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Deciphering how early life adiposity influences
breast cancer risk using Mendelian randomization
Marina Vabistsevits 1,2✉, George Davey Smith 1,2, Eleanor Sanderson1,2, Tom G. Richardson1,2,3,5,

Bethan Lloyd-Lewis4,5 & Rebecca C. Richmond 1,2,5

Studies suggest that adiposity in childhood may reduce the risk of breast cancer in later life.

The biological mechanism underlying this effect is unclear but is likely to be independent of

body size in adulthood. Using a Mendelian randomization framework, we investigate 18

hypothesised mediators of the protective effect of childhood adiposity on later-life breast

cancer, including hormonal, reproductive, physical, and glycaemic traits. Our results indicate

that, while most of the hypothesised mediators are affected by childhood adiposity, only IGF-1

(OR: 1.08 [1.03: 1.15]), testosterone (total/free/bioavailable ~ OR: 1.12 [1.05: 1.20]), age at

menopause (OR: 1.05 [1.03: 1.07]), and age at menarche (OR: 0.92 [0.86: 0.99], direct

effect) influence breast cancer risk. However, multivariable Mendelian randomization ana-

lysis shows that the protective effect of childhood body size remains unaffected when

accounting for these traits (ORs: 0.59–0.67). This suggests that none of the investigated

potential mediators strongly contribute to the protective effect of childhood adiposity on

breast cancer risk individually. It is plausible, however, that several related traits could col-

lectively mediate the effect when analysed together, and this work provides a compelling

foundation for investigating other mediating pathways in future studies.
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Breast cancer is the leading cause of cancer-related deaths
among women, with 1 in 8 at risk of developing the disease
in high-income countries1,2. Although breast cancer mor-

tality has declined over recent decades, mostly due to improved
treatments and personalised diagnoses3, the incidence of the
disease has been steadily increasing by 3.1% annually since the
1980s4. Reducing the incidence rates will depend on better
understanding and communicating modifiable risk factors both
population-wide and targeted at women with an increased risk5.

The second-largest preventable risk to all cancers after smoking
is obesity6, which has been extensively studied in relation to
breast cancer. In observational studies, there is consistent evi-
dence for a positive association of increased body mass
index (BMI) with post-menopausal breast cancer, but an inverse
association with pre-menopausal breast cancer7,8. This may be
explained by varying levels of exposure to oestrogen in over-
weight compared with normal-weight women. Pre-menopause,
overweight women have longer anovulatory cycles, thereby
decreasing their exposure to ovarian hormones which has been
suggested to reduce their breast cancer risk9. Post-menopause,
adipose tissue is the main source of oestrogen biosynthesis10. This
increases exposure to oestrogen in overweight compared to
normal-weight women, which may explain their higher risk of
breast cancer after menopause.

While previous conclusions have largely been drawn from
observational epidemiological studies11–13, several Mendelian
randomization (MR) analyses have shown a contrary result, where
genetically instrumented BMI is inversely associated with the risk
of both pre- and post-menopausal breast cancer14,15. Since the
genetic variants used to instrument BMI are set at birth, they
should not be affected by environmental factors in later life. Thus,
Guo et al.14 hypothesised that the positive association between
high BMI and post-menopausal breast cancer risk seen observa-
tionally may reflect adiposity and weight gain later in life. This is
supported by findings of an inverse association between early-life
(childhood and adolescence) BMI with breast cancer risk11,12. A
recent MR study16 using genetic variants related to childhood
body size showed the same protective effect on breast cancer risk.
Furthermore, using a multivariable MR analysis that accounted for
adult body size, this study indicated that the protective effect of
childhood body size influences breast cancer risk directly, inde-
pendently of adult body size. However, the mechanism by which
larger body size during childhood may reduce future breast cancer
risk is not understood. Deciphering the mediating pathway
between early-life adiposity and breast cancer would be of great
interest for identifying targets of intervention, since advocating
weight gain in childhood is not recommended.

Many established breast cancer risk factors are plausible can-
didate mediators of the protective effect of early-life body size,
since they have been found to be influenced or associated with
childhood adiposity. For example, body fatness during childhood
may protect against breast cancer risk through hormonal path-
ways (e.g., IGF-1, oestradiol, testosterone, SHBG17,18). It has also
been shown that incidence of breast cancer, particularly oestrogen
receptor-positive (ER+) breast cancer, is substantially driven by
changes in reproductive patterns, including parity and age at
menarche, first birth and menopause19,20), events that are also
influenced by increased adiposity in childhood21,22. Physical traits
such as breast mammographic density (MD), which is an estab-
lished risk factor of breast cancer23, are also affected by body
fatness in early life24,25. Finally, glycaemic traits have been
extensively studied in relation to BMI and, while they have been
inconsistently associated with breast cancer26–28, are also of
interest as potential intermediates.

In this work, we aimed to decipher the link between increased
childhood body size and breast cancer risk by assessing a variety

of potential mediators of this effect within a MR framework29,30.
We characterised the effects of four groups of mediators that may
be influenced by childhood body size to affect breast cancer risk:
sex hormones, reproductive traits, glycaemic traits, and physical
traits (Fig. 1). This was done using several extensions of the basic
MR principle, including two-sample MR31, two-step MR32,
and multivariable MR33,34, with results then integrated into a
mediation analysis.

