each CpG was defined as a weighted average of
local ancestry composition based on genetic variants within 1Mb
flanking region. We compared the significant CpG sites identified
for LA using 250 kb, 500 kb, and 1Mb definition. The three
EWAS identified 1279, 1269, and 1284 significant CpG sites,
respectively, where 1259 CpG sites were in overlap. Not only did
the majority of identified significant CpG sites overlap, the
estimated effects were also highly consistent (Pearson correla-
tion>0.99) among different flanking regions (Supplementary
Fig. 3). Thus, the LA EWAS associations were relatively robust
to different flanking regions used in the LA definition. We
proceed with the EWAS results using the 1Mb definition for LA.

To replicate the significant CpG sites identified in the VACS
discovery group, we examined the association of CpG sites for
self-reported race, GA, and LA separately in two replication
groups. For self-reported race, 312 of 708 (44%) significantly
associated methylation sites were replicated in the VACS
replication group and 25 (4%) were replicated in the WIHS

replication group (p-value < 7.06e–5) (Supplementary Data 1).
For GA, 14 of 30 (47%) significantly associated methylation sites
were replicated in the VACS replication group and 6 (20%) were
replicated in the WIHS replication group (p-value < 1.67e–3)
(Supplementary Data 2). For LA, a total of 771 of 1284 (60%)
significantly associated CpGs were replicated with concordant
direction of effects in the VACS replication group and 223 (17%)
were replicated in the WIHS replication group (p-
value < 3.89e–5) (Supplementary Data 3). Despite the fact that
the LA EWAS had a smaller sample size (after excluding EA
samples) than the self-reported race EWAS, we identified more
associations for LA in the VACS discovery group with a higher
replication rate in both replication groups. Moreover, the
estimated effects of the significant LA-associated CpGs were
highly correlated between the discovery and the replication
groups (Pearson correlation= 0.96 between the VACS discovery
and replication groups, Pearson correlation= 0.93 between the
VACS discovery group and WIHS replication cohort) (Supple-
mentary Fig. 4). Because the two replication groups were profiled
with the EPIC array, we were not able to replicate CpG sites
unique to the 450 K array including the most significant LA-
associated CpG site cg04922029.

Fig. 3 Manhattan and QQ plots for epigenome-wide association study (EWAS) of ancestry variables in the Veterans Aging Cohort Study (VACS)
discovery group. The EWAS identified (a) 708 CpGs (genomic inflation λ= 1.18) significantly associated with self-reported race (N= 527), (b) 30 CpGs
(genomic inflation λ= 1.02) significantly associated with global ancestry (N= 478), and (c) 1,284 CpGs (genomic inflation λ= 1.14) significantly
associated with local ancestry (N= 478), respectively. Self-reported race was extracted from self-reported survey data. Global ancestry was estimated
with ADMIXTURE. Local ancestry was estimated using RFMix. Yoruba in Ibadan, Nigeria (YRI) and Utah Residents (CEPH) with Northern and Western
European Ancestry (CEU) samples from the 1000 Genomes Project are used as African and European reference panels for global and local ancestry
estimations. The vertical axes across three panels are made on the same scale for comparison.
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Downstream analyses characterizing ancestry-associated DNA
methylation. We performed enrichment analyses using genomic
features to characterize the identified DNA methylation associated
with LA, GA, and self-reported race, respectively. The CpG sites
associated with LA were significantly depleted in the 1st Exon (fold
change= 0.54, p-value= 7.7e-8), 5′UTR (fold change= 0.71, p-
value= 1.1e-5), and genic region 200 base pairs (bp) upstream of
the transcription start site (also known as TSS200, fold change=
0.60, p-value= 2.8e-9) (Table 2 and Fig. 4a). We also examined the
CpG positions relative to the CpG island and identified a significant
enrichment in regions 0–2 kilobase (kb) downstream of CpG
islands (also known as S_Shore, fold change= 1.21, p-value= 7.2e-
3) and a significant depletion in CpG islands (fold change= 0.54,
p-value= 1.9e-32)(Table 2 and Fig. 4a). We observed similar sig-
nificant enrichment in S-Shore (fold change= 1.38, p-value= 6.3e-
4) and significant depletions in CpG islands (fold change= 0.59, p-
value= 7.5e-15), 1st Exon (fold change= 0.57, p-value= 1.6e-4, 5′
UTR (fold change= 0.77, p-value= 8.1e-3), and TSS 200 regions
(fold change= 0.43, p-value= 7.9e-11) for CpG sites associated
with self-reported race (Table 2). No significant enrichment or
depletion was identified for GA-associated DNA methylation.

