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Co-transcriptional splicing efficiency is a gene-
specific feature that can be regulated by TGFβ
Elena Sánchez-Escabias1, José A. Guerrero-Martínez1✉ & José C. Reyes 1✉

Differential splicing efficiency of specific introns is a mechanism that dramatically increases

protein diversity, based on selection of alternative exons for the final mature mRNA. How-

ever, it is unclear whether splicing efficiency of introns within the same gene is coordinated

and eventually regulated as a mechanism to control mature mRNA levels. Based on nascent

chromatin-associated RNA-sequencing data, we now find that co-transcriptional splicing

(CTS) efficiency tends to be similar between the different introns of a gene. We establish that

two well-differentiated strategies for CTS efficiency exist, at the extremes of a gradient: short

genes that produce high levels of pre-mRNA undergo inefficient splicing, while long genes

with relatively low levels of pre-mRNA have an efficient splicing. Notably, we observe that

genes with efficient CTS display a higher level of mature mRNA relative to their pre-mRNA

levels. Further, we show that the TGFβ signal transduction pathway regulates the general CTS

efficiency, causing changes in mature mRNA levels. Taken together, our data indicate that

CTS efficiency is a gene-specific characteristic that can be regulated to control gene

expression.
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In eukaryotic cells, steady-state levels of mRNAs are deter-
mined by the regulated rates of a number of processes,
including transcription, mRNA maturation, and mRNA

degradation1. One of the most important steps of mRNA
maturation is splicing, during which introns from precursor
messenger RNAs (pre-mRNAs) are removed, and exons are
joined together, to produce spliced mRNAs2,3. Splicing has been
extensively investigated as a mechanism of increasing gene-
product diversity by using alternative splice sites to include or
exclude particular alternative exons4–6. However, much less is
known about the consequences of splicing efficiency in the final
gene expression levels.

The splicing efficiencies of specific introns are influenced by
the 5´- and 3´-splicing sites sequences, specific sequences such as
the intronic branch-point sequence, intronic and exonic splicing
enhancers2,3,7, nascent RNA folding8,9 and other mRNA pro-
cessing reactions (including 5′-end capping or 3´-cleavage and
polyadenylation) (reviewed in ref. 10). Researchers have proven
(using different strategies) that nascent RNA is mostly spliced
during transcription elongation (co-transcriptional splicing,
CTS)10–19. The kinetics of CTS is currently a debated issue, with
different groups reporting apparently contradictory results based
mostly on single-molecule sequencing of nascent RNA. For
instance, the Neugebauer laboratory showed that splicing occurs
when RNA polymerase II (RNAPII) has transcribed between 26
and 300 nucleotides downstream of the 3′ splicing site (ss), often
during transcription of the downstream exon both in yeast20 and
humans21; in contrast, the Churchman group reported that
human introns were spliced much later, when RNAPII has
transcribed about 4 kb downstream of the 3ʹ-ss22. Recently,
Sousa-Luis et al.23 have found both behaviors: immediate and
delayed CTS. However, what determines whether one or the other
mechanism is used is unknown.

The co-transcriptional nature of splicing favors the effect of
RNAPII elongation rate on alternative splicing (reviewed in
ref. 5). In yeast, slow RNAPII elongation increases both CTS and
splicing efficiency24,25. In contrast, faster RNAPII elongation
causes strong defects in splicing, suggesting that splicing can
become rate limiting when transcription is fast20,25. In mam-
malian cells, an altered elongation speed causes enhanced inclu-
sion or skipping of specific alternative exons, as well as intron
retention26–28, but no changes in whole transcript expression
levels have been reported. In fact, to what extent CTS efficiency is
an intron- and/or a gene-specific characteristic is not clear. Fur-
thermore, is gene CTS efficiency a parameter that can be regu-
lated by developmental cues and signal transduction pathways or,
alternatively, does it mostly depend on gene structural features
that cannot be controlled by external factors?