Results
Study overview. Using genome-wide association study (GWAS)
summary statistics for childhood body size16, breast cancer35 and
18 hormonal, reproductive36–38, glycaemic39–44, and physical
traits15,45–47 (Fig. 1), we set up a workflow to investigate the role
of these traits as plausible mediators of the childhood body size
effect on breast cancer risk in later life (Fig. 2a). Firstly, we per-
formed a two-step MR to identify traits influenced by childhood
body size that have a causal effect on breast cancer. Subsequently,
traits were assessed in a multivariable MR analysis to assess the
magnitude of their direct effect on breast cancer risk, followed by
a mediation analysis to quantify the indirect effect. The main
exposure and outcome datasets used in the analysis comprised
246K female participants from UK Biobank (childhood body size)
and 228K participants from Breast Cancer Association Con-
sortium, BCAC, (breast cancer cases and controls), respectively.
An overview of the GWAS datasets used as mediators is pre-
sented in Table 1. This study is reported as per the guidelines for
strengthening the reporting of Mendelian randomization studies
(STROBE-MR)48.

Two-step Mendelian randomization. For each mediator, we
conducted a two-step MR, where each step is an independent
univariable two-sample MR analysis (Fig. 2b(ii)). In step 1,
childhood body size was used as the exposure and a mediator
trait as the outcome; in step 2, the mediator was used as the
exposure and breast cancer as the outcome. This analysis pro-
vided insights into the presence of a causal effect on/from the
mediators and was used as a mediator prioritisation step. The
results obtained using the IVW (inverse-variance weighted)
method are presented in Fig. 3.

Among the hormones investigated, evidence of an effect in both
MR steps was observed for IGF-1 and free and bioavailable
testosterone (Fig. 3). Increased childhood body size was associated
with a reduction in IGF-1 (effect size per standard deviation,
−0.24, 95% confidence interval: [−0.33: −0.15]), while IGF-1 had
a positive effect on breast cancer risk (odds ratio per standard
deviation, OR, 1.08 [1.03: 1.15]). Bioavailable and free testosterone
estimates were similarly affected by childhood body size (0.09
[0.02: 0.16] and 0.12 [0.05: 0.18], respectively), and also had a
similar positive effect on breast cancer risk (OR: 1.12 [1.05: 1.2]
and OR: 1.14 [1.06: 1.22], respectively). Total testosterone had a
positive effect on breast cancer (OR: 1.15 [1.06: 1.24], however,
there was little evidence to suggest it was affected by childhood
body size (−0.01 [−0.07: 0.04]). Oestradiol (−0.08 [−0.15:
−0.02]) and SHBG (−0.19 [−0.29: −0.08]) were both inversely

Fig. 1 Potential mediator groups. Traits that may be influenced by
childhood adiposity to affect breast cancer.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03272-5

2 COMMUNICATIONS BIOLOGY |           (2022) 5:337 | https://doi.org/10.1038/s42003-022-03272-5 | www.nature.com/commsbio

www.nature.com/commsbio


affected by increased childhood body size, but there was limited
evidence of them affecting the risk of breast cancer (OR: 0.96
[0.68: 1.34] and OR: 0.97 [0.91: 1.04], respectively).

Analysis of reproductive traits showed the greatest effect of high
childhood body size on age at menarche (−0.79 [−0.95: −0.64],

effect size per standard deviation, 95% CIs), as well as an effect on
age at first birth (−0.09 [−0.16: −0.03]). There was little evidence
that age at menopause and number of births were affected by
increased childhood body size (0.02 [−0.34: 0.38] and −0.01
[−0.07: 0.05], respectively). Age at menopause was found to have
a positive effect on breast cancer (OR: 1.05 [1.03: 1.07]). The OR
point estimates of other reproductive traits were inverse, but
overall, there was little evidence of their effect on breast cancer
(age at menarche — OR: 0.98 [0.92: 1.05], age at first birth – OR:
0.92 [0.79: 1.07], number of births—OR: 0.70 [0.44: 1.11]). The
estimates for age at menarche and age at menopause from the
other data source were in agreement with the results in Fig. 3
(Supplementary Data 1 and 2).

The tested glycaemic traits generally had strong evidence of
being positively affected by increased childhood body size,
although there were some inconsistent results using different
data sources for the same traits (e.g., fasting insulin, see
Supplementary Data 1). The estimated effects were – fasting
insulin: 0.16 [0.08: 0.24], fasting glucose: 0.05 [−0.01: 0.12],
Hba1c: 0.07 [0.04: 0.11], HOMA-B: 0.1 [0.05: 0.15]. However,
none of the glycaemic traits had a substantial effect on breast
cancer risk (fasting insulin OR: 1.00 [0.58:1.72], fasting glucose
OR: 1.03 [0.85: 1.25], Hba1c OR: 1.02 [0.74: 1.4], HOMA-B
OR: 1.06 [0.78: 1.45].

For the physical traits, we were only able to perform the second
step of the MR analysis (i.e., the effect of the trait on breast
cancer) since we did not have access to the full GWAS summary
data. There was limited evidence of an effect from breast size on
breast cancer risk (OR: 1.11 [0.72: 1.71]), as previously shown by
Nick Sern Ooi et al.15 using the same data. Among the MD
phenotypes, the dense area of the breast had a positive effect (OR:
1.39 [1.11: 1.73]) and the non-dense area had a negative effect
(OR: 0.65 [0.46: 0.92]) on breast cancer risk. There was also a
positive effect of percent MD, although with wider confidence
intervals (OR: 1.43 [0.97: 2.12]).

