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Computational profiling of hiPSC-derived heart
organoids reveals chamber defects associated with
NKX2-5 deficiency
Wei Feng 1,5, Hannah Schriever 2,5, Shan Jiang1, Abha Bais 1, Haodi Wu3, Dennis Kostka 1,2,4✉ &

Guang Li 1✉

Heart organoids have the potential to generate primary heart-like anatomical structures and

hold great promise as in vitro models for cardiac disease. However, their properties have not

yet been fully studied, which hinders their wide spread application. Here we report the

development of differentiation systems for ventricular and atrial heart organoids, enabling the

study of heart diseases with chamber defects. We show that our systems generate chamber-

specific organoids comprising of the major cardiac cell types, and we use single cell RNA

sequencing together with sample multiplexing to characterize the cells we generate. To that

end, we developed a machine learning label transfer approach leveraging cell type, chamber,

and laterality annotations available for primary human fetal heart cells. We then used this

model to analyze organoid cells from an isogeneic line carrying an Ebstein’s anomaly asso-

ciated genetic variant in NKX2-5, and we successfully recapitulated the disease’s atrialized

ventricular defects. In summary, we have established a workflow integrating heart organoids

and computational analysis to model heart development in normal and disease states.
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Human induced pluripotent stem cells (hiPSCs) have been
shown to differentiate into beating heart muscle cells
(cardiomyocytes, CMs) with monolayer differentiation

protocols, or into heart organoids comprised of a variety of cell
types with three-dimensional differentiation systems1–4. While
monolayer differentiation protocols are able to produce very pure
populations of cells, they are not able to model the three-
dimensional spatial microenvironments of cardiac development;
therefore, these protocols may not be appropriate to study con-
genital heart defects (CHDs) in general. CHDs are the most
frequently observed type of malformation at birth and the most
common cause of infant death due to birth defects in the United
States5. In contrast to monolayer cells, organoids are generated
using three-dimensional differentiation methods, which enables
them to develop anatomical context through self-assembly. This
has already been leveraged to study developmental processes in
several tissue and organ systems like brain, intestine, and
kidney6–8. Also in the context of heart development several three-
dimensional differentiation protocols have been published3,9–13,
but their chamber identities have not been carefully investigated
and applied to study CHDs. Therefore, we established two three-
dimensional differentiation protocols geared towards producing
atrial and ventricular heart organoids, respectively. This approach
then allows us to study chamber defects in the context of CHDs
in general and for Ebstein’s anomaly in particular.

Ebstein’s anomaly, a rare but serious CHD, occurs in ~1 in
200,000 live births and accounts for <1% of all cases of CHDs14.
Patients suffer from heart chamber malformations, including
enlarged right atrium (RA), reduced right ventricle (RV), and
abnormal tricuspid valves. Genetic causes play a role in Ebstein’s
anomaly, albeit the disease is genetically heterogeneous. Known
genetic causes include chromosomal alterations (like copy num-
ber variations) and single gene defects in cellular structural pro-
teins, signaling molecules, and cardiac transcription factors15.
Specifically, multiple sequence variants within the homeobox-
containing cardiac transcription factor NKX2-5 have been asso-
ciated with the disease15,16. Given that NKX2-5 is a transcription
factor with key roles in cardiac development17–20, and because
knock out experiments in zebrafish and mouse have demon-
strated that NKX2-5 is involved in chamber specification in
developing vertebrate hearts21,22, we were interested to further
investigate a specific Ebstein’s anomaly-associated variant in the
coding sequence of NKX2-5, where a cytosine is converted to an
adenine (c.673C > A)16.

We used our differentiation system in combination with single-
cell RNA sequencing (scRNA-seq) to address this question.
scRNA-seq enables the study of transcriptional profiles of indi-
vidual cells, and it has successfully been used to study and elu-
cidate disease etiology for CHD23–25. Commercial droplet-based
methods (like the 10X genomics platform) have been shown to
capture a large diversity of cell types, and they can be used to
assay a large number of cells in each experiment26. We utilized
this approach to characterize organoids generated by our proto-
cols at different differentiation time points, and it enabled us to
compare wild-type heart organoids with organoids that were
genetically modified to carry the NKX2-5 c.673C > A variant. A
major consideration in the design of scRNA-seq experiments are
batch effects, which arise when samples are processed in separate
groups. Batch effects have the potential to severely confound
analysis results and downstream conclusions26,27. Therefore we
used the MULTI-seq approach that (through lipid-based sample
barcoding) enables multiplexing of different samples for library
preparation and sequencing28.

For comprehensive molecular characterization of cardiac cells
based on scRNA-seq, we used machine learning to implement a
label transfer approach (based on random forests) that allowed us

to leverage information about cell type, heart chamber (atrial vs.
ventricular) and laterality (left vs. right side) available in primary
human fetal cells23,29,30. The random forest learning algorithm is
a machine learning method that has been successfully employed
in the context of scRNA-seq data annotation22, and we adopted
and modified this approach to generalize well across different
sequencing platforms, and to include an anomaly detection step
to highlight cells that are likely not heart-related. This enabled us
to characterize the differentiation protocols we established and to
compare wild type with genetically modified cells.

Overall, we find that our differentiation approach generates
organoids containing heart cells with predominantly atrial or
ventricular lineage identity, based on differentiation conditions.
Single-cell transcriptional profiling in combination with the label
transfer approach we developed was able to identify a range of
cardiac cells in our organoids. Comparison of cells from wild-type
organoids with cells from organoids with the Ebstein’s anomaly-
associated genetic lesion NKX2-5 c.673 C > A identified chamber
developmental defects. Additionally, we found genes down-
regulated in mutant cells are related to striated muscle differ-
entiation, while up-regulated genes are related to energy and
metabolism, illustrating specific molecular consequences of this
genetic manipulation in the context of heart development. This
finding suggests that our overall approach is a promising option
for characterizing lineage defects and the functional roles of
genetic variants in CHDs.

Results
Generation of ventricular-lineage heart organoids. In order to
generate ventricular-lineage heart organoids, we established a
three-dimensional differentiation protocol by sequentially mod-
ulating the WNT signaling pathway, which is largely similar to
the established monolayer differentiation protocols2,10,31–33. This
allowed us to differentiate two hiPSC lines (WTC line with
ACTN2-eGFP reporter and SCVI114 line) into cardiac lineages in
organoid (Org) and monolayer (ML) systems (Fig. 1a). Beating
cells and ACTN2-eGFP signal were observable at day 15 and 30
in both protocols (Fig. 1b, Supplementary Fig. 1a, Supplementary
Video 1). Cardiomyocyte percentages in organoids were quanti-
fied with flow cytometry, using ACTN2-eGFP expression (Sup-
plementary Fig. 1b). Interestingly, shorter sarcomere lengths, but
not beating rates, were observed in organoid cells compared to
monolayer cells (Supplementary Fig. 2a, c). Organoid size
increased throughout early stages of differentiation and remained
stable between day 15 and 30, but the variance increased mark-
edly after day 7 (Fig. 1c) when cells had been transferred from
AggreWell to six-well plates. Transverse sectioning of the orga-
noids revealed varied internal structures, which we grouped into
three categories: intact, holes, and cavities (Fig. 1d and Supple-
mentary Fig. 3a). When staining with cardiac troponin T (cTnT),
a marker for cardiomyocytes, we found that 90.9% of organoids
with cavities and 71.4% of organoids with hole structures con-
tained cTnT positive cells, while most organoids with intact
structures (75%) were cTnT negative (Supplementary Fig. 3b, d).
Quantification of cTnT-positive areas confirmed that organoids
with cavities had the strongest cTnT signal followed by organoids
with holes, while organoids with intact structures showed little
signal (Fig. 1e). Furthermore, organoids with cavities and hole
structures were found to be larger than the intact organoids, while
cell numbers did not show significant differences (Supplementary
Fig. 3e).

Ventricular identity of organoid cells was verified by marker
gene examination. Immunostaining of ventricular markers
MYH7 and HEY229,34,35 showed a strong presence, while atrial
markers MYH6 and ID229,36,37 were identified in very few cTnT
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positive cells (Fig. 1f). These results suggest that most of the
generated cardiomyocytes (CMs) with this protocol are indeed
ventricular CMs.

Simultaneous staining of CDH5 and NFATC1 revealed a small
number of endothelial cells lining the inner cell layer of the
cavities (Fig. 1g), a similar pattern to what endocardial
endothelial cells show in vivo38. Fibroblasts were found to either
exist throughout the entire organoid or be located separately from
cardiomyocytes based on their expression of COL1A1. Finally,
RNA staining of WT1 and TNNI3 revealed the existence of
epicardial cells in the organoids (Fig. 1g). Notably WT1
expression was observed only in a small portion of cells,
suggesting that epicardial cell or epicardial cell-derived cells only
developed in a small region of the organoids.

Overall, these results show the heart organoids we generated
with this protocol contained predominantly ventricular lineage
cells and captured several important heart developmental
characteristics observed in vivo; this implies their potential utility
in studying ventricular cardiogenesis in vitro.