SNP-based heritability was estimated for DNA methylation
associated with LA, GA, and self-reported race, respectively, using
SNPs in a 1-Mb flanking region. The average number of SNPs
surrounding each CpG was approximately 3000. The heritability
of LA-associated methylation (mean h2= 0.45, median h2= 0.43)
was considerably higher than the average methylation heritability
across the genome (mean h2= 0.06, median h2= 0.01) (Fig. 4b
and Supplementary Data 4). The methylation heritability of CpG
sites associated with self-reported race (mean h2= 0.39, median
h2= 0.37) and GA (mean h2= 0.40, median h2= 0.41) was
slightly lower than that identified for LA-associated methylation
but higher than the average methylation heritability across the
genome. Huan and Joehanes et al. suggested methylation with
heritability greater than 0.1 are depleted in promoters, CpG
islands, and TSS200 regions33, which is consistent with our
findings that the identified methylation with relatively high
heritability are depleted in the same regions.

We performed trait enrichment analyses using the EWAS Atlas
database to identify traits that have overlapped significant CpG
sites with LA, GA, and self-reported race, respectively. The most
significantly enriched traits for LA-associated methylation were
ancestry (odds ratio= 42.99, p-value= 0), childhood stress (odds
ratio= 52.59, p-value= 5.78e–90), and aging (odds ratio= 3.29,
p-value= 7.66e–67) (Supplementary Data 5). Similar trait
enrichments were identified for DNA methylation associated
with self-reported race and GA. For self-reported race, the same
three traits were identified as the most significantly enriched
traits. The top three most significantly enriched traits for GA
were ancestry, childhood stress, and serum immunoglobulin E
(IgE) levels.

We also performed gene set enrichment using Gene Ontology
(GO) and KEGG pathway annotations. Applying a false discovery
rate (FDR) of 0.05, no significant pathway was identified for LA,
GA, or self-reported race.

Identification of local ancestry-associated meQTL. We applied
two models to identify pairwise associations between LA-
associated methylation and SNPs in each 1Mb flanking region
(Table 3). The first one is a conventional model widely used in the
identification of methylation quantitative trait loci (meQTL) that
assumes identical effects across ancestral origins of the genotype.
The second, the ancestry model, allows SNP genetic effects with
an African or European ancestry background to be different on
DNA methylation and the significance of the difference in genetic T
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effects can be tested. Local ancestry was adjusted in both models
to control for the confounding effects from ancestry background.
As many meQTLs are correlated due to linkage disequilibrium
(LD), we performed clumping of identified adjacent meQTLs and
selected the meQTL with the most significant association as the
representative SNP for each meQTL clump (methods). The
conventional model identified 43,074 meQTLs (p-value < 1.35e–8,
F test: conventional vs. null model) that mapped to 1269 meQTL
clumps (Supplementary Data 6). The ancestry model allows the
genetic effects to be different for SNPs with an African or Eur-
opean ancestry background and it identified 44,613 meQTLs (p-
value < 1.35e–8, F test: ancestry vs. null model) that mapped to
1268 meQTL clumps (Supplementary Data 7). A total of 1,232
meQTL clumps were identified by both models, 37 meQTL

clumps were uniquely identified by the conventional model, and
36 meQTL clumps were uniquely identified by the ancestry
model. The p-values from the ancestry model for the 37 meQTL
clumps identified uniquely using the conventional model
approached the significance cutoff for the ancestry model (p-
values ranged from 1.38e–08 to 9.73e–08). On the other hand, for
the 36 meQTL clumps missed by the conventional model, many
had p-values larger than the nominal significant cutoff of 0.05. It
is noteworthy that lead SNPs at 8 of 36 meQTLs clumps had
opposite genetic effects in the context of local African or Eur-
opean ancestry background. The conventional model aggregated
the genotype counts regardless of the ancestral background and
the ancestral effects with opposite directions mutually attenuated,
leading to a non-significant result.