We also repeated the second step MR analyses using breast
cancer data stratified into oestrogen receptor-positive (ER+) and
negative (ER−) groups35 (Supplementary Data 3 and 4). Overall,
similar findings were identified for the ER+ cases across all
mediators, with stronger effects for MD phenotypes. None of the
investigated hormones that had an effect on overall breast cancer
risk showed evidence of an effect on ER− cases. Among the
reproductive traits, the direction of effect switched from inverse
to positive for age at menarche, whereas the estimate for age at
menopause shifted closer to the null for ER− cases. No strong
effects of the glycaemic traits were found on the ER− cases,
consistent with ER+ and total breast cancer samples.

Multivariable Mendelian randomization. We next performed
MVMR analyses with childhood body size and each mediator in
turn, in relation to breast cancer risk (Fig. 2b(iii)). This allowed us
to establish the direct effect of childhood body size on breast
cancer risk after accounting for each mediator. MVMR was
performed only on those mediators that showed the evidence of
effect in at least one of the two-step MR steps and where the
sensitivity analyses of both steps showed consistent results (see
Sensitivity analysis and prioritisation logic in Supplementary
Note 1, Supplementary Table 1).

The direct effects of childhood body size on breast cancer after
accounting for each mediator estimated using the IVW-MVMR
method are presented in Fig. 4 (Supplementary Data 5). Compared
with the total effect of childhood body size on breast cancer from
univariable MR, which had an OR of 0.66 [0.57, 0.76])
(Supplementary Data 6), the direct effects of childhood body size
varied between OR of 0.59 (age at menarche) and 0.67 (total

Fig. 2 Study design and Mendelian randomization (MR) methods used in
the analysis. a Study design; b Study methods: (i) Univariable MR: simple
two-sample setup, measuring the total effect of exposure (childhood body
size) on the outcome (breast cancer); (ii) Two-step (network) MR: two
sets of two-sample MR − step 1: the total effect of exposure on the
mediator, step 2: the total effect of the mediator on the outcome, allowing
the measurement of the indirect effect of exposure on outcome via
mediator; (iii) Multivariable MR: both exposure and mediator are accounted
for in a single model; the direct effect of both is estimated. Arrow colours
represent effect: blue − total, red − direct, purple − indirect.
IVs − instrumental variables.
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testosterone). This indicates no substantial change in the effect of
childhood body size on breast cancer after accounting for each of the
potential mediators, with effects consistent between overall, ER+
and ER− breast cancer (Supplementary Data 7 and 8).

We also performed analyses with adult body size and
childhood height as third exposures in MVMR (in addition to
childhood body size and the mediator) in two separate analyses.
Again, no substantial change in the direct effect of childhood
body size was observed in the presence of the additional
exposures (Supplementary Data 9 and 10).

Overall, the direct effects of mediators on breast cancer risk
were similar to their total effects once accounted for childhood
body size (Supplementary Fig. 2, values in Supplementary Data 5).
Among the hormones investigated, the direction and size of effect
remained the same (±0.01 OR) for all measures (IGF-1, SHBG,
and the three measures of testosterone). Among the reproductive
traits, MVMR indicated a direct protective effect of increasing age
at menarche once accounted for childhood body size (OR: 0.92
[0.86: 0.99]), and the effect was even stronger using the alternative
age at menarche GWAS source (OR: 0.82 [0.74: 0.91], Supple-
mentary Data 5). The positive effect of age at menopause
remained consistent with univariable MR results (OR: 1.05
[1.03: 1.07]). The point estimates of Hba1c shifted from the null,
but wide confidence intervals still indicate little evidence of the
effect (OR: 1.06 [0.83:1.35]). We also estimated the direct effect on
the ER+ and ER− breast cancer samples. The results for the ER+
cases were similar to those for the full breast cancer sample,
but there was limited evidence of effect from mediators on the
ER− sample, akin to the trend observed in step 2 of two-step MR.

In the MVMR analyses, additionally accounting for the adult
body size effect, the mediator estimates were not considerably
affected. However, accounting for childhood height reduced the

direct estimates for most mediators and attenuated IGF-1 and age
at menarche effects to overlap the null (Supplementary Fig. 3 in
Supplementary Note 3 and Supplementary Data 9 and 10).

Sensitivity analysis. To investigate the potential violations of the
MR assumptions and validate the robustness of the two-sample
MR results from the IVW approach, we performed additional MR
analyses using MR-Egger49 and weighted median50 approaches,
both of which are more robust to pleiotropy. The Egger intercept
was used to explore the potential for the presence of directional
horizontal pleiotropy, and Cochran’s Q-statistic was calculated to
quantify the extent of heterogeneity among SNPs, which is
indicative of potential pleiotropy. The sensitivity analyses of
MVMR included tests for instrument strength and horizontal
pleiotropy. Performance in the sensitivity tests was used as a
selection tool for mediator inclusion in the downstream analyses
(Supplementary Note 1).

The estimated effects for hormones and reproductive traits
were consistent across sensitivity analyses. The results obtained
for some of the glycaemic traits, however, were variable and
should be interpreted with caution. The sensitivity analysis details
for all mediator groups are available in Supplementary Note 2 and
Supplementary Data 11 and 12.