Transcriptional analysis of ventricular-lineage organoids. With
the goal of better understanding the cellular and molecular het-
erogeneity of organoids generated by our protocol, we used
single-cell RNA sequencing (scRNA-seq) to profile and analyze
cells’ transcriptomes. To control for potential batch effects, we
employed the MULTI-seq protocol28. In this approach each
sample was pre-stained with a unique MULTI-seq sample
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Fig. 1 Differentiation and characterization of RA- (ventricular protocol) heart organoids. a Diagram of the RA- organoid and monolayer cell
differentiation workflow. Two cell lines were differentiated in each system. b Representative images of the differentiated cells. The green signal represents
CMs labeled by Actn2-eGFP. c Quantification of the organoid diameters from day 0 to day 30. n= 12 organoids in each group. ****p < 0.0001, Student’s t
test against day 0. d Transverse section analysis revealed three types of organoids. Data are plotted as mean ± SEM, n= 4 biological independent RA-
organoid differentiation. e Analysis of the CM areas in the three types of organoids based on cTnT staining. N= 13 intact organoids, N= 13 organoids with
cavities, N= 11 organoids with holes. ****p < 0.0001, Student’s t test against intact. f RA- organoid from day 30 stained with ventricular and atrial markers.
Scale bar= 100 μm. g In situ expression analysis of cardiac lineage genes with immunofluorescence and RNA in situ hybridizations. Arrowhead points to
the CDH5 and NFATC1 positive cells aligning along the inner layer of the cavity. Scale bar= 100 μm.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03346-4 ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:399 | https://doi.org/10.1038/s42003-022-03346-4 | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


barcode, and subsequently samples were pooled together and
processed with the regular 10X single cell-profiling workflow with
minor adaptions39. After Illumina sequencing, data was demul-
tiplexed based on their MULTI-seq barcodes to identify sequen-
cing reads from individual samples (Fig. 2a and Supplementary
Fig. 4).

Using this approach, we profiled organoid and monolayer
differentiated cells (WTC and SCVI114 cell lines) that were
generated as described above. After read mapping, demultiplex-
ing, and quality control (see Methods section, Supplementary
Figs. 4 and 5), we recovered 3612 cells for the WTC cell line (2361
at day 15 and 1251 at day 30) and 4269 cells for the SCVI114 cell
line (2740 at day 15 and 1529 at day 30) for further analysis.
Unsupervised clustering analysis revealed major transcriptional

differences between cells based on specific combinations of cell
line, differentiation protocol (Org= organoid vs. ML=mono-
layer) and stage (day 15 vs. day 30) (Fig. 2b). We used graph-
based clustering to cluster the cells into 15 distinct groups and
identified corresponding unique gene expression signatures for
each cluster (Fig. 2c and Supplementary Data 1). Together with
expression of lineage marker genes (cardiomyocytes: TNNT2,
TTN, ACTN2; endothelial cells: CDH5, PECAM1, FLVAP;
fibroblasts: COL1A1, POSTN), we identified these three major
cardiac cell types (Fig. 2d, e); non-heart-cells did not express
cardiac lineage genes (Fig. 2eii). We found that D15 and D30
organoid cells of the SCVI114 cell line and D30 organoids cells
from WTC cell line predominantly differentiated into cardiac
cells with only a small percentage specified into non-heart cells;
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Fig. 2 ScRNA-seq analysis of RA- (ventricular protocol) cells. a Diagram of the MULTI-seq experimental workflow. b UMAP projections of the single cells
grouped by (i) conditions, (ii) differentiation methods, (iii) cell lines, and (iv) stages. As for all UMAPs in this work, the x-axis is UMAP1 and the y-axis is
UMAP2. c Unsupervised clustering of the single cells. (i) UMAP projection of the clusters and (ii) cluster-specific differentially expressed genes with
cluster labels (left) and annotated cell types (right). Annotations to each cluster available in a Source data file. d UMAP projections of single cells colored
by the expression pattern of representative cardiac lineage genes. e (i) UMAP projection of single cells grouped by cell type and (ii) expression levels of
lineage genes in each annotated cell type. N= 1519 CMs, 1143 fibroblasts, 125 endothelial cells, 5094 not_heart cells. ****p≤ 0.0001, Bonferroni corrected
p values from Wilcox test, exact p-values and sample numbers available in a Source data file. f The number of profiled cells in each condition colored
proportionately by annotated cell type.
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however, monolayer cells and D15 organoid cells from the WTC
cell line mostly differentiated into non-heart cells (Fig. 2f). This
observation may be the result of variation in CM differentiation
efficiency between experiments. To assess monolayer CMs from
low-efficiency samples we compared them to monolayer CMs
from other research groups where scRNA-seq data has been
reported in the literature40,41. We find that our CMs are
transcriptionally most similar to CMs generated with these other
protocols (Supplementary Tables 1 and 2), an observation
suggesting CMs from low efficiency samples fall within the range
of results typical for this type of setup. Finally, we also profiled
CMs and non-CMs enriched by FACS based on ACTN2-eGFP
expression and identified similar results for monolayer cells at day
15 (Supplementary Figs. 6 and 9e). Overall, scRNA-seq analysis
confirmed prior observations about cell function and morphology
and showed we were able to generate organoids predominantly
consisting of cardiac cell types (cardiomyocytes, fibroblasts,
endothelial cells).

Generation of atrial-lineage heart organoids. In order to gen-
erate atrial-lineage heart organoids, we modified our previous
differentiation workflow by treating cells with retinoic acid (RA)
at cardiac mesoderm and progenitor stages, similar to monolayer
atrial differentiation42 (Fig. 3a). Moving forward, we use RA+ to
refer to atrial lineage heart organoids and RA- to refer to ven-
tricular lineage heart organoids. In line with RA- organoids, we
differentiated WTC and SCVI114 cell lines and observed beating
cells and ACTN-eGFP signal at day 15 and day 30 (Fig. 3b,
Supplementary Fig. 1a, and Supplementary Video 2). As before,
we quantified beating rates and found that RA+ organoids
showed significantly lower beating rates compared to monolayer
cells (Supplementary Fig. 2b). Similar to RA- organoids, we found
that RA+ organoids grew fast at early stages, then between day 15
and 30 the average size remained similar, but the variance
increased markedly (Fig. 3c). Again, transverse section analysis of
the organoids identified three types of internal structures, intact,
hole, and cavity (Fig. 3d and Supplementary Fig. 3a). Staining for
cTnT revealed that ~66.7% of organoids with cavities, ~23.3% of
organoids with holes, and ~15.4% of organoids with intact
structures contain cTnT positive cells (Supplementary Fig. 3c, d).
Quantification of cTnT positive areas further confirmed that
organoids with cavities had the largest CM areas on average
(Fig. 3e).

Immunostaining analysis of RA+ organoids showed high levels
of the atrial markers MYH6, ID2, and NR2F222,29,37,43, but low
levels of ventricular markers MYH7 and HEY229,34,35, suggesting
this protocol produced predominantly atrial CMs (Fig. 3f).
Furthermore, co-staining of CDH5 and NFATC1 identified a
large proportion of ECs lining the interior of the cavities, and the
staining of COL1A1 found fibroblasts developed throughout the
entire organoid (Fig. 3g). Percentages of these two cell types were
further quantified by FACS analysis of CDH5 and COL1A1
expression (Supplementary Fig. 7a, b). Additionally, we found the
organoids with cavities and holes had higher EC percentages than
the organoids with intact structures, while fibroblasts percentages
were not significantly different (Supplementary Fig. 7c, d).

Overall, similar to RA- organoids, we have developed a
protocol to generate organoids with predominantly atrial lineage
cells and the potential to become a valuable in-vitro tool to study
atrial cardiac lineage development.

Transcriptional analysis of atrial-lineage organoids. Within the
same MULTI-seq experiment as for RA- organoids, we also
profiled cells from RA+ organoid and monolayer differentiations.
Differentiated cells at D15 and D30 from WTC and SCVI114 cell

lines were analyzed as described above. We recovered 3551 cells
for the WTC cell line (2329 at day 15, 1222 at day 30) and 4042
cells for the SCVI114 cell line (2060 at day 15 and 1982 at day 30)
for further analysis. Unsupervised clustering followed by projec-
tion into two dimensions revealed clear transcriptional differ-
ences between differentiation protocols (Org vs. ML) and stages
(D15 vs. D30), while differences between the two cell lines (WTC
vs. SCVI114) were more subtle and most pronounced in non-
heart cells (Fig. 4ai–iv). Cells were grouped into 13 clusters using
graph-based clustering and we identified unique expression sig-
natures in each of them (Fig. 4bi, ii and Supplementary Data 2).
Again, making use of lineage marker genes, we identified CMs,
endothelial cells, fibroblasts, and non-heart cells (Fig. 4c, d).
Consistent with what we observed in RA- organoids, we found
that most SCVI114 organoid cells (D15 and D30) and most cells
from WTC organoids at D30 differentiated into cardiac cells,
whereas WTC and monolayer cells at D15 mainly comprise “non-
heart” cells (Fig. 4e). Finally, we also profiled RA+ CMs (D15 and
D30) enriched by FACS based on ACTN2-eGFP expression and
found they were a highly pure population of CMs (Supplemen-
tary Fig. 8a–c and Supplementary Data 3). Overall, scRNA-seq
analysis confirmed prior observations and showed we were able
to generate organoids predominantly consisting of cardiac cell
types (CMs, fibroblasts, endothelial cells) with the majority of
CMs having atrial-lineage.