For the identified meQTL, we further evaluated the significance
of the difference in SNP effects by local African and European
ancestry. Lead SNPs at 152 of 1268 meQTL clumps had
significantly different SNP effects by ancestry (p-value < 1.12e–6)
(Supplementary Data 8). The difference in effect ranged from
−2.31 to 5.65. We identified four representative patterns of
genetic effects by ancestry for the meQTLs identified by the
ancestry model (Fig. 5). The first scenario was that genetic effects
on methylation were opposite for the two LA background. For
example, the African-ancestry allele at rs9370878 was associated
with an increased methylation M-value of −0.36 at cg20133046
(located on chromosome 6) whereas the European-ancestry allele
was associated with a decreased methylation M-value of 0.44
(Fig. 5a and Supplementary Data 9). When aggregated by
genotype count, the genetic effects from the two LA background
canceled out and the overall genetic effect was not statistically
significant. This was the case for 22% of the meQTLs uniquely
identified by the ancestry model. In the second scenario, genetic
effects from the two LA background contributed to the
methylation in the same direction but with different effect sizes.
For example, the African-ancestry allele at rs1552489 was
associated with an increased methylation M-value of 0.32 at
cg08033130 (located on chromosome 3 and mapped to
CXCR6/FYCO1). The European-ancestry allele was also asso-
ciated with cg08033130 hypermethylation but the associated
increase was greater (M-value of 0.80) (Fig. 5b and Supplemen-
tary Data 10). The third scenario was that a genetic effect from
only one ancestry was associated with differential methylation
levels. For example, the African-ancestry allele at rs2955229 was
associated with an increased methylation M-value of 0.50 at
cg24599650 (located on chromosome 8 and mapped to RPL8)
while samples with 0, 1, or 2 European-ancestry alleles at
rs2955229 had comparable methylations (Fig. 5c and Supple-
mentary Data 11). There are also cases when European-ancestry

Fig. 4 Downstream characterization of the local ancestry-associated
DNA methylation. a The enrichment or depletion of genomic annotations
for the DNA methylation identified in the epigenome-wide association
studies (EWAS) of local ancestry. Asterisks (*) indicate significant
enrichments or depletions with FDR adjusted p-values less than 0.05. b The
SNP-based heritability estimates of local ancestry associated DNA
methylation (mean h2= 0.45, median h2= 0.43) are considerably higher
than the overall heritability (mean h2= 0.06, median h2= 0.01) estimated
from all methylation sites. The SNP-based heritability for each methylation
site is estimated using all SNPs in a flanking region of 1 mega basepairs. The
source data are provided in Table 2 and Supplementary Data 4.

Table 3 Methylation quantitative trait loci (meQTL) model specifications for the null, conventional, and ancestry models.

Model Model specification

Null Methylation ¼ ∑
p

i¼1
bi ´ covariatei þ bLA ´ LAþ ε

Conventional Methylation ¼ ∑
p

i¼1
bi ´ covariatei þ bLA ´ LAþ bSNP ´ SNPþ ε

Ancestry Methylation ¼ ∑
p

i¼1
bi ´ covariatei þ bLA ´ LAþ bAFR ´ SNPAFR þ bEUR ´ SNPEUR þ ε

¼ ∑
p

i¼1
bi ´ covariatei þ bLA ´ LAþ bAFR þ bEUR

2 SNPAFR þ SNPEUR
� �þ bAFR � bEUR

2 SNPAFR � SNPEUR
� �þ ε

¼ ∑
p

i¼1
bi ´ covariatei þ bLA ´ LAþ bAFR þ bEUR

2 SNPAFR þ SNPEUR
� �þ bAFR � bEUR

� � SNPAFR � SNPEUR
2 þ ε

¼ ∑
p

i¼1
bi ´ covariatei þ bLA ´ LAþ baverageSNPþ bdiff

SNPAFR � SNPEUR
2 þ ε

The null model assumes no genetic effect on the DNA methylation. The conventional model assumes identical effects across ancestral origins of the genotype. The ancestry model allows SNP genetic
effects with an African or European ancestral background to be different on the DNA methylation.
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alleles were associated with differential methylation while the
African-ancestry alleles were not (Fig. 5d and Supplementary
Data 12). The last scenario was when genetic effects were
comparable between the two LA background (Fig. 5e and
Supplementary Data 13). In this case, the overall effect was
comparable to the ancestry genetic effects and the corresponding
meQTL was also identified employing the conventional model.

In replication of the meQTLs, we restricted the evaluation of
CpG sites to those that were replicated in the EWAS stage. In the
VACS discovery group, 785 lead meQTLs (among which 109
displayed significantly different ancestry effects) were identified
for CpG sites that were replicated in the VACS replication group
in the EWAS stage. Six hundred forty-nine of 785 (83%) lead
meQTLs were replicated (p-value < 6.37e–5, F test: ancestry vs.
null model) in the VACS replication group (Supplementary
Data 7) where 58 displayed significantly different ancestry effects
(difference ranged from −1.98 to 2.86, p-value < 4.59e–4)
(Supplementary Data 8). In the VACS discovery group, 185 lead
meQTLs (33 with significantly different ancestry effects) were

identified for CpG sites that were replicated in the WIHS
replication group in the EWAS stage. Eighty-six of 185 (46%) lead
meQTLs were replicated (p-value < 2.72e–4, F test: ancestry vs.
null model) in the WIHS replication group (Supplementary
Data 7) where 10 displayed significantly different ancestry effects
(difference ranged from −1.09 to 1.47, p-value < 1.52e–3)
(Supplementary Data 8).