For all pairs of childhood body size and a mediator, which were
prioritised for the MVMR analysis, conditional F-statistics were
>10, indicating that weak instrument bias is unlikely to be
present. The presence of directional pleiotropy was assessed by
estimating QA statistics, which consistently indicated excess
heterogeneity and so the potential for pleiotropy. The MVMR
sensitivity analysis results are presented in Supplementary
Data 13–15.

Fig. 3 Two-step Mendelian randomization results evaluating four groups of potential mediators (hormones, reproductive traits, glycaemic traits,
physical traits). a Step 1: Plots showing the effect of childhood body size on the mediators (univariable MR). The effect is measured as the standard
deviation (SD) change in mediator per body size category change. b Step 2: Plots showing the odds of breast cancer per SD higher mediators (unless
otherwise specified in Table 1; univariable MR). Bars indicate 95% confidence intervals around the point estimates from IVW analyses (in step 1: effect
size/beta, in step 2: odds ratio), except oestradiol (the estimate is based on a single Wald ratio and is indicated by an empty circle shape). MD −
mammographic density. The presented data is available in Supplementary Data 1 and 2. The details about the datasets are provided in Table 1.
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Lastly, the violation of two-sample MR requirement of having
two non-overlapping datasets for exposure and outcome traits,
i.e., winner’s curse, which was present for hormone traits (step 1
of two-step MR), was addressed with the split-sample approach
(see Methods). Results of this analysis were consistent with the
full sample analysis (Supplementary Note 4 and Supplementary
Data 16 and 17).

Mediation analysis. Next, we carried out a mediation analysis to
estimate the indirect effect of childhood body size on breast
cancer risk via selected mediators, using the effect estimates from
two-step MR, MVMR, and the total effect (Fig. 2b(i), Supple-
mentary Data 6). This analysis was restricted to mediators that
showed evidence of an effect in MVMR and that had substantial
instrument strength (Supplementary Note 1).

Using a simulation analysis to compare available mediation
methods (Supplementary Note 5), the Product method was chosen
with reasonably high confidence as the main mediation analysis
approach, with the Delta method as the corresponding SE/CI
estimation technique. The indirect effect results are displayed in
Fig. 5 and the estimates are available in Supplementary Data 18.

The indirect effects were modest, although there was some
evidence for an inverse indirect effect via IGF-1 (−0.016
[−0.032: −0.003]), suggesting potential mediation via this trait.
The estimated proportion of the mediated effect via IGF-1 was
0.039, indicating that any potential mediation via IGF-1 would
only account for 3.9% of the total effect. Conversely, the
alternative mediation approach (Difference method) estimated
the IGF-1 indirect effect to be positive (described in Supplemen-
tary Note 5). Thus, the observed negative effect of IGF-1
requires further investigation. Mediation analysis also showed a
positive indirect effect of childhood body size via age at menarche
(0.065 [0.007: 0.126]) and via free and bioavailable testosterone
(0.015 [0.005: 0.03] and 0.011 [0.002: 0.023] respectively, in
contrast to the negative total effect of childhood body size on
breast cancer.

Discussion
Previous observational and MR studies indicate that early life
body size has a protective effect on the risk of breast
cancer11,12,16. In this study, we investigated whether a number of
breast cancer risk factors served as potential mediators of this
protective effect using large genome-wide association datasets and
a series of MR methods. Using two-step MR, we identified IGF-1,
SHBG, testosterone, age at menarche and age at menopause as
plausible mediators based on the effect of childhood body size on
these traits, and their effect on breast cancer risk. However, when
applied in a multivariable MR framework, none of these traits
appeared to substantially mediate the protective effect of early life
body size on breast cancer risk.

The results of our MR analysis of selected hormones on breast
cancer are supported by recent MR studies, with similar effects
observed for IGF-1 in Murphy et al.51 and SHBG and testosterone
in Ruth et al.52 Conversely, the negative association of SHBG
adjusted for BMI with breast cancer risk observed in Dimou
et al.53 had limited evidence of effect in our study, likely due to
sex-specific analysis and differences in sample size. The effects
observed for IGF-1 in two-step MR are in agreement with
observational studies17,54. IGF-1 is known to play an important
role in breast tissue differentiation and mammary gland
function55, and during normal development levels of IGF-1 gra-
dually rise from birth to puberty, followed by a decrease in
response to growth hormones56. The finding of lower adult IGF-1
in response to larger body size during childhood may be a part of
the mechanism through which early life adiposity influences
breast cancer risk. Our mediation analysis showed that childhood
body size may have a negative effect on breast cancer indirectly
via IGF-1. However, this result requires further investigation as
the estimated indirect effect was relatively small (accounting for
3.9% of the total effect), and inconsistent across mediation
methods. While there was some evidence for indirect effects of
childhood body size via age at menarche, as previously
reported16,57, and testosterone levels, this was in the positive
direction in opposition to the total inverse effect of childhood
body size on breast cancer. Lastly, it was not feasible to con-
fidently assess the effect of oestradiol on breast cancer in MR
analyses due to the limited number of genetic instruments in the
available data, but as oestradiol has been observationally asso-
ciated with breast cancer18, its mediating role remains of interest.