Comparative analysis of RA- and RA+ organoids. Membrane
potential analysis revealed typical atrial and ventricular action
potentials in the RA+ and RA- organoid derived CMs, respec-
tively (Fig. 5ai). Further quantification of the recordings identified
shorter action potential duration (APD) 50, APD75, APD90, and
higher beating rates in the RA+ organoid cells than RA- organoid
cells (Fig. 5aii). Meanwhile, co-analysis of the scRNA-seq data
from the two differentiation methods revealed three major car-
diac cell types and non-heart cells (Fig. 5b, c). Within CMs, RA-
and RA+ organoid-derived CMs were largely transcriptionally
distinct at day 30 but not at day 15 on UMAP plots (Fig. 5d),
suggesting the CMs have stronger chamber identities at day 30.
This was further confirmed by expression of the marker genes
MYH6, ID2 (atrial markers) and MYH7, HEY2 (ventricular
markers) in RA+ and RA- CMs at day 30 (Fig. 5e, f).

These results imply that our two differentiation protocols
generated the desired atrial and ventricular-lineage organoids,
enabling us to compare and contrast atrial and ventricular
differentiations in normal and pathological conditions.

Iterative application of random forests for label transfer from
human fetal heart cells. In order to more objectively characterize
scRNA-seq data generated from our organoids, we developed a
computational approach based on the random forest classification
algorithm44. Our goal was to annotate cells from our organoids
using published information about (cardiac) cell type, anatomical
zone (ventricular vs. atrial), and laterality (left vs. right) from
human fetal cells in Cui et al.29 Briefly, to transfer cell type labels
we used the Cui et al dataset to train a feature selector random
forest and a classifier random forest that can then be applied to
predict the cell type in test data (our organoid cells, for example).
Cells predicted as CMs can then optionally be classified further to
label anatomical zone and laterality. Finally, our method can
perform anomaly detection to filter out cell types that were not
present in training data (Fig. 6a and Supplementary Fig. 9). This
approach also enables us to focus on cardiac cells in our
comparisons.

We assessed the performance of this approach in three ways:
First, we performed 10-fold cross validation on the Cui et al. data
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itself. While cross validation guards against overfitting, this is an
optimistic scenario because it does not take into account potential
differences between training and test datasets. We found that in
this setting our approach accurately predicted cell types,
anatomical zones and lateralities (Fig. 6b). We noted, though,
that performance for cell type prediction worked better (average
accuracy= 87.19%) than predicting anatomical zone or laterality
(average conditional accuracies of 81.5 and 79.28%, respectively).
Second, to take platform differences, variations between labora-
tories, and other biological variables into account, we used the

trained model to predict on data from Asp et al.30, which
contained cell type and zone labels and was profiled with the 10X
platform (Cui et al. used STRT-seq) (Fig. 6c). Again, we observed
highly accurate prediction of cardiac cell types (average
accuracy= 93.73%) and anatomical zones (average conditional
accuracy= 93.55%). Interestingly, epicardial derived cells
(ep_der), which mostly are fibroblasts, were correctly predicted
as such; cardiac skeleton like fibroblasts, however, were predicted
as valve cells. Third, we used the trained model to predict on 10X
data from Miao et al.23 to assess cell type prediction a second time
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Fig. 3 Differentiation and characterization of RA+ (atrial protocol) heart organoids. a Diagram of the RA+ organoid and monolayer cell differentiation
workflow. RA was added to induce the atrial cell lineages. b Representative image of the cells at different differentiation stages. The green signal represents
CMs labeled by Actn2-eGFP. c The diameter of RA+ organoids from day 0 to day 30. n= 12 organoids in each group. ****p < 0.0001, Student’s t test
against day 0. d Three types of atrial organoids were identified based on their internal structures. Data are plotted as mean ± SEM, n= 4 biological
independent RA+ organoid differentiation. e Analysis of the CM areas in the three types of atrial organoids based on cTnT staining. n= 14 organoids in
intact, n= 10 organoids in holes, n= 11 organoids in cavity. **p < 0.01, ****p < 0.0001, Student’s t test against intact. f Immunofluorescence analysis of
atrial and ventricular marker genes expression at day 30 RA+ organoids. Scale bar= 100 μm. g Immunofluorescence staining analysis of cardiac lineage
genes in RA+ organoids. Arrowhead points to the CDH5 and NFATC1 positive cells aligning along the inner layer of the cavity. Scale bar= 100 μm.
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and, importantly, to assess cross platform laterality prediction.
Consistent with our previous results we found cell type prediction
highly accurate (average accuracy= 96.82%); prediction of
laterality however was only moderately successful, with ~84% of
CMs on the right side and ~66% of CMs on the left side correctly
classified (Fig. 6d), with many left-annotated CMs misclassified
as right.

Overall, these results showed that we can use the Cui et al. data
set to annotate scRNA-seq data generated on different platforms
by different laboratories. We conclude that we can be highly
confident in cell type annotations, confident anatomical zone
annotations, and moderately confident in laterality annotations.

Computational annotation of heart organoid cells’ tran-
scriptomes. Next, we used our computational approach to annotate
RA+ and RA- cells at day 30 (Fig. 7). We found that anomaly
detection mainly removed non-heart cells as expected, and of the
few heart cells that were filtered out, most were intermediate cells
between fibroblasts and cardiomyocytes (Supplementary Fig. 9c).
After removal of anomalous cells, cardiac cell types (CMs, fibro-
blasts, endothelial cells) account for the vast majority of cells and
contributed to the major variations in this data set (Fig. 7b). This

allowed us to exclusively focus on cardiac cell types for downstream
analysis. Furthermore, remaining non-filtered non-heart cells were
predicted as immune cells (macrophages, b/t cells) and fibroblasts.
Visual inspection showed that global transcriptional differences
between RA- and RA+ differentiation protocols are most strongly
apparent in CMs (Fig. 7bii), a trend that was also captured by our
anatomical zone predictions (Fig. 7biii). Cell type predictions are
91% consistent with our manual cell type annotations, which is also
consistent with expectations derived from the validation results as
described above. Consistent with the marker gene staining char-
acterization of RA+ organoids presented above, classification
results for RA+ cardiomyocytes are predominantly “atrial” (82.5%).
For RA- cardiomyocytes, however, we find lower fraction of cells
classified as “ventricular” (65.3%), and therefore a minority but
sizeable fraction of 34.7% of RA- cardiomyocytes are classified as
“atrial” (Fig. 7c). Furthermore, analyzing CMs in the context of
anatomical zone prediction (Fig. 7d) we found genes that lend
support to computational zone predictions (e.g., MYL7 and MYH6
(atrial markers), MYH7 (ventricular marker)), while others were
more consistent with differentiation protocols (PLN, MYH9, and
MEIS2 (ventricular markers) and ID3 and IGFBP5 (atrial
markers)37). Other marker genes (NR2F1, NR2F2)22,42,43 were less
clear to interpret. In terms of laterality prediction, we observed that
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more “left” than “right” CMs, and we found this bias more pro-
nounced for predicted “atrial” CMs compared with predicted
“ventricular” CMs (Fig. 7e). For cells from day 15 organoids we
found mostly consistent results (Supplementary Fig. 10; cell type
predictions were highly accurate (average accuracy= 95.53%),
RA+CMs were largely predicted as “atrial” (91.2%), however a
large fraction of RA- CMs (84.6%) were also predicted as “atrial”.
Also, most CMs at day 15 were not substantially different between
RA+ and RA- differentiation protocols (Supplementary Fig. 10aiv,
b), indicating CMs at day 15 may not have matured enough to gain
zone identities, which was further supported by the detailed com-
parative analysis of cells at day 15 and 30 (Supplementary Fig. 11
and Supplementary Data 4).

We also analyzed the cardiac cells enriched by FACS. We again
found cell type predictions highly accurate (average accuracy=
94.4%), as were anatomical zone predictions: 94.7% of RA+CMs
(atrial protocol) were predicted as atrial CMs, and 62.9% of RA-
CMs (ventricular protocol) were predicted as ventricular CMs
(Supplementary Fig. 8d).

Overall, our automatic predictions achieved high accuracy in
cell type annotations and highlighted that zone identities were
more established at day 30 compared to day 15 in our organoid
differentiation systems. These results enable us to use this
computational phenotyping approach to compare wild type and
genetically modified organoids.

Generation of hiPSC lines and organoids carrying a genetic
variant associated with Ebstein’s Anomaly. The homeobox-
containing transcription factor NKX2-5 plays a critical role in
embryonic heart development17,45. Notably, NKX2-5 knockout
mice die at E10.5 with only two heart chambers, both with atrial
identities as reported by ATLAS-seq predictions22. Furthermore,
a single nucleotide variant in the NKX2-5 gene locus at the 673th
nucleotide converting the 188th amino acid from Aspartate (N)
to Lysine (K) was associated with Ebstein’s Anomaly, a congenital
heart defect diagnosed with atrialized right ventricle and abnor-
mal tricuspid valve16,46. We next used our two differentiation
protocols for producing predominantly atrial and ventricular
organoids (RA+ and RA- protocols), together with CRISPR/Cas9
technology, to characterize and study the effects of the above-
mentioned genetic variant.

In order to do so, we produced an isogenic line introducing this
mutation into the WTC line using a single-stranded oligodeox-
ynucleotide (ssODN) based CRISPR/Cas9 strategy and selected
two clones (PM28 and PM52) for differentiation. As a control we
created a line where the first exon of NKX2-5 was deleted (Del33)
using a pair of sgRNAs (Fig. 8a and Supplementary Table 3). We
have confirmed the mutations and deletions using PCR and
Sanger sequencing (Supplementary Fig. 12a, b). The reduction of
Nkx2-5 expression in Del33 line-derived cells was confirmed by
the flow cytometry analysis of Nkx2-5 expression on day 7 of
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differentiation (Supplementary Fig. 12c). After differentiation we
observed ACTN2-GFP signal and beating cells in ventricular and
atrial organoids at day 30 (Fig. 8b, Supplementary Fig. 1a, and
Supplementary Video 3–6). Additionally, in the first exon
deletion line we observed clear reduction of NKX2-5 immunos-
taining signal in the differentiated organoids (Fig. 8c).