Discussion
In this study, we identified 1,284 LA-associated CpG sites among
AAs, with 60% replication rate in an internal replication group
and 17% replication rate in an external replication group. We
further characterized the LA-associated CpG sites and found that
the significant CpG sites were depleted in the functional regions
of genes. The LA-associated methylation signatures also showed
high SNP-based heritability (mean h2= 0.41). Furthermore, by
incorporating ancestry origins of genetic variations into the
association model and allowing genetic effects to be different by

Fig. 5 An illustration of four representative patterns of genetic effects by ancestry for the meQTLs identified by the ancestral model. In each panel, the
set of boxplots show the distribution of methylation (beta-value) by genotype composition. The lozenge indicates mean of methylation beta-value. a The
genetic effects on the methylations are opposite for the African and European ancestry. b The genetic effects from the two ancestries contribute to the
methylation in the same direction but with different effect sizes. c The African alleles are associated with differential methylations while the European
alleles are not. d The European alleles are associated with differential methylations while the African alleles are not. e The genetic effects are comparable
between ancestries. The box denotes interquartile range (IQR, 25th to 75th percentile) where the central line in the box denotes the median value (50th
percentile) and the lozenge denotes the mean value. The upper and lower whisker denotes the largest value within 1.5 times IQR above the 75th percentile
and the smallest value within 1.5 times IQR below the 25th percentile, respectively. Values outside of the whisker range are denoted as dots. The source
data are provided in Supplementary Data 9–13.
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ancestry background, we identified a large number cis-meQTLs
for LA-associated CpG sites. Our results demonstrate that LA
inference provides a fine mapped population structure in the
epigenome. Local ancestry is informative in addressing popula-
tion admixture for EWAS.

Using the self-reported race as a proxy for ancestral origin is a
common practice in recent epigenetic studies. Despite its com-
monplace collection and convenience, self-reported race and
ethnicity are social constructs that fail to accurately reflect the
genetic admixture in a population and may result in confounding
in EWAS. Our results show that genetically inferred LA is
superior to self-reported race in addressing the influence of
population admixture on DNA methylation. With ready access to
genetic reference data (e.g. the 1000 Genomes Project) and the
increasing viability of multi-omics (i.e., genetic, DNA methy-
lome) data in the same sample, it is feasible to infer LA for each
individual in a sample and to identify LA-associated DNA
methylation signatures. Our EWAS on LA identified more asso-
ciated DNA methylation sites than EWAS of GA and self-
reported race and also featured the highest replication rate for the
identified methylation sites in both replication groups. These
findings suggest that incorporating LA into EWAS is a superior
approach than self-reported race or GA to address the con-
founding effect from population substructure. We also observed
DNA methylation associations that overlapped across EWAS of
three different ancestry variables. The overlap in the identified
CpG methylation sites is not unexpected given that the ancestry
variables overlap in a broad sense that (1) dichotomizing global
African ancestry estimates at 10% results in an almost perfect
identical agreement with self-reported AAs and EAs; (2) the
global ancestry is an average of local ancestry across the genome;
and (3) self-reported race and ethnicity is an established, if
imprecise, proxy of ancestry in human population genetic asso-
ciation studies.

The genetic contribution to DNA methylation varied widely
across CpG sites and the distribution of the SNP-based herit-
ability is heavily right skewed. The downstream analyses of the
DNA methylation sites identified across the three approaches to
approximate ancestry, demonstrate that ancestry-associated DNA
methylation is, on average, highly heritable and significantly
depleted in promoter regions (1st Exon, 5′UTR, and TSS200) and
CpG islands while moderately enriched in south shores. This
agrees with the previous findings of Rawlik et al. that population-
specific methylations is depleted in promoter regions and CpG
islands while enriched in the intergenic region21. Moreover, Huan
et al. also showed that heritable DNA methylation sites are
depleted in promoter, TSS200, CpG island, and high-CpG dense
regions while enriched in enhancer regions33. Taken together,
these findings suggest that LA-associated DNA methylation is less
likely to be located in high-density CpG regions. Based on these
findings, we speculate that LA-associated methylation may play
an important role in maintaining epigenome stability and war-
rants functional study.