We also reviewed the effects in ER− and ER+ cancer samples,
which can proxy for younger/older or pre-/post-menopausal
women, respectively. The observed causal effects for hormones
were maintained in the ER+ samples, but no effect was observed
in the ER− samples. Some differences were also observed for
reproductive traits, for example, age at first birth had a direct

Fig. 5 Mediation analysis results: indirect effect of childhood body size
on breast cancer via a mediator. The indirect effect was estimated as the
product of coefficients of the total effect of exposure on the mediator (step
1 of two-step MR) and the direct effect of a mediator on the outcome
(MVMR), i.e., Product method, and the 95% CIs were calculated based on
SE estimated using Delta method. The presented data is available in
Supplementary Data 18. The details about the datasets are provided in
Table 1.

Fig. 4 Multivariable Mendelian randomization results of childhood body
size direct estimates accounted for selected mediators. The plot shows
the odds of breast cancer per SD change in the direct effect (red) of
childhood body size accounted for mediators. The total effect (blue) (OR:
0.66 [0.57: 0.76]) and direct effect (i.e., accounted for adult body size, OR:
0.62 [0.51: 0.75]) estimates of childhood body size on breast cancer risk
were re-calculated (Supplementary Data 6) from the original study [15]
(using the thresholds defined in the Methods to match other MR analysis in
this study), included here for comparison. The vertical blue line shows the
value of the total childhood body size effect point estimate (0.66) relative
to the direct estimates. Bars indicate 95% confidence intervals around the
point estimates from IVW-MVMR. The estimated values and the numbers
of genetic variants included in the analyses are given in Supplementary
Data 5. The details about the datasets are given in Table 1.
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effect only on the ER− cases (younger women). Additionally,
there was a null effect of age at menopause and increased number
of births among ER− breast cancer cases, which is reasonable
since those exposures are less prevalent in younger women who
typically present with ER− breast tumours.

Although we used the largest GWAS available for each
mediator trait of interest, many of these data sources possess
specific limitations that may have prevented us from identifying
the mediated effect. When investigating hormones as outcomes,
we used data from UK Biobank, which is the same sample as our
main exposure (childhood body size). To assess whether sample
overlap could have potentially led to winner’s curse bias in step
1 of MR, a split-sample analysis was performed. Results of non-
overlapping samples analysis were similar to the full sample
analysis, suggesting that using the same data source for both
exposure and outcome had little impact on our findings.
Another limitation related to the hormones measures is that
these were quantified in a predominantly post-menopausal
sample of women (average age in UK Biobank is 56 years),
where sex hormone levels are considerably different to those
before menopause58.

For the reproductive traits, we prioritised non-UK Biobank
datasets in the main analysis to minimise the problem of sample
overlap. While these datasets typically were from smaller sample
sizes (and therefore fewer instruments), the directions of observed
effects were consistent with the analyses performed on UK Bio-
bank data (Supplementary Data 1).

The most inconclusive results were observed for glycaemic traits,
likely due to smaller samples sizes and mixed-sex samples within
these data sources. For traits with multiple available data sources,
we prioritised those containing female-only participants39, which
typically reduced the sample size for the analyses but showed more
relevant effects than in the mixed-sex analyses (Supplementary
Data 1 and 2).

The unavailability of full summary data for the physical traits
of interest is a major constraint in this study. Since only the top
GWAS hits from MD studies by Brand et al.45, Lindström et al.46

and Sieh et al.47 were available, we were unable to estimate the
effect of childhood body size on these traits and the extent to
which they could mediate the relationship with breast cancer.
High MD is a major breast cancer risk factor and, importantly, is
therapeutically modifiable59. Moreover, higher adiposity in
childhood and adolescence has been associated with lower MD
throughout adulthood24. In light of several recent studies60,61

suggesting a plausible role of MD in the mediation of the pro-
tective effect of childhood body size on breast cancer risk,
applying our MR framework to these datasets is an important aim
for the future. We were also unable to perform the full analysis on
breast size data. However, a previous study15 using MVMR
showed that breast size is unlikely to be a mediator of BMI effect
on breast cancer risk.

While most of our analysis focused on mediators measured in
adulthood, assessing mediators measured earlier in life would be
useful for exploring the life-course effects of childhood body size.
Investigating how childhood body size score influences plausible
mediators over time, including an assessment of its effects on
other anthropometric measures such as growth, changes in body
composition and fat distribution62, would provide another critical
step to improve mechanistic understanding of its protective effect
on breast cancer risk.

Childhood body size data from UK Biobank is based on a
questionnaire completed by adult participants and could be
subject to misclassification due to individuals misremembering
their relative body size, which could potentially pose a great
limitation to using this data. However, the genetic variants for
childhood body size (originally identified by Richardson et al.16)

were validated in several different cohorts63,64 to be able to reli-
ably separate childhood and adult body size, and also were robust
to differential measurement error in simulations performed in the
original study. Collectively, these analyses confirm the genetic
variants from this data are suitable to be used to represent
childhood body size.

Another important point to raise is the gene-environment
equivalence assumption in MR, i.e., that if childhood body size is
influenced genetically or environmentally this will have the same
effect on the outcome65. It is necessary to consider whether
childhood adiposity produced by environmental/lifestyle factors
can reduce the risk of breast cancer in the same way as has been
estimated using genetic variants that affect body size in early life.

It is also important to mention that current MR methods for
meditation analysis assume linear associations. However, it is
possible that the effects of childhood body size and mediators are
non-linear, which could lead to an apparent lack of mediation
despite the presence of the true meditating effect. Additionally,
two-step MR and MVMR assume no interaction between the
exposure and the mediator on the outcome. When assumptions
of linearity and no interaction are not satisfied, the magnitude of
the estimated effect may be affected66.