We observed a lower percentage of beating organoids and
ACTN2-GFP+ cells in mutant lines compared to control lines
under both RA+ and RA- conditions, indicating mutant lines
have lower CM differentiation efficiency (Fig. 8d and Supple-
mentary Fig. 12d). Next, we found the beating rates in the
mutant organoids are higher than control (WTC line) organoids
at RA- differentiation condition but lower at RA+ condition,
while there is no significant differences in their organoid sizes
(Fig. 8e and Supplementary Fig. 12e, f). Furthermore, we
analyzed calcium transients and found the transient durations

(TD50, TD90) in Del33 RA- organoids are close to the WTC
RA+ organoids and clearly shorter than the WTC RA- organoids
(Fig. 8f). Additionally, we analyzed mutant organoids with atrial
and ventricular CM marker genes and found PM28 RA-
organoids had high number of cells staining for atrial markers
(MYH6, ID2)29,36,37 and fewer cells than expected staining for
ventricular markers (MYH7, HEY2)29,34,35 (Fig. 8g). Similarly,
we also found high number of ID2 staining positive cells and lack
of HEY2 expression in Del33 RA- organoids (Supplementary
Fig. 12g). Finally, we observed ectopic expression of smooth
muscle gene MYH11 and defective sarcomere structures in the
mutants (Fig. 8h and Supplementary Fig. 12h, i). All these
analyses together suggested that NKX2-5 plays multiple roles in
heart development including the regulation of atrial-ventricular
CM lineage specification, repression of non-cardiac lineage genes
expression, and promotion of the sarcomere formation.
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Fig. 7 Prediction of wild-type RA- and RA+ cells using the validated hierarchal random forest model. a UMAP projections of RA- and RA+ single cells at
day 30 grouped by cell type annotation. b UMAP projections of wild-type RA- and RA+ single cells at day 30 with Anomalies removed grouped by (i) cell
types, (ii) treatment, and (iii) predicted cell types and zone. c Sankey diagram of prediction results of wild-type RA- and RA+ cells at day 30 (Anomalies
removed). Table provides cell type and conditional zone accuracies. d Expression levels of genes used to make prediction decisions that either correlate
with the predictions (A and V) or experimental conditions (RA- and RA+). ****p≤ 0.0001, Bonferroni corrected p values from Wilcox test, exact p-values
and sample numbers available in a Source data file. N= 308 A_RA-, 580 V_RA-, 947 A_RA+, 195 V_RA+. e Bar plot of side predictions in WT cells at
day 30.
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Transcriptional analysis of mutant heart organoids. Within the
same MULTI-seq setup as discussed above we profiled organoids
from the PM28, PM52, and Del33 cell lines at day 30. After
bioinformatics processing and quality control, we recovered 5596
(PM28), 3465 (PM52) and 4367 (Del33) cells for downstream
analysis. Unsupervised clustering and (manual) marker gene
analysis revealed major cardiac cell types (Fig. 9ai, bi and

Supplementary Fig. 13). We did not observe pronounced differ-
ences between the three mutant lines (PM28, PM52, Del33,
Fig. 9aii), but found cells from organoids were largely different
from monolayer-differentiated cells (Fig. 9aiii), a signal that is
driven by most monolayer-differentiated cells likely not being
heart cells (Fig. 9ai, iii). Next, we used our classification approach
to automatically annotate cell types and zones in this dataset.

Predict on Filtered D30 MUT hIPSC

Annotation
and Condition Prediction

cm_RA-

cm_RA+

Zone

95.0

NA

96.6

99.7

27.2

91.3

Cell
Type

a

e f

b

d

c

iii)

ii)

i)

iii)

ii)

i)

Prediction and Condition Gene Expression

Zone and Side Predictions GO Enrichment Analysis

purine ribonucleoside triphosphate metabolic process
ribonucleoside triphosphate metabolic process
purine nucleoside triphosphate metabolic process
nucleoside triphosphate metabolic process
ATP metabolic process

muscle system process
striated muscle cell differentiation
muscle contraction
muscle cell differentiation
striated muscle cell development

low high

Cell Annotation with Anomaly

Diff. Method with Anomaly

Cell Line with Anomaly

Predictions

Treatment

Cell Annotation

v

ep

ec
_e
nd
o

ec
_v
as
c

****

****

****

****

****

**** ****

****

****

Fig. 9 Study of EA defects in a mutant isogenic line using random forest predictions. a UMAP projections of mutant RA- and RA+ single cells at day 30
grouped by (i) cell types, (ii) cell line, and (iii) differentiation method. b UMAP projections of day 30 mutant RA- and RA+ single cells with Anomalies
removed grouped by (i) cell types, (ii) treatment, and (iii) predicted cell types and zone. c Sankey diagram of prediction results of mutant RA- and RA+
cells at day 30 (Anomalies removed). Table provides cell type and conditional zone accuracies. d Expression levels of genes used to make prediction
decisions that either correlate with the predictions. N= 1087 A_RA-, 407 V_RA-, 1931 A_RA+, 173 V_RA+. ****p≤ 0.0001, Bonferroni corrected p values
from Wilcox test, exact p-values and sample numbers available in a Source data file. e The results of side predictions in mutant cells at day 30. f Gene
pathways that differentially enrich in the wild-type and mutant (predicted) CMs.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03346-4

12 COMMUNICATIONS BIOLOGY |           (2022) 5:399 | https://doi.org/10.1038/s42003-022-03346-4 | www.nature.com/commsbio

www.nature.com/commsbio


Consistent with previous results we found that anomaly detection
predominantly filtered out non-heart cells, allowing us to exclu-
sively focus on cardiac cell types (CMs, fibroblasts, and endo-
thelial cells) for downstream analysis. Furthermore, predicted cell
type annotations were highly consistent with our manually
inferred cell types (average accuracy = 95%, Fig. 9biii, c). While,
like wild-type cells, global transcriptional differences between RA-
and RA+ differentiation protocols manifest mostly in CMs
(Fig. 9bi, ii), the strong distinction between RA- and RA+ treated
cells visually observed in wild-type CMs was lost (Figs. 7bii
and 9bii). We also found a significant fraction of RA- (i.e.,
expected to be ventricular-lineage) CMs annotated as “atrial” by
our label transfer procedure. While we did observe this type of
“cross-classification” in the wild-type cell lines, the “cross-clas-
sified” fraction of cells in mutants significantly increased (72.8%
here vs. 37.4% for wild-type cells from day 30 organoids, p < 2.2E-
16, binomial test, Figs. 9c and 7c). Like before, we found atrial
genes (including MYL7, MYH6, MYL9) highly expressed in pre-
dicted “atrial” CMs from organoids differentiated with the ven-
tricular protocol (RA-) (Fig. 9d). Like in the wild-type cells, we
observed laterality bias in CMs (Fig. 9e); however, for the mod-
ified lines we observed slightly more “right” ventricular-predicted
cells, which was the opposite of wild-type cells (Fig. 7e).

Finally, when comparing gene expression between wild-type
and mutant hiPSC-derived cells, we found that there were
significantly more differentially expressed genes (DEGs,
fdr<0.001) between wild-type and mutant cells in CMs (166),
compared with fibroblasts (21), and endocardial endothelial cells
(2) (Supplementary Data 5). In order to rule out the possibility
that differences in cell type abundances account for this
observation (we find 279 endocardial endothelial cells, 2158
fibroblasts, 5628 CMs), we down-sampled CMs to either 279 cells
(like endocardial endothelial cells) or 2158 cells (like fibroblasts)
200 times and re-calculated DEGs. This procedure confirmed
more DEGs in CMs compared to other cell types (Supplementary
Fig. 14). This shows that the mutation of NKX2-5 mainly affects
CMs, and we see little evidence for effects on endocardial
endothelial cells and fibroblasts. Focusing on CMs, Gene
Ontology enrichment analysis of DEGs, highlights striated muscle
development-related biological processes amongst the top down-
regulated genes (low expression in mutant CMs), while the most
significantly enriched terms in up-regulated genes (high expres-
sion in mutant CMS) highlight processes related to metabolism
and energy (Fig. 9f and Supplementary Fig. 15).

Overall, these results demonstrate that we successfully
generated ventricular-lineage and atrial-lineage organoid cells
with a specific genetic variant associated with Ebstein’s Anomaly.
Our classifier predicted most mutant CMs differentiated using the
RA- protocol as atrial CMs, recapitulating the atrialized
ventricular defects in Ebstein’s anomaly. Furthermore, our
observations suggested that the NKX2-5 mutation predominantly
impacts cardiomyocytes, with genes related to striated muscle
differentiation showing weaker expression in mutant CMs, while
genes related to metabolism and energy production appear up-
regulated. This for the first time provides clear evidence that the
Ebstein’s anomaly-associated variant (c.673 C > A)16 affects the
expression of energy-related and key heart muscle genes during
(in vitro) cardiogenesis, building confidence in this particular
variant’s relevance and laying the foundation for more detailed
disease models of Ebstein’s anomaly.