The characterization of high SNP-based heritability motivated
our investigation of the genetic components underlying ancestry-
influenced DNA methylation. We incorporated LA in the iden-
tification of meQTL. An advantage of this approach is that it
allows genetic effects on DNA methylation to be different by
ancestry and enables examination of the magnitude and sig-
nificance of the identified differential effects34,35. The ancestry
model identified 36 meQTL clumps that were missed by the
conventional model where the ancestral origin of genetic varia-
tions is not taken into account. More interestingly, the ancestry
model identified 97% of the meQTL clumps identified by the
conventional model with highly congruent test statistics for
meQTL clumps identified by both models and the remaining 3%

of the meQTL clumps uniquely identified by the conventional
model had test statistics that approached the significance
threshold in the ancestry model. However, the opposite does not
hold true for the 36 meQTL clumps uniquely identified by the
ancestry model (i.e., the test statistics for the same meQTL
clumps tested using the conventional model showed little evi-
dence of approaching the significance threshold). Interestingly, 8
of the lead SNPs at these 36 meQTL clumps displayed opposite
genetic effects in the two ancestral contexts. As a result, aggre-
gation of genotypes regardless of the ancestral origin can con-
found statistically significant genetic effects. The fact that lead
SNPs at 152 of 1268 of the meQTL clumps displayed significantly
different genetic effects based on African and European ancestral
contexts indicates that there exists DNA methylation that is
affected by the local ancestry-based genetic heterogeneity. This
provides additional evidence illustrating the benefit of using LA to
identify differentially methylated sites in admixed populations. It
also emphasizes the importance of considering the impact of
ancestry on the association between genetic variation and DNA
methylation and the approach for doing so.

Our study focused on the association between methylation and
genetic admixture for AA samples recruited in the HIV studies.
LA-associated methylation in the non-HIV population and rele-
vant to Native American, Asian, Hispanics, or other ancestries
remain to be evaluated. The number of EA samples was relatively
limited in our study. Although the ratio of sample sizes of EA and
AA does not bias the estimated effects, the self-reported race
EWAS would benefit from an increased EA sample size in terms
of smaller standard error. We focused on identifying ancestry-
associated DNA methylation measured by HM450K arrays.
Additional associations remain to be identified if methylation
based on EPIC array were available for both the discovery and
replication groups. Our findings are based on bulk (i.e., whole
blood, peripheral blood mononuclear cells) DNA methylation
signatures that were generated from biospecimens collected from
VACS and WIHS participants. Despite that one previous study
suggested that population-specific methylation signatures are
consistent across tissues21, examination of cell type-specific
ancestral effects on DNA methylation is warranted. Finally, we
only examined cis-meQTL in a 1Mb flanking region of the
ancestry-associated CpG site. Although our meQTL model
allowing genetic effects to be different by ancestry can be readily
applied to identify trans-meQTL, it would greatly increase the
burden of multiple testing and lead to a more stringent significant
cutoff. Future study with increased sample size is needed to
identify trans-meQTL with ancestry-specific effects. Despite the
limitations, we demonstrate the merits of using local ancestry to
better capture the impact of admixture and identify ancestry-
associated DNA methylation in AA cohorts. We provide a fra-
mework for the application of local ancestry estimates to improve
the identification and interpretation of DNA methylation sig-
natures for diverse phenotypes. These findings have important
implications for the conduct of epigenetic studies in admixed
populations.

Methods
Study cohort. The Veterans Aging Cohort Study (VACS) and the Women’s
Interagency HIV Study (WIHS) are both multi-center, prospective, observational
cohort studies31,32. The VACS recruited HIV-positive cases and age-, race-, site-
matched HIV-negative controls where the majority of participants are men. The
study was approved by the committee of the Human Research Subject Protection at
Yale University and the Institutional Research Board Committee of the Con-
necticut Veteran Healthcare System. All VACS subjects provided written consents.
In WIHS, all participants are women infected with HIV or at risk for HIV
acquisition. Informed consent was provided by all WIHS participants via protocols
approved by institutional review committees at each affiliated institution. We
studied DNA methylation and genetic data of AA and EA participants from the
two cohorts. The VACS samples were randomly divided and measured with

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03353-5 ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:401 | https://doi.org/10.1038/s42003-022-03353-5 | www.nature.com/commsbio 9

www.nature.com/commsbio
www.nature.com/commsbio


HM450K and EPIC arrays. They were separately processed using different plat-
forms and at different processing times. Even though the two arrays produced
highly correlated methylation levels, the array-specific batch effects may confound
the EWAS associations if combined and analyzed together. Thus we used the
HM450K samples as a discovery group (NAA= 478, NEA= 49) and the EPIC
samples as an internal replication group (NAA= 422, NEA= 45). The WIHS cohort
(NAA= 131, NEA= 99) served as an external replication cohort. Demographic and
clinical characteristics for the three groups were summarized in Table 1.