In summary, here we systematically reviewed a set of potential
mediators for the observed protective effect of increased child-
hood body size on breast cancer risk. Individually, none of the
tested traits was found to strongly mediate this effect. However, it
is plausible that several related traits may collectively contribute
to the mediated effect, which could be explored in multi-mediator
MVMR analyses in future studies. It would also be interesting to
explore mediation effects on breast cancer experienced pre- and
post-menopause, and ultimately by molecular subtypes of the
disease. Mediation may also occur via a pathway that we have not
considered in our study, or via MD, which could not be fully
explored in this study due to the lack of full data availability.
Finally, future work could explore proximal molecular mediators
(e.g., breast tissue gene expression and methylation) to determine
if early-life and adult adiposity have different effects on breast
biology, which would be a critical step in deciphering the pro-
tective effect investigated in this work.

Our systematic investigation of mediators was designed as a
prioritisation workflow, in which the initial MR analysis results
(two-step MR) were used to select mediators for more advanced
analyses (MVMR, mediation) based on the presence of causal
effects and adequate performance in sensitivity analyses.
Although we failed to identify a sole plausible mediator, we sys-
tematically report the MR results for the majority of obvious
candidates from the largest available GWAS datasets to our
knowledge. As new GWAS data becomes available, a similar
approach can be applied, or used for investigating other biological
questions (e.g., as shown in a recent study67, aiming to identify
the mediators of height effect on coronary artery disease). While
we adopted a hypothesis-driven approach to investigate potential
mediators, in future work, data mining platforms such as Epi-
GraphDB (epigraphdb.org)68 may be used to facilitate the iden-
tification of novel mediator traits/biomarkers, or candidates for
multi-mediator MVMR analyses.

Methods
Data sources. In this study, the main exposure trait GWAS (childhood body size)
was from UK Biobank69 and the outcome (breast cancer) from the Breast Cancer
Association Consortium (BCAC)35. The sources of mediator traits GWAS are
summarised in Table 1.

UK Biobank is a population-based health research resource consisting of
approximately 500,000 people, aged between 40–69 years, who were recruited
between the years 2006 and 2010 from across the UK. UK Biobank has received
ethical approval from the UK National Health Service’s National Research Ethics
Service (ref 11/NW/0382) and informed consent from all participants. A full
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description of the study design, participants and quality control (QC) methods
have been described in detail previously69. The GWAS of childhood body size and
adult body size used in this study were performed by Richardson et al.16 on UK
Biobank data (N= 246,511; female-only data, including for instruments
extraction).

BCAC breast cancer GWAS includes 228,951 samples (122,977 cases and
105,974 controls) of European ancestry. The cases include both oestrogen receptor-
positive (N= 69,501) and oestrogen receptor-negative (N= 21,468) participants35.
The details of cohort design and genotyping protocol are described elsewhere
(bcac.ccge.medschl.cam.ac.uk/bcac-groups/study-groups/, bcac.ccge.medschl.cam.
ac.uk/bcacdata/). The study groups in the BCAC cohort do not include UK
Biobank or mediator trait cohorts. The BCAC data was accessed through
OpenGWAS36 (gwas.mrcieu.ac.uk) under the following IDs: ieu-a-1126 (full
sample), ieu-a-1127 (ER+), ieu-a-1128 (ER−).

Description of selected traits. Childhood body size is a categorical trait
describing body size at age 10, with three categories (‘thinner than average’, ‘about
average’, ‘plumper than average’), from a questionnaire completed by adult par-
ticipants of UK Biobank. Adult body size measure was converted from continuous
adult BMI in UK biobank into three groups based on the proportions of childhood
body size data to ensure that the GWAS results of both measures are comparable16.
The genetic scores for childhood and adult body size were independently validated
in two separate cohorts (HUNT Study (Norway)63 and Young Finns Study64),
which confirmed that the genetic instruments extracted by Richardson et al.16 can
reliably separate childhood and adult body size as distinct exposures.

Childhood height is another categorial trait from a questionnaire completed by
adult UK Biobank participants, with three categories describing comparative height
at age 10 (‘shorter’, ‘about average’, ‘taller’).

Four groups of mediators were assessed: sex hormones, female reproductive
traits, glycaemic traits, and physical traits (Table 1).

(1) Hormones: IGF-1 (insulin-like growth factor 1), SHBG (sex hormone-
binding globulin), oestradiol, testosterone (free, bioavailable, total). The
different measures of testosterone were estimated as described in previous
work52. The GWAS data for these traits was generated as a part of this study
using the IEU GWAS pipeline (next section), and the consistency of genetic
instruments was validated using LD Score Regression70 with the published
analyses of the same traits (Supplementary Note 6).

(2) Reproductive traits: age at first birth, age at menarche (×2), number of
births, age at menopause (×2).

(3) Glycaemic traits: fasting insulin (×3), fasting glucose (×3), HbA1c (glycated
haemoglobin A1c) (×2), HOMA-B (Homeostatic Model Assessment of
β-cell function). HOMA-IR (insulin resistance) was considered in the
analysis too, however, no robust instruments were identified.

(4) Physical traits: breast size (×3), MD (per cent, dense/non-dense area) (×3).
Full summary data was not available for breast size and MD, so only GWAS
top hits were used in the analysis.