Discussion
In this study, we generated ventricular-lineage and atrial-lineage
heart organoids and used scRNA-seq in combination with
MULTI-seq sample pooling to obtain transcriptional profiles at

single-cell resolution28,39. We established a machine learning
label transfer method that allowed us to leverage annotations (cell
type, anatomical compartment, laterality) from primary human
fetal cells, and we used this approach to characterize cells dif-
ferentiated with our organoid systems. Finally, we used this
experimental and computational combination to compare dif-
ferentiated organoids from wild-type cell lines with organoids
carrying a genetic variant associated with Ebstein’s anomaly,
effectively establishing variant-specific in vitro hiPSC model for
this type of congenital heart defect.

We find that our organoid systems recapitulated the micro-
environment of human developing hearts by self-assembling into
chamber-like structures. We note that this type of three-
dimensional approach has advantages when studying heart
developmental processes, especially chamber formation, com-
pared to monolayer and co-differentiated microtissue
systems47,48. We note that along the same lines Hofbauer et al.3,49

recently reported that the addition of VEGF to cardioids (a
similar type of cardiac organoid) can lead to the development of
endothelial cells that comprise the entire inner layer of chambers,
essentially equivalent to the in vivo anatomical pattern observed
in endocardial endothelial cells49. With this study and our work
generating specific cell types in environments approximating
their in vivo anatomical compartments, it will be interesting to
establish differentiation protocols in the future that mimic the
in vivo localization of other cardiac cell types, like epicardial cells
and vascular endothelial cells.

Based on the sarcomere lengths and scRNA-seq data, we found
that hiPSC-derived CMs in both organoid and monolayer systems
were relatively immature, compared to primary cells. Addition-
ally, we found CMs in organoids were slightly less mature com-
pared to CMs in monolayer system (Supplementary Fig. 11 and
Supplementary Data 4). Currently we do not know if this is
specific to our protocol, or if organoids from other hiPSC
protocols11–13 share this characteristic; comparison of these
organoids to appropriate monolayer CMs could elucidate this
issue and contribute to our understanding of cell maturation in
2D vs. 3D differentiation protocols more generally. Considering it
has been reported that co-culture of CMs and other cardiac cells
(fibroblasts, endothelial cells) can improve CM maturation, we
believe that organoid cells may further mature after long-term
culture50. Furthermore, cells often become more mature after
extensive culture, as has been reported for other types of orga-
noids such as brain51. We note, though, that this phenomenon is
likely tissue- or organ-specific, because kidney organoids did not
mature after further culturing, but instead showed higher cell
death rate52. However, it is known that in vitro differentiated
CMs can mature after being transplanted into live organisms53.
While it would be challenging to transplant generated heart
organoids to replace the heart of model organisms, it may be
feasible to transplant them into other parts of animal models, like
mice or zebrafish, to study their maturation.

The organoids we generated for this study were differentiated
directly from hiPSCs, which is similar to the in vivo fetal heart
developmental process. In addition, we demonstrated the potential
to approximate critical heart structures like chambers, rendering
this method a strong candidate for modeling normal heart devel-
opment and congenital heart defects, a key difference compared
with non-hiPSC-based organoid methods54,55. Additionally, we
note that, compared to the other hiPSC-based organoid methods,
our method is based on microwells and can generate the organoids
in a very high throughput way. Importantly, we have optimized our
protocols to generate atrial-lineage and ventricular-lineage orga-
noids, which has not been reported in other methods. This makes
our approach uniquely suited to study atrial and ventricular lineage
developmental heart defects.
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Through transverse section analysis of organoids, we found they
are heterogeneous and can be grouped into three categories: intact,
holes, and cavities. Further quantification of the prevalence of these
categories revealed their percentages are similar across multiple
differentiation batches. Categorizing our organoids highlights the
ability of some organoids to recapitulate heart structures like
chambers (cavities) while others do not (holes and intact). Addi-
tionally, categorizing will help us tune our protocols for category-
specific creation of organoids in the future. Our preliminary data
along with other recent publications have shown that different Wnt
and BMP signaling concentrations at cardiac mesoderm stages can
change the proportion of organoid categories3. Specifically, in our
preliminary data we found the relatively higher CHIR concentration
can likely promote the development of organoids with cavity
structures (Supplementary Fig. 16).

Immunofluorescence analysis of cardiac cell type marker genes
revealed two fibroblast distributions in organoids. In a majority of
organoids, fibroblasts were seen to mix with cardiomyocytes
forming a similar distribution as observed in vivo, while in a small
proportion of organoids, fibroblasts clustered separately from
cardiomyocytes. Additionally, we note that our scRNA-seq data
indicates fibroblasts in our organoids are transcriptionally similar
to cardiac fibroblasts; this suggests they may be able to perform
some functions of cardiac fibroblasts, like secreting growth factors
and extracellular proteins to regulate CM development and
maturation. Therefore, like our results for Ebstein’s anomaly
show, our approach is suited to model structure-related CHDs.

While in silico phenotyping of organoid cells performed well
overall, the experimental setup with different platforms for
training (STRT-seq) and testing/application (10X) is clearly not
optimal, and generating more similar test/training data in future
experiments will likely increase accuracy and reliability of com-
putational phenotyping. In addition, making use of spatial tran-
scriptomics approaches to increase resolution and confidence of
annotations with regard to anatomical zone and laterality, with-
out the need for tissue dissections, would yield an increased
chance of capturing more subtle transcriptional spatial features.
When predicting anatomical zones for wild-type organoid cells,
the vast majority of predictions agreed with the differentiation
protocol (atrial= RA+ , ventricular= RA-, see Fig. 7c). However,
for a smaller group of cells the protocols and predictions mis-
match, that is RA- differentiated cells were predicted “atrial” and
RA+ differentiated cells were “ventricular”. Further investigating
those mismatching cells yielded zone-specific genes that support
zone predictions (e.g., atrium-specific genesMYL7 andMYH6 are
high in RA- differentiated but “atrial” predicted cells) and others
more in-line with the differentiation protocols (e.g., ventricle-
specific genes PLN, MEIS2). In the future it will be interesting to
further investigate these genes, and more specifically elucidate
their relation to RA, the only difference between the atrial and
ventricular differentiation protocols. However, to assess whether
direct regulation by RA plays a role will require further experi-
ments, like applying ChIP-seq or derivative technologies in gen-
erated organoids56.

We also noted that the fraction of heart cells we recovered by
scRNA-seq varied between the monolayer (low fraction of heart
cells recovered) and organoid protocols (high fraction of heart
cells recovered), see Figs. 2f, 4e. Exception to that rule were the
WTC organoids at day 15. Since monolayer protocols have been
reported to generate cardiomyocytes with high efficiency, we
believe this observation may be specific to this batch rather than
being representative of the monolayer approach. In addition, we
have compared cells from low-efficiency monolayer differentia-
tion with monolayer cells from other labs where scRNA-seq data
has been made available and found that label transfer works well
(Supplementary Tables 1 and 2. These results suggest CMs from

our monolayer differentiations display typical transcriptional
hallmarks. Therefore, we interpret the data in the sense that it
shows our organoid protocol to be efficient.

Our protocols also allowed us to produce genetically modified
cell lines carrying a mutation associated with Ebstein’s anomaly,
and to compare resulting organoids with wild-type differentia-
tions. We found that genes down-regulated in mutant organoids
were associated with striated muscle differentiation, while mutant
up-regulated genes were often related to energy and metabolism,
which provided the first (in vitro) characterization of molecular
effects of the NKX2-5 c.673 C > A mutation and may constitute a
first step towards more detailed models of the contribution of this
genetic lesion towards Ebstein’s anomaly. We note, however, that
in addition to atrial/ventricular CM lineage defects, Ebstein’s
anomaly patients also present with tricuspid valve defects. Our
current system does not model this aspect, but we can extend our
approach (differentiation system and cell type/anatomical zone
computational modeling) to include and focus on valve-related
cells in the future. Furthermore, Ebstein’s anomaly is known to be
genetically multigenic14,57, and our general approach of in vitro
modeling together with computational phenotyping can be
applied to other Ebstein’s anomaly-associated genetic variants to
gain systematic insight into the disease.

In summary, in this work we have established chamber-specific
differentiation protocols for heart organoids, and we showed that
in combination with scRNA-seq profiling of organoid cells this
system is a useful model for investigating genetic lesions at the
NKX2-5 locus associated with Ebstein’s anomaly. While it was
necessary to focus on zone/chamber specificity (atrial vs. ven-
tricular) in this context, our approach can be repurposed to focus
on laterality (left vs. right), which would be interesting in the
context of CHDs with known laterality phenotypes, such as
heterotaxy and hypoplastic left or right heart syndrome.

Methods
Maintenance of hiPSC lines. WTC line with ACTN2-eGFP transgene (Coriell
catalog: AICS-0075-085), WTC line with MYL2-eGFP transgene (Coriell catalog:
AICS-0060-027), WTC-mTagRFPT-CAAX-Safe harbor locus (AAVS1)-cl91
(Coriell catalog: AICS-0054-091) and SCVI114 line (Gift from Stanford CVI) were
maintained in completely defined albumin-free E8 medium (DMEM/F12 with L-
glutamine and HEPES, 64 μg/ml L-Ascorbic Acid-2-phosphate, 20 μg/ml insulin,
5 μg/ml transferrin, 14 ng/ml sodium selenite, 100 ng/ml FGF2, 2 ng/ml TGFb1)58

on Matrigel (Corning, CB40230A) coated tissue culture plates. Medium was
changed daily and routinely passaged every three to four days using 0.5 mM EDTA
solution (Invitrogen, 15575020). 10 μM ROCK inhibitor Y27632 (Selleckchem,
S10492MG) was supplemented to the medium during cell passaging.