DNA methylation. The Illumina Infinium HumanMethylation450 BeadChip
(HM450K) and the Illumina Infinium MethylationEPIC BeadChip (EPIC) was
used for DNA methylation profiling of the VACS discovery group and internal
replication cohort, respectively. There was no sample overlap between the two
groups. DNA methylation on samples contributed by WIHS participants was
profiled using the EPIC array. We followed methods described in Lehne et al. to
perform methylation normalization and adjust for potential batch effects36. A total
of 437,722 CpGs from the HM450K array passed quality control steps and were
used in the association analysis for EWAS discovery. A subset of 407,038 CpG sites
also covered by the EPIC array were extracted for replication analysis.

Genotyping, imputation, and quality control. The VACS samples were geno-
typed using the Illumina HumanOmniExpress Beadchip that targeted approxi-
mately 896,000 genetic variants. Imputation was performed with IMUPTE237 and
using the 1000 Genomes Project 3 reference panel38, resulting in 18 million genetic
variants. The WIHS samples were genotyped using the Infinium Omni2.5 Bead-
Chip that targeted approximately 2.4 million genetic variants. Minimac4 was used
for imputation39 with 1000 Genomes Project 3 as the reference panel38, yielding 34
million genetic variants. In both cohorts, we removed insertions and deletions and
retained only single nucleotide polymorphisms (SNP) for genetic analyses. We also
removed SNPs with minor allele frequency < 0.01, missing rate > 5%, imputation
quality r2 < 0.8, and those that deviated significantly from Hardy–Weinberg
equilibrium (p < 1e–6). Approximately 4.7 million SNPs passed QC and were used
for local ancestry estimation, SNP-based heritability estimation, and meQTL
identifications across all three groups.

Ancestry estimation. We adopted a two-way admixture of African and European
ancestry to model ancestry composition for African Americans24,40,41. We used
Utah residents with Northern and Western European ancestry (CEU) and samples
from Yoruba in Ibadan, Nigeria (YRI) recruited in the 1000 Genomes Project as the
reference genotype panel for European and African descent for both global and
local ancestry inference38. Individuals with excessive relatedness from the reference
panels were removed from the analysis, resulting in 98 CEU and 97 YRI unrelated
reference samples42. We took the overlapping SNPs between VACS and 1000
Genomes Project for global and local ancestry estimation. We used ADMIXTURE
1.3.0 to perform global ancestry estimation with the number of ancestral groups set
to 243. We pruned genetic variants using PLINK 1.9 with window size set to 250
kilobase (kb) pairs, step size set to 10 kb, and linkage disequilibrium measure
r-squared set to 0.0544. 40,508 SNPs retained for global ancestry estimation after
pruning. The global ancestral compositions were not sensitive to varying parameter
choices and resulting number of SNPs. We performed PCA on the same collection
of SNPs to visualize population structure based on genotype data. For local
ancestry estimation, we first used SHAPEIT2 to phase genotype data for both
reference and admixed samples45. RFMix 1.5.4 was then used to infer local ancestry
of genetic variants from phased samples19. Local ancestry at a methylation position
(CpG) is defined as a weighted average of local ancestry composition of genetic
variants within a flanking region of 1 megabase (Mb) pairs centered around the
CpG site. The weights were inversely proportional to the distance between the SNP
and a CpG site and then normalized across genetic variants such that the total
weights summed to 1. Consequently, the SNPs closer to a CpG site would have
greater influence on the local ancestry at that CpG site than SNPs further away.