Several traits were available from multiple data sources (marked with ×N). In
the early stages of the analysis, all of them were evaluated, but only one version is
presented in the final set of results. To prioritise a particular dataset over the rest
we used the following criteria: (1) female-only sample, (2) non-UK Biobank data,
(3) sample size. Table 1 shows the full set of tested datasets, highlighting the final
selection with an asterisk.

IEU GWAS pipeline. The GWAS of hormone mediators from UK Biobank were
performed using the MRC-IEU GWAS pipeline which is based on BOLT-LMM
(v2.3)71 linear mixed model and an additive genetic model adjusted for sex, gen-
otyping array, and 10 genetic principal components. The data were inverse rank
normalised prior to the analysis; the results are quantified as standard deviation
change.

Mendelian randomization. MR is a type of instrumental variable (IV) analysis
where genetic variants are used as proxies to uncover the causal relationship
between a modifiable health exposure and a disease outcome29. There are three
core assumptions that genetic variants need to satisfy to qualify as valid instru-
ments for the causal inference: (1) variants have to be reliably associated with
exposure of interest, (2) there cannot be any association with confounders affecting
the exposure-outcome relationship, and (3) variants cannot be independently
associated with the outcome, via pathway other than through the exposure
(i.e., horizontal pleiotropy)72.

The analyses in this work were performed using the two-sample (univariable)
MR approach (Fig. 2b(i)), which relies on using GWAS summary statistics of two
non-overlapping samples for exposure (sample 1) and outcome (sample 2)73. Two-
sample MR is the basis for the more advanced analysis setup described in the next
sections.

Two-sample MR analyses were performed using the inverse-variance weighted
(IVW) method74, which is presented in the Results. Alongside IVW, other
complementary MR methods were applied to assess the robustness of the causal

estimates and to overcome any potential violations of the MR assumptions
(e.g., horizontal pleiotropy) (see Sensitivity analysis for further details).

Two-step MR. Two-step MR (also known as network MR) is a sequence of two (or
more) MR analyses connected by a shared variable. Two-step analysis setup is used
to assess whether an intermediate trait acts as a causal mediator between the main
exposure and the outcome of interest32,75. As shown in Fig. 2b(ii), in step 1,
genetics variants (i.e., instrumental variables, IVs) for the exposure are used to
estimate the causal effect of the exposure variable on the potential mediator, then,
in step 2, the mediator IVs are used to assess the causal effect of the mediator on
the outcome75. The evidence of a causal effect in both steps suggests that the
association between exposure and outcome is mediated by the intermediate vari-
able to some extent (further details in Mediation analysis).

MVMR. Multivariable Mendelian randomization (MVMR) is an extension to the
standard univariable MR, which allows genetic variants to be associated with more
than one exposure, and can estimate the direct causal effects of each exposure in a
single analysis33. In this way, an exposure trait and a potential mediator can be
analysed together to quantify the direct effect of both independently on the out-
come (Fig. 2b(iii)). The genetic variants included in the analysis have to be reliably
associated with one or both exposures but not completely overlap (i.e., no perfect
collinearity), and have to satisfy the MVMR-extended second and third assump-
tions of the standard MR analysis34,76. Diagnostic methods and sensitivity tests for
the robustness of MVMR estimates76,77 are described under Sensitivity analysis.

MR analysis tools. All analyses were conducted using R (version 4.0.0). Univariate
MR analyses and sensitivity tests were performed using the TwoSampleMR R
package (version 0.5.4)78, which was also used for accessing GWAS summary data
deposited in OpenGWAS36 (gwas.mrcieu.ac.uk). Multivariable MR was carried out
by adapting TwoSampleMR’s functionality to be used on mixed data sources (see
“Code availability”). Sensitivity analyses for multivariable MR were performed
using MVMR R package (version 0.2)34.

For all exposure and mediator datasets, the instruments were extracted from the
full summary data by selecting SNPs under P value < 5 × 10−8 threshold and
clumping the resulting set of variants with r2 < 0.001. When extracting instruments
from the outcome (breast cancer) GWAS summary statistics, unavailable SNPs
were substituted by proxies with a minimum linkage disequilibrium r2= 0.8. The
rest of the settings were kept to defaults as per package version number.

Sensitivity analysis. To further investigate the causal estimates found in the
standard (IVW) MR analyses and to evaluate the validity of the analysed genetic
instruments, MR-Egger49 and weighted median MR50 methods were used to
overcome and accommodate for potential violations of the core MR assumptions.
These complementary methods help to support the causal effects found with IVW,
as a single method cannot account for all biological and statistical properties that
may impact MR estimates. A variety of recommended78 specialised sensitivity tests
was also applied.

To assess overall horizontal pleiotropy (violation of assumption 3), the intercept
in the MR-Egger regression49 was evaluated, and the heterogeneity among the
genetic variants was quantified using Cochran’s Q-statistic79. The intercept term in
MR-Egger regression is a useful indication of whether directional horizontal
pleiotropy is driving the results of an MR analysis. When the Egger intercept is
close to zero (e.g., < 0.002) and the P-value is large, this can be interpreted as no
evidence of a substantial directional (horizontal) pleiotropic effect. When the
Q-statistic for heterogeneity (difference in individual ratio estimates) is high and
the corresponding p-value is small, this suggests evidence for heterogeneity and
possibly horizontal pleiotropy. A high Q-statistic can be also used as an indicator of
one or more variant outliers in the analysis, which may also be violating the MR
assumptions.