Monolayer cardiac differentiation. Monolayer cardiac differentiation was carried
out following a published protocol59. Briefly, RPMI 1640 media (Corning,
10040CVR) was used as the basal medium in the entire differentiation process.
B-27 Supplement minus Insulin (Gibco, A1895601) was supplemented to the
medium for the first 6 days and B-27 Supplement (Gibco, 17504044) was used
afterwards. The small molecule inhibitor of GSK3β signaling, CHIR99021 (Sell-
eckchem, S292425MG) was used in the first two days of differentiation and Wnt
signaling inhibitor C59 (Selleckchem, S70375MG) was added from day 3 to day 4.
To differentiate atrial cells, 1 uM retinoic acid (Sigma-Aldrich, R2625) was added
from day 3 to day 6 as described Previously42.

Cardiac organoid differentiation. The cardiac organoid differentiation procedure
was adapted from a protocol described Previously2. Briefly, 1.5×106 hiPSCs were
seeded in each well of AggreWell™800 plates (STEMCELL, 34815) according to the
manufacturer’s instructions. The cells were assembled into 3D structure by cul-
turing in E8 medium for 2 days (day -2 to day 0). From day 0 to day 6, cells were
cultured in RPMI supplemented with B-27 minus insulin. CHIR99021 at a final
concentration of 11 µM was used at day 0 and lasted for 1 day. To analyze the
function of WNT signaling in regulating the development of organoid internal
structures, different CHIR concentrations (4, 8, 11, 15 μM) were applied at this step
and the differentiations were carried out with WTC hiPSC line (AICS-0054-091).
From day 3 to day 5, cells were treated with C59 at a final concentration of 5 µM.
The cell aggregates were transferred to 5% Poly(2-hydroxyethyl methacrylate)
(Sigma-Aldrich, P3932) coated tissue culture plates at day 7 and cultured in RPMI
with B27 supplement until the end of differentiation. Fresh medium was changed
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every 3 days until tissue harvest. To differentiate organoids, 1 uM retinoic acid was
added from day 4 to day 7.

Generating Nkx2-5 mutant hiPSC lines. To generate Nkx2-5 loss of function
mutants, a pair of single-guide RNAs (sgRNAs) (Supplementary Table 3) were used
to target the first exon of Nkx2-5 gene. The sgRNAs were cloned into
pSpCas9(BB)-2A–GFP (PX458) vector and transfected into WTC hiPSCs with
nucleofector. Specifically, about 8 × 105 iPSCs were transfected with 5 μg of plas-
mids with Lonza Human Stem Cell Nucleofector Kit 1 (Lonza, VPH-5012) on a
Nucleofector 2b device (Lonza, AAB1001). After FACS sorting and PCR geno-
typing of multiple iPSC clones, we identified the clones with the deletion of first
Nkx2-5 exon and further expanded them for cardiac differentiations.

Besides, we introduced a single nucleotide mutation into the Nkx2-5 gene locus
using a ssODN-based CRISPR strategy. We co-transfected a ssODN and sgRNA
(Supplementary Table 3) to convert the 673th nucleotide from C to A, which led
the protein change at 188 amino acid from Asn to Lysin. After clone picking and
genotyping the clones by sanger sequencing, we identified the positive clones and
further expanded them for differentiation.

Single-cell isolation. Cardiac cells from monolayer differentiation culture at day
15 and day 30 were washed twice with PBS and incubated with TrypLE Express
(Life Technologies, A1217702) for 15 min at 37 °C. Cells were collected by cen-
trifuge at 300 g for 5 min and washed once with HBSS-/- (Ca2+/Mg2+ free). The
cells were further resuspended in 1 ml B27 and filtered through a 40 μm filter
(Corning, 431750). After that, the cells will be ready for FACS sorting or directed
used for scRNA-seq.

The cardiac organoids were collected and washed twice with HBSS−/- (Ca2+/
Mg2+ free) before being incubated with 0.25% Trypsin/EDTA at 37 °C for 5 min.
After that, a collagenase HBSS+/+mixture with 10 mg/ml of collagenase A (Sigma-
Aldrich, 10103586001), 10 mg/ml of collagenase B (Sigma-Aldrich, 11088815001),
and 40% FBS (Gibco, 26140079) was added to the digestion solution and gently
pipetted until the organoids were completely dissociated. The cells were then spun
down at 300 × g for 5 min, resuspended in 1 ml of RPMI/B27 medium, and filtered
through a 40 μm filter.

MULTI-seq barcoding. First batch (FACS sorted). The cells from monolayer
differentiations and organoids were washed once with FACS buffer (HBSS-/-,10%
FBS) and resuspended in 1 mL of FACS buffer with 10 μM ROCK inhibitor. After
FACS sorting based on GFP expression (BD, FACSAria™ III), both GFP positive
and negative cells were collected separately for scRNA-seq. Each sample was
stained with a unique MULTI-seq barcode following a published protocol with
minor modifications28. Briefly, the cells were washed twice with PBS (Ca2+/Mg2+

free) and resuspended in 180 μl PBS (Ca2+/Mg2+ free). 20ul of 2 μM sample-
specific Anchor/Barcode (Supplementary Table 4) was then added to each sample
and incubated for 5 min on ice. After that, 20 μl of 2 μM Co-Anchor solution
(Supplementary Table 4) was added and kept on ice for another 8 mins. The
samples were then washed once and resuspended in ice-cold PBS with 1% BSA.
The cell numbers were counted before pooling the samples together.

Second batch (Not sorted). All cells including the monolayer differentiated cells
and organoid differentiated cells (WTC and SCVI111 line differentiated in atrial
and ventricular differentiation protocols at differentiation day 15 and 30, and
Nkx2-5 mutant line in atria and ventricular differentiation protocols at day 30)
were prepared as single cells. The cells in each sample were stained with MULTI-
seq barcode following the same procedure as the first batch of cells. Afterwards, the
cells were counted and pooled together for scRNA-seq.

Library preparation and single-cell mRNA sequencing. The pooled cells were
captured in 10X Chromium (10X Genomics, 120223) by following the single-cell 3’
reagent kits v3 user guide. Briefly, cells were loaded into each chip well to be
partitioned into gel beads in emulsion (GEMs) in the Chromium controller. We
targeted for 25,000 cells in each chip well and profiled one well for the first batch
experiment and two chip wells for the second experiment. The cells were then lysed
and barcoded reverse transcribed in the GEMs. After breaking the GEMs and
further cleanup and amplification, the cDNA was enzymatically fragmented and 3’
end fragments were selected for library preparation. After further processing
including end repair, A-tailing, adapter ligation, and PCR amplification, a string of
sequences including sample index, UMI sequences, barcode sequences, and
sequencing primer P5 and P7 were added to cDNA on both ends. The libraries
were sequenced on Illumina HiSeq × platform.

Bioinformatics analysis
Data processing and quality control. Alignment and quantification of UMI counts
for endogenous genes were performed using the cellranger count pipeline of the
Cell Ranger software (version 3.1.0). We used the human reference genome
(GRCh38.p12) and arguments --chemistry= SC3Pv3 and --expect-cells as 10,000
or 25,000, depending on the specific library. For sample demultiplexing, we used
the R package deMULTIplex (version 1.0.2, https://github.com/chris-mcginnis-
ucsf/MULTI-seq) which consists of alignment of the MULTI-seq sample barcode
read sequences to the reference MULTI-seq sample barcodes followed by sample

classification into doublets and singlets. Multiple quality control (QC) metrics were
calculated using the R package scater (http://www.bioconductor.org/packages/
release/bioc/ html/scater.html), and cells with total library size >= 2000, number of
detected genes >= 1000 and <= 8000, and <= 30% percentage of mitochondrial
reads were considered. To account for doublets with the same MULTI-seq barcode
we used the scds R package (https://github.com/kostkalab/scds) as described below.
We focused on genes with one or more count in at least five cells (assessed for each
batch separately) and calculated log-normalized counts using the deconvolution
method of the scran R package (https://bioconductor.org/packages/release/bioc/
html/scran.html). There are two batches in the unsorted data, so multiBatchNorm
from the package batchler (https://bioconductor.org/packages/devel/bioc/html/
batchelor.html) was used to perform scaling normalization so that the size factors
are comparable across batches. Next, clustering, dimensionality reduction, and cell
type annotation was performed separately on wildtype atrial, wildtype ventricular,
and mutant groups. The top 2000 highly variable genes were identified using the
modelGeneVar function (scran R package). Using these genes, 50 principal com-
ponents were calculated (runPCA, scater R package) and used to generate UMAP
plots (runUMAP, scater R package) and to build a shared nearest neighbor graph
followed by walktrap clustering (cluster_walktrap, igraph R package, https://github.
com/ igraph/igraph) as outlined by Amezquita et al60.