Identification of ancestry-associated methylation. We performed EWAS on the
self-reported race, GA, and LA, respectively, to identify DNA methylation asso-
ciated with self-reported and genetic ancestry. We first performed a self-reported
race EWAS in EA and AA samples. Next, we restrained the global and local
ancestry-based EWAS in AA samples to pinpoint methylation signatures associated
with genetic ancestry. The effect of GA or LA on the DNA methylation may be
potentially heterogeneous between EA and AA samples. Adjusting for self-reported
race as a covariate allowed EA and AA samples to have different baseline DNA
methylation. However, it does not capture the potentially heterogeneous effect of
GA or LA on DNA methylation between ancestry groups. Moreover, GA and LA
usually exhibited little variation in EA samples, resulting in their limited con-
tribution to investigate the effect of genetic ancestry on DNA methylation. Con-
sequently, we excluded a limited number of EA samples and focused on AA
samples to investigate the effect of genetic ancestry on the DNA methylation. In the
LA EWAS, we further adjusted GA as a covariate. Other covariates included in all
three EWAS models were age at baseline, adherence to medication (adherence vs.
non-adherence), viral load (log10 scale), smoking status (smoker vs. non-smoker),
alcohol use (PEth score measured on log10 scale in VACS and hazardous drinker

vs. non-hazardous drinker in WIHS), white blood cell counts, cell-type composi-
tion (CD4 T cells, CD8 T cells, Granulocytes, Natural Killer cells, B cells, Mono-
cytes), and first 30 principal components (PCs) of methylation levels measured at
control probes.

In each EWAS, we applied a two-stage model to control for technical and
biological confounders and reduce EWAS inflation factor following Lehne et al.
and Zhang et al36,46. First we constructed a model regressing the methylation M-
value on all covariates (e.g., age, viral load, adherence to medication, smoking
status, alcohol use, cell-type composition, control probe PCs) excluding the
ancestry variable of interest (self-reported race, GA, or LA) and obtained the PCs of
the residuals. The top 5 residual PCs were then adjusted in the second-stage model
to reduce the correlation between DNA methylation and test statistic inflation. In
the second stage model, we regressed the methylation M-value on the ancestry
variable of interest, the covariates included in the first model, and the top 5 residual
PCs from the first model. The LA EWAS model in VACS was given as an example.
Although DNA methylation beta-value has a more intuitive biological
interpretation, the heteroscedasticity for highly methylated or unmethylated CpG
sites (beta-value close to 1 and 0) is susceptible to violation of linear model
assumptions47. Thus we used the approximately homoscedastic methylation M-
value as response variable in both modeling stages for statistical validity. EWAS
models for self-reported race and GA in VACS and all replication EWAS models in
WIHS were detailed in the Supplementary Note 1. CpG sites with a p-value less
than the significance cutoff of 1.16e–7 were declared as ancestry-associated DNA
methylation biomarkers. The replication significance cutoff was determined by
applying Bonferroni correction to the number of signals identified for each
ancestry variable in the discovery group, i.e., 7.06e–5 for self-reported race, 1.67e–3
for GA, and 3.89e–5 for LA, respectively. R 4.0.3 was used for implementation of
EWAS models and visualizations.

MethylationM�value � GAþ ageþ smokerþ logðPEthÞ þ ADHþ logðVLÞ
þWBCþ CD4þ CD8þ Granulocyteþ NKþ BcellþMonocyte

þ PC1ControlProbeþ ¼ þ PC30ControlProbe

ð1Þ

MethylationM�value � LAþ GAþ ageþ smokerþ logðPEthÞ þ ADH

þ logðVLÞ þWBCþ CD4þ CD8þ Granulocyteþ NKþ BcellþMonocyte

þ PC1ControlProbeþ ¼ þ PC30ControlProbeþ PC1Residualþ ¼ þ PC5Residual

ð2Þ

Positional enrichment analyses of DNA methylation sites associated with
ancestry. We performed enrichment analyses using genomic features to characterize
the identified DNA methylation associated with LA, GA, and self-reported race,
respectively. We extracted positional annotations for all probes in the HM450K arrays
using the R package IlluminaHumanMethylation450kanno.ilmn12.hg19. We per-
formed enrichment analyses on the RefGene annotations (3′UTR, Body, 1st Exon, 5′
UTR, TSS200, and TSS1500) and annotations describing relative position to CpG
island (Island, N_Shore, S_Shore, N_Shelf, and S_Shelf)48. We first calculated the
proportion of probes with a specific annotation, i.e., the annotation coverage, across
all the probes. We then calculated the annotation coverage among the significant
probes identified in each of the EWAS. The fold change for each annotation is defined
as the ratio of the annotation coverage of the identified ancestry-associated DNA
methylation sites and the annotation coverage across all DNA methylation sites. A
fold change greater than 1 indicates enrichment and a fold change smaller than 1
indicates depletion. The p-value associated with the fold change is derived from a
hypergeometric test. We simultaneously tested the 11 annotations mentioned above
and used the Benjamini–Hochberg false discovery rate (FDR) less than 0.05 as the
significance threshold.