Additionally, scatter plots of SNP effects from exposure and outcome fitted by
all tested MR methods were evaluated for any deviations which would also be
indicative of heterogeneity and violations of MR assumptions. Single SNP forest
plots were used to summarise the effect of the exposure on the outcome due to each
SNP separately, which is a helpful approach for visualising SNPs heterogeneity.
Next, funnel plots were used to visually evaluate the direction of pleiotropy, which,
if present, would be characterised by asymmetry in the plot. Finally, the sensitivity
of causal inference to any individual genetic variant was tested by leave-one-out
analysis, which is used to identify outliers.

In MVMR analyses, conditional F-statistics were used to evaluate the instrument
strength76, with F > 10 indicating suitable strength for the analysis. However, as in
univariable MR, heterogeneity may be indicative of horizontal pleiotropy that does
not act through one of the exposures. In MVMR, heterogeneity is quantified by QA-
statistic (also a further modification of Cochran’s Q), and small QA indicates a lack
of directional pleiotropic effect76.

To calculate both statistic measures, a phenotypic correlation matrix for each
MVMR test had to be constructed. This was done by applying the method for
phenotypic matrix construction from GWAS summary data, available from
metaCCA80 R package. This is an alternative approach to using individual-level
data for matrix construction. The method was only applied in cases when both
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exposures in MVMR were from the same sample (i.e., UK Biobank). When data
samples were different, the default settings for F and QA statistics were used
(i.e., gencov parameter set to zero)76.

In the cases where MVMR sensitivity tests indicated the presence of weak
instruments and potential pleiotropy via heterogeneity, Q-minimisation approach
(Q-het) for estimating causal association was used to supplement the estimated of
MVMR-IVW approach76.

Split-sample analysis. One of the important requirements in two-sample MR is
that the exposure and outcome GWAS are two non-overlapping datasets, which
provides an advantage over the limitations in one-sample MR analysis of winner’s
curse and anti-conservative weak instrument bias81,82. In the two-sample MR
analyses of childhood body size on hormones and some of the reproductive traits,
this requirement was not satisfied, since the mediator GWASs were performed in
the same cohort as the main exposure (childhood body size), i.e., UK Biobank.

To overcome the bias and evaluate the extent to which the results are affected,
the MR analyses were repeated using a split-sample approach. This was possible
due to the large sample size of the UK Biobank: the data were randomly split into
two parts, and one part was used to carry out a new GWAS for the exposure
(childhood body size), and the other part for the outcome (hormones/reproductive
traits). The exposure instruments were extracted from the new split-sample
exposure GWAS (p < 5 × 10−8), and step 1 of two-step MR and MVMR were
repeated, with the resulting estimates are available in Supplementary Data 16 and
17 and Supplementary Note 4. Finally, the requirement of having two separate
samples does not apply to exposures used in MVMR, i.e., it is acceptable to use UK
Biobank traits for both exposure and mediator used in the analysis34.

Mediation analysis. Mediation analysis is a method for quantifying the effects of
an exposure on an outcome, which act directly, or indirectly via an intermediate
variable (i.e., mediator)66. This analysis can identify which factors mediate the
relationship between the exposure and the outcome enabling intervention on those
mediators to mitigate or strengthen the effects of the exposure83. The total effect of
exposure on outcome includes both a direct effect and any indirect effects via one
or more mediators.

In terms of MR, the total effect is captured by a standard univariable MR
analysis (Fig. 2b(i)). To decompose direct and indirect effects, we use the results
from two-step MR and MVMR (Fig. 2b(ii) and 2b(iii)) in two mediation analysis
methods: Difference method and Product method (Supplementary Note 5,
Supplementary Fig. 5). For mediation analysis, it is important to have strong
evidence of the total effect (Supplementary Data 6), effect in two-step MR and
MVMR, and strong instruments in MVMR (measured by F-statistics) with no
evidence of pleiotropy.

Lastly, although it is difficult to perform mediation analysis on binary outcomes
(i.e., disease status) due to the non-collapsibility of odds ratios84, it has been shown
that if the outcome effects have been quantified as log-odds ratios, it is acceptable
to use them for estimating the indirect effects66. However, it is important to note
that the analysis on log-odds ratios from both MVMR and two-step MR is likely to
have some bias for both rare and common binary outcomes66. When the outcome
is common, like in the present study (53.7% cases), is it expected that the estimates
from Product and Difference methods are not going to align, and both are likely to
be biased, with Difference method producing a conservative estimate85.

Unsurprisingly, we observed a disagreement between the estimates from the two
methods in the results and therefore performed simulation analysis to help us
choose the method that produces more reliable results in our study. The mediation
results and simulation analysis are described in Supplementary Note 5. The
mediation analysis approach that was selected via simulation was the Product
method with Delta method for the indirect effect SE/CI estimation.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The GWAS datasets generated from UK Biobank and used in this study are available in
OpenGWAS (gwas.mrcieu.ac.uk) and can be found using TwoSampleMR package
filtering by PubMed ID or author (Rebecca Richmond). Source data underlying main
figures are presented in Supplementary Data 20.

Code availability
Mendelian randomization and mediation analysis code is available on GitHub (https://
github.com/mvab/mendelian-randomization-breast-cancer) and Zenodo with https://
doi.org/10.5281/zenodo.6349435. Simulation analysis for selecting the mediation method
is available on GitHub (https://github.com/mvab/simulation_for_MR_mediation) and
Zenodo with https://doi.org/10.5281/zenodo.6349442.
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