For FACs sorted data no batch correction was needed, so clustering was
performed by building a shared nearest-neighbor graph using the first 25 first
principal components for each cell; we used Jaccard weights and the Louvain
clustering algorithm from the igraph package with steps= 10 parameter. The R
package ComplexHeatmap (http://www.bioconductor.org/packages/release/bioc/
html/ComplexHeatmap.html) was used to generate gene expression heatmaps and
findMarkers (scran R package) with the fdr= .001 parameter was used to get inter-
cluster differentially expressed genes. Finally, cell type annotations were manually
resolved using cluster expression patterns of the following genes: TNNT2, ACTN2,
TNNI3, TTN, MYH6, NR2F2, MYL2, MYH7, COL1A1, DCN, SOX9, POSTN, WT1,
TBX18, ALDH1A2, LRRN4, CSF1R, TPSAB1, CD3D, GIMAP4, PECAM1, CDH5,
TIE1, NPR3, PLVAP, FOXC1, FABP4, CLDN5, HEMGN, HBA-A1, HBA-A2,
C1QA. In the rare case where a cluster expresses marker genes for more that one
cell type, iterative clustering was performed to resolve cell types.

Computational annotation of multiplets in a MULTI-seq workflow. The MULTI-seq
approach identifies multiplets based on occurrence of more than one MULTI-seq
cell barcode. By design, this approach cannot identify mutiplets comprised of cells
with identical MULTI-seq sample barcodes. We use computational multiplet
identification (scds) to identify this type of “within-sample” multiplet computa-
tionally. Broadly, we use MULTI-seq data to estimate the fractions of within-
sample and between-sample multiplets and use them to determine the number of
within-sample multiplets that we annotate computationally.

Specifically, in our approach we assume the overall fraction of cells (We use
“cell” as a shorthand for cell/10X-barcode in an abuse of notation, since multiplets
are not single cells by definition) being multiplets, pm , is comprised of within-
sample multiplets (pw , with the same MULTI-seq barcode) and between-sample
multiplets (pb , with distinct barcodes) and no other contributions:
pm ¼ pw þ pb ¼ pm pw=pm þ pb=pm

� � ¼ pmπw þ pmπb , where πw and πbdenote the
fraction of multiplets being within-sample and between-sample, respectively; also:
πw þ πb ¼ 1. We then use the following ansatz, where the fraction of different
types of multiplets is proportional to the abundance of constituent cells (we only
focus on doublets and assume higher-order multiplets to be rare):πw / ∑jN

2
j =N

2

and πb / ∑ði;jÞ;i>jNiNj=N
2 where N denotes the overall number of cells and Nk the

number of cells with MULTI-seq/sample barcode k. Utilizing estimates of these
quantities obtained by demultiplexing MULTI-seq data and the constraint that πw
and πb sum to one we obtain estimates π̂w and π̂b .

Let Dm be the number of MULTI-seq annotated between-sample multiplets. We
have Dm ¼ Npmπb and therefore pm ¼ Db= Nπb

� �
and plugging in π̂b yields p̂m , an

estimate for the fraction of doublets in our data set; note that p̂m>Db=N , the
fraction of multiplets obtained from the MULTI-seq data alone. The “missing”
number of within-sample multiplets is then estimated as Np̂mπ̂w, determining the
number of doublets we annotate using scds in addition to the between-sample
doublets annotated by MULTI-seq.

Random forest based cell type classification across data sets

Training data
We used the single-cell RNA-seq data of Cui et al.29 with cell type, anatomical zone, and
laterality annotations in order to train a random forest classifier that generalizes to other
data sets. Data and cell annotations were downloaded from GEO (GSE106118)29.
Iterative clustering was used to further resolve the annotated endothelial cells into
endocardial endothelial cells and vascular endothelial cells based on the expression of
endocardial endothelial cell markers (NPR3, PLVAP, FOXC1) and vascular endothelial
cell markers (FABP4 and CLDN5). Additionally, iterative clustering was used to re-
annotate a subcluster of “5w” cells as epicardial cells based on the expression of WT1,
TBX18, ALDH1A2, LRRN4, and UPK3B. Because there were so few (only 27) mast cells
annotated in this dataset, they were not used to train the model. Lastly, only cells from
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the left ventricle, right ventricle, left atria, and right atria were used. The final cell type
annotations used are provided in Supplementary Data 6. These cells form the input for
downstream analyses and classifier training.

Development data set 1
We used the single-cell RNA-seq data of Asp et al. with zone and cell type annotations to
validate our random forest model30. Data and cell annotations were downloaded from
https://www.spatialresearch.org/resources-published-datasets/doi-10-1016-j-cell-2019-11-
025/. Cells annotated as cardiac neural crest were re-annotated as immune cells based on
high expression of C1QA, CSF1R, and GIMAP4. The final cell type annotations used are
provided in Supplementary Data 7 In order to compute log-transformed normalized
expression values, clusters were first computed (quickCluster, scran R package), followed
by normalization where size factors are deconvoluted from clusters (computeSumFactors,
scran), followed by log-transform normalization (logNormCounts, scater R package).

Development data set 2
We used the single-cell RNA-seq data of Miao et al. with laterality annotations to validate
our random forest model23. Data were downloaded from GEO (GSM4125587,
GSM4125585, GSM4125586, GSM4125588). In order to compute log-transformed nor-
malized expression values were computed as for development data set 1. Furthermore,
highly variable genes, low dimensional embeddings, clustering, and cell type annotations
were performed as for the unsorted hiPSC data set (see Data processing and quality
control). The final cell type annotations used are provided in Supplementary Data 8.

Model fitting
To fit a model on the training set and apply it to a test data set, typically generated with
different platform technology, we proceed as follows. First highly variable genes in both
data sets were selected. Using the modelGeneCV2 function (scran R package) we fit the
squared coefficient of variation (CV2) and the top 50% of genes with the largest CV2 and
strongest deviation from the fit line were retained as highly variable genes. Additionally,
genes expressed in less than 1/4th of cells were filtered out. Gene passing both filters on
the train and test data were scaled (for each data set independently) and kept for RF
model fitting. Genes were scaled by subtracting their minimum expression value, and
then dividing by their 95th quartile. Next, we used the R package ranger (https://cran.r-
project.org/web/packages/ranger/index.html) to derive a random forest classifier on the
scaled train data (impurity importance score), using class weights to account for
imbalances between cell-type labels. We then use the top genes in terms of feature
importance to train a second, final random forest on the train data, which is then used to
derive labels on the scaled test data set. Hyper parameters for this procedure (number of
trees, number of genes for the second round of learning) were determined separately
using the training data as both, test and train set, respectively. To optimize a parameter,
the others were held constant while a range of values was tested and the final value was
selected as the elbow point when plotting accuracy against tested parameter values. Next,
the trained model is used to predict the labels on a test set. Performance is visualized
using Sankey diagrams (ggplot2, https://github.com/cran/ggplot2). Cell type accuracies
are calculated as the percentage of correctly classified cells. Conditional accuracies were
calculated as the percentage of correctly classified cells within a given label.

Cell type classification
For cell type classification all cells in the training data were used in the above procedure
with 300 trees and 500 important genes (Supplementary Data 9) as hyperparameters.

Anatomical zone classification
Here we focus on the anatomical zone of cardiomyocytes (CMs), and correspondingly
only CMs are used in the above procedures. Hyper parameters used are: 300 trees and
100 important (Supplementary Data 9) genes for the second random forest.

Laterality classification
Here we focus on the laterality (left/right) of CMs; we proceed as discussed above, with
an additional quantile normalization step after determining top-variable genes and before
scaling. Hyper parameters we determined were 500 trees and 100 important genes
(Supplementary Data 9).

Anomaly detection
To flag cells in the hiPSC data the model has not seen before we perform anomaly
detection as follows: Cell type classification (see above) was performed and for each cell
the annotated class and its class-probability were recorded. If that probability was lower
than a class-dependent threshold the cell was considered an anomaly. The threshold for
each class was determined as the minimum of the two 5% quantiles of probabilities of
cells in the corresponding class in the two development sets23,30.

SingleR label transfer. To investigate whether our monolayer CMs are tran-
scriptionally similar to monolayer CMs generated in other studies with higher
differentiation efficiencies, we used the R package SingleR to transfer cell type

annotations from the other studies to our data61. First, we obtained two datasets
from previous monolayer studies by Churko et al. and Friedman et al40,41. Day 14
and day 45 single-cell data from Churko et al. were acquired using synapse ID:
syn7818379 while day 15 and day 30 single cell data from Friedman et al. were
acquired from the filtered 10X matrices downloaded from EMBL-EBI under
accession number E-MTAB-6268. Both datasets were preprocessed as follows. First,
genes that were not expressed in at least one percent of the cells were filtered out.
Then, in order to compute log-transformed normalized expression values, clusters
were first computed (quickCluster, scran R package), followed by normalization
where size factors are deconvoluted from clusters (computeSumFactors, scran),
followed by log-transform normalization (logNormCounts, scater R package).
Next, clustering was performed as for the unsorted hiPSC data set (see Data
processing and quality control). Lastly, each cluster was assigned cell types “cm”
and “other” based on the expression of CM marker genes TNNT2, ACTN2,
TNNI3, and TTN (clusters that highly expressed these marker genes were labeled
as “cm” and everything else was labeled “other”). We then used the “SingleR”
package to transfer these labels onto our monolayer dataset. Labels from these
previously generated monolayer datasets correctly transfer onto our data, which
indicates our CMs are transcriptionally similar despite low differentiation efficiency
(Supplementary table 2 and 3).