Estimation of DNA methylation heritability. SNP-based heritability was esti-
mated for DNA methylation associated with LA, GA, and self-reported race,
respectively, using SNPs in a 1-Mb flanking region. The SNP-based methylation
heritability is defined as the proportion of the variation in DNA methylation
explained by genetic effects. We used the genome-based restricted maximum
likelihood (GREML) method implemented in the genome-wide complex trait
analysis (GCTA 1.93.2) tool to estimate the heritability49. In the heritability model,
genetic effects were modeled as random and the same set of covariates in the
EWAS (age at baseline, adherence to medication, viral load, smoking status, alcohol
use, cell-type composition, the first 30 PCs of control probe methylations, and the
first 5 residual PCs) were used as fixed effects. We compared the distribution of
heritability estimates for LA-associated DNA methylation identified in the EWAS
to the overall distribution across all measured DNA methylation.

Trait enrichment analyses of DNA methylation sites associated with ancestry.
Trait enrichment analyses were performed by comparing the significant DNA
methylation identified for LA, GA, or self-reported race with those reported for
other traits in the literature. The EWAS Atlas database was used for this analysis
where more than 617,000 associations were documented for 619 traits through
curation of 900 publications and EWAS studies50,51. Specifically, there were 4
epigenetic studies on ancestry in the database with 11,355 associated CpG sites
(https://ngdc.cncb.ac.cn/ewas/browse?traitList=ancestry). EWAS Atlas applied a
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weighted Fisher’s exact test to compute the co-occurrence probability between
ancestry-associated DNA methylation and trait-related DNA methylation reported
in the published EWAS. As a result, 87, 23, 82 traits shared at least one significant
CpG site with LA, GA, and self-reported race, respectively, yielding the p-value
cutoff of significant enrichment to be 5.75e–4 (0.05/87), 2.17e–3 (0.05/23), and
6.10e–4 (0.05/82).

meQTL identification. Consistent with the LA EWAS, the meQTL identification was
also performed in AA samples. We compared meQTLs identified by the following two
models (Table 3) in order to identify meQTL that were and were not influenced by local
ancestry. Local ancestry was adjusted in both models to control for the confounding
effects from ancestry background. The first was a conventional model that identified the
association between DNA methylation and genotypes regardless of the ancestral origin
of the genotype. The p-value of the meQTL is derived from an F test comparing the
conventional model to the null model. The second model allows the genetic effects to be
different for SNPs with an African or European ancestry background (bAFR and bEUR,
respectively) and we further test the significance of the difference in a SNP’s effects by
ancestry (bdiff= bAFR– bEUR). The p-value of the meQTL is derived from an F test
comparing the ancestry model to the null model and the p-value of the SNP effects
difference by ancestry (bdiff) is derived from an F test comparing the ancestry model to
the conventional model. The significance cutoff for meQTLs is p-value < 1.35e–8 for
both models, which is based on applying a Bonferroni correction to the total number of
DNA methylation-SNP pairs. The significance cutoff for the SNP effects difference by
ancestry is p-value < 3.31e–7, again based on application of Bonferroni correction to the
total number of meQTLs identified by the ancestry model.

As genetic variants are correlated due to linkage disequilibrium (LD), we performed
clumping of the SNPs identified as meQTL either by the conventional or ancestry
model. We defined a proxy independent locus as those featuring an LD r-square < 0.01.
As LD blocks for AAs are relatively short, a locus with fewer than 10 SNPs or within
250 kb from another locus were merged into its nearest clump. The SNP with the lowest
p-values in a clump was declared as the lead SNP. We used p-values from an F test
against null models to identify lead SNPs for ancestry and conventional models,
respectively. We examined the meQTLs in the VACS replication and WIHS groups,
only considering DNA methylation associations replicated in the two groups in
the EWAS stage. The significance threshold for the replication of meQTLs was set at
p-value < 3.31e–5 for the VACS internal replication group and p-value < 1.04e–4 for the
external WIHS replication group. The significance threshold for the replication of SNP
effects difference by ancestry was set at p-value < 4.26e–5 for the VACS internal
replication group and p-value < 1.19e–4 for the external WIHS replication group. R
4.0.3 was used for implementation of meQTL models.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Demographic and clinical characteristics and DNA methylation data are submitted to the
GEO dataset (GSE117861) and are available to the public. The source data of Fig. 4 are
provided in Table 2 and Supplementary Data 4. The source data of Fig. 5 are provided in
Supplementary Data 9-13. EWAS summary statistics are available at https://doi.org/10.
6084/m9.figshare.19576264.v4.

Code availability
All codes for analysis are also available upon a request to the corresponding author.
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