Single molecular in situ hybridization. To visualize the transcriptional expression
patterns of Tnni3, Cdh5, Postn, and Wt1 in the organoids, proximity ligation
in situ hybridization (PLISH) was performed as previously described with minor
modifications62. Briefly, the organoids were fixed with DEPC treated 4% paraf-
ormaldehyde (electron microscopy sciences, 15710 S) before being embedded with
OCT (Sakura, 4583). The embeded tissue were then sectioned with the thickness of
6 μm and treated with post-fix medium (3.7% formaldehyde (Sigma-Aldrich,
252549) and 0.1% DEPC (Sigma-Aldrich, D5758) for 30 min. After that, the sec-
tions were incubated with hybridization buffer (1 M NaTCA, 5 mM EDTA, 50 mM
Tris pH 7.4, 0.2 mg/mL Heparin) and H probes (Supplementary Table 5). After
circulation ligation and rolling circle amplifications, the detection probes con-
jugated with Cy3 or Cy5 fluorophore were applied and the hybridization signal
were imaged under confocal microscopy (Leica TSC SP8).

Immunofluorescence staining. Organoids were fixed in 4% paraformaldehyde (elec-
tron microscopy sciences, 15710 S) for 1 hr. After that, the organoids were washed
twice with PBS and embedded in OCT. The tissues were sectioned at 6 μm and used
for staining. The immunostaining procedure was carried out as previously
described63. Briefly, the section slides were washed with PBS for 5 min and per-
meabilized with PBST (0.2% Triton X-100 in PBS) for 10min. After that, the slides
were sequentially incubated with blocking buffer (10% Goat Serum, 1% BSA, 0.1%
Tween 20) for 1 h at room temperature and primary antibody in PBST with 1% BSA
overnight at 4°C. The antibodies were diluted according to the manufacturer’s
instructions. The mouse anti-Cardiac Troponin T (5 µg/ml, Invitrogen, MA5-12960),
mouse anti-human COUP-TF II/NR2F2 antibody (1:1000, R&D Systems, PP-H7147-
00), rabbit anti-MYL7 antibody (1:1000, Sigma, SAB2701294), rabbit anti-Cardiac
Troponin T (1:400, Abcom, ab45932), mouse anti- MYH6 (1:50, DSHB, S46), mouse
anti- MYH7 (1:50, DSHB, BA-D5), mouse anti- ID2 (1:50, DSHB, PCRP-ID2-1A8),
mouse anti- HEY2 (1:50, DSHB, PCRP-HEY2-1H10), mouse anti- COL1A1 (1:50,
DSHB, SP1.D8), mouse anti-NFATC1 (1:25, DSHB, PCRP-NFATC1-1A2), rabbit
anti-VE-Cadherin (1:400, Cell signaling, #2500), mouse anti-Nkx2-5 (25 μg/ml, R&D
Systems, # MAB2444), rabbit anti-Myosin, Smooth Muscle Heavy Chain (1;200,
Biomedical Technologies, BT-562), mouse anti-MF20 (1:100, DSHB, MF 20) were
used. The slides were further washed three times with PBS and incubated with
secondary antibodies in blocking solution for 1 h at room temperature. The secondary
antibodies used include goat anti-mouse 488 (5 μg/ml, A11001, Invitrogen), goat anti-
mouse 594 (10 μg/ml, A11005, Invitrogen), Goat anti-Rabbit 568 (5 μg/ml, A11036,
Invitrogen), Goat anti-Mouse 647 (5 μg/ml, A21235, Invitrogen) and goat anti-rabbit
647 (10 μg/ml, A-21245, Invitrogen). Finally, the slides were stained with DAPI
(Thermo Scientific, 62248) for 5 min and mounted using ProLongTM Diamond
Antifade Mountant (Molecular Probe, P36962). The Images were captured using
Leica TCS-SP8 confocal microscope. For the quantification of the cardiac Troponin T
(cTNT) expression, the mean gray values of cTnTsignal were measured using Fiji64

and normalized to the whole area of organoid.

Organoid imaging and processing. The images of beating organoids were taken
under Leica DMI6000 microscope, three to ten of images were used to measure the
organoid diameters. The length of both longest axis and shortest axis were mea-
sured for each organoid. We grouped the organoids based on the diameters of their
internal empty structures which were analyzed under microscope with their section
images. For the organoids with a diameter less than 50 μm, we defined them as
“intact”; For those with size between 50 to 100 μm, we called them as “holes”; For
those with diameters above 100 μm, we identified them as “cavities”. Besides, the
beating organoids were recorded at an interval of 50 ms with a Hamamatsu Orca-
ER camera with transmitted light. The beating rates were calculated with beats/
frames multiplied by frames/second.

Flow cytometry. The organoids were dissociated through sequential incubation with
0.25% Trypsin/EDTA and a 10 mg/ml collagenase HBSS+/+ mixture. For the
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WTC line with ACTN2-eGFP reporter, the cell suspensions were directly used to
quantify the ACTN2-eGFP cell percentages using BD LSR Fortessa analyzer. For
Col1a1 staining, cells were fixed for 15 min at 4 °C with 4% PFA in PBS followed by
permeabilization using ice-cold 90% methanol for 10 min. Cells were washed twice
with PBS and stained with primary antibody (mouse anti-Col1a1, 1:50, DSHB,
SP1.D8) in antibody dilution buffer (0.5% BSA in PBS) for 1 h at 4 °C. For Nkx2-5
staining, cells were fixed and permeabilized as described above, then stained with
mouse anti-Nkx2-5 (1:100, R&D Systems, MAB2444) for 40 min at room tem-
perature. For VE-Cadherin staining, cells were stained with primary antibody
(rabbit anti-VE-Cadherin, 1:400, Cell signaling, #2500) for 1 h at 4 °C in antibody
dilution buffer.

After staining with primary antibodies, the cells were washed with PBS and stained
with fluorochrome-conjugated secondary antibody (diluted in antibody dilution
buffer) for 30min at 4 °C. The following secondary antibodies were used: goat anti-
rabbit 647 (10 μg/ml, A-21245, Invitrogen), and Goat anti-Mouse 647 (5 μg/ml,
A21235, Invitrogen). After washing twice with PBS, the stained cells were analyzed
using the LSR Fortessa Analyzer (BD) or FACSAria™ III Cell Sorters (BD). Data were
analyzed using FACS DIVA software (BD) and FlowJo software (Tree Star).

Membrane potential analysis. Organoids were prepared as single-cell suspension
through sequential incubation with 0.25% Trypsin/EDTA and a 10 mg/ml col-
lagenase HBSS+/+ mixture. The cells were then resuspended in plating medium
(RPMI/B27, 20% knock out serum, 10 mM ROCK inhibitor Y27632) and plated
onto glass-bottom cell culture dish (MatTek Corporation, P35GC1.514 C.S). The
membrane potential was indicated by staining with FluoVolt™ Membrane Potential
Dye (Invitrogen, F10488) at room temperature for 30 min. After wash twice with
RPMI, live-cell imaging was captured with fast-frame rate video recording
(2048*2048, 25 fps) on an inverted microscopy (Nikon Ti-E with Hamamatsu
ORCA flash 4.0 CCD). The dynamics of the action potential traces were analyzed
with a customized MATLAB algorithm.

Calcium transient analysis. Calcium transients were detected in plated cells from
heart organoids by staining with CalciFluor™ Rhod-4, AM (Santa Cruz Bio-
technology, sc-362569A). Dynamic fluorescence changes were recorded at 25
frames per second on an inverted fluorescence microscope (Nikon Ti-E with
Hamamatsu ORCA flash 4.0 CCD). Data analysis of fluorescence recordings was
performed in ImageJ and MATLAB. while Normalized fluorescence change ΔF/F0
was used to indicate the transient amplitude, while F0 indicate the fluorescence
intensity at the resting status and ΔF represents the change of the fluorescence.

Statistics and Reproducibility. Data are presented as the mean ± standard error of
the mean (SEM) for at least three replicate samples (see figure legends for addi-
tional information). Statistical significance between two groups was determined
using a Student’s t-test for all quantification except RNA-seq data. Results were
considered statistically significant when the P value was <0.05 (*P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001). Box plots and bar plots were generated
by Prism GraphPad.

Binomial test
In order to test the significance of the zone predictions increased percentage of dis-
agreement with RA treatment in the mutant cells when compared to wild-type cells, we
used a binomial test. The binomial test was performed using the R function binom.test
where the number of successes was the number of mutant RA- cells predicted as Ven-
tricular (404), the number of trials was the number of mutant RA- cells (1483), and the
null hypothesis probability was the percent of WTC RA- cells that were predicted as
Ventricular (67.4%).

Wilcox P-values
Wilcox p-values for Figs. 2Eii, 4Dii, 5F, 7D, and 9D were calculated using the R function
compare_means with p.adjust.method=bonferroni. Tables with exact p-values and
sample numbers are provided as source data files.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequencing data underlying this study has been deposited at the Gene Expression
Omnibus (GEO) database (GSE163619). Other data is available from the authors upon
request.

Code availability
Computer code used to generate results reported in this study is available on Zenodo
under DIO 10.5281/zenodo.6326400. The packages used in our model and plotting code
are as follows: Batchelor 1.2.4, circlize 0.4.13, clusterProfiler 3.14.3, ComplexHeatmap
2.2.0, DOSE 3.12.0, ggalluvial 0.12.3, ggplot2 3.3.5, Matrix 1.2-17, openxlsx 4.2.5,

org.Hs.eg.db 3.10.0, pdp 0.7.0, Polychrome 1.3.1, preprocessCore 1.48.0, ranger 0.13.1,
readr 2.1.1, rhdf5 2.30.1, scales 1.1.1, scater 1.14.6, scMerge 1.2.0, scran 1.14.6,
SingleCellExperiment 1.8.0, stringr 1.4.0.
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