We have addressed these questions by calculating a gene
splicing index (GSI) from nascent RNA-enriched RNA-sequen-
cing data of epithelial cells grown in the absence or the presence
of the growth factor TGFβ, which promotes a strong change in
the transcriptome29–31. We studied the relationship between
changes in the GSI and the steady-state levels of mature mRNAs,
determined by using normal RNA-seq data from the same con-
ditions. Our data suggest that CTS efficiency is a gene-specific
characteristic with two extreme behaviors: long, modestly
expressed genes are efficiently spliced (high-GSI), while short,
highly expressed genes are relatively inefficiently spliced (low-
GSI). Furthermore, we show that TGFβ promoted changes in the
levels of mature mRNAs associated to changes in GSI.

Results
Introns of the same transcript show coordinated co-
transcriptional splicing efficiency. To investigate whether CTS

efficiency is coordinated among the different introns of a gene,
first we calculated an intron splicing index (ISI) for all introns of
expressed genes in the non-transformed mouse mammary epi-
thelial cell line NMuMG32. For that, we used published
chromatin-associated RNA-seq (ChrRNA-seq) data from our
lab31 (see details in Methods). Chromatin-associated RNA is
mostly constituted by nascent RNA associated to elongating
RNAPII, as well as full length transcripts not fully spliced12,33,34.
ISI was calculated in two ways: junction-based ISI (ISIj) and
coverage-based ISI (ISIc). ISIj was determined using reads map-
ping across the exon boundaries into the adjacent intron
sequences (indicative of unspliced introns), and reads mapping
across exon–exon junctions (indicative of spliced introns); ISIc
was based in the number of reads mapped to an intron and the
reads mapped to the adjacent exons adjusting to intron or exon
length (see Fig. 1a and Methods). A high ISI value for an intron is
indicative of an efficient CTS. Fig. 1b shows good correlation
(Pearson coefficient= 0.5) between ISIj and ISIc for 79975 introns
among 7523 expressed genes (see also list of ISIj and ISIc for all
analyzed introns, (Supplementary Data 1). As previously shown
in other studies18,19,21, ISI values decreased with decreasing dis-
tance to the polyA sites, in agreement with the co-transcriptional
nature of splicing (Fig. 1c and Supplementary Fig. 1a). Also in
agreement to other studies, we found that first and last introns
tended to be inefficiently spliced (Supplementary Fig. 1b, c). This
inefficiency has been related to (i) the high frequency of very large
first introns in mammals, and (ii) the fact that efficient splicing of
first and last introns may require interactions with capping and
cleavage/polyadenylation machinery, respectively17,35–38.

We noted that, with the exception of a few specific introns in
some genes, most introns of a transcription unit presented similar
ISI values. Further, ISI levels of introns within the same gene
tended to be more similar to each other than those of introns
from different genes (see examples, Fig. 1d). Confirming this fact,
the variances of both ISIc and ISIj values of introns within the
same gene were smaller than those from randomly selected
introns (p-value= 4.81 × 10–11 and 2.31 × 10–33, respectively)
(Fig. 1e, f). Similar results were obtained when ISIc of genes with
similar number of introns were used to compute variances
(Supplementary Fig. 2). This results suggested that CTS efficiency
is, at least in part, a gene-specific trait.

Gene Splicing Index correlates positively with gene length and
negatively with pre-mRNA levels. To gain a better under-
standing of CTS efficiency at the gene level, we computed a new
parameter that we called the Gene Splicing Index (GSI). The GSI
of a gene was calculated as the log2 ratio between exonic and total
pre-mRNA reads (using the longest transcript per gene), and
relativized to exons or gene length, respectively (Fig. 2a).
Therefore, an elevated GSI indicates an efficient CTS, while a low
GSI indicates poor CTS efficiency. The GSI values ranged from
–0.29 to 6.23, with an average of 1.35 (see list of GSI values for all
expressed genes, Supplementary Data 2). GSI values were then
sorted in increasing order and binned into deciles (Fig. 2b).
Strikingly, the first decile GSI values differed very significantly
from last decile GSI values (p-value < 10–300), and the corre-
sponding genes were considered low- and high-GSI genes,
respectively (see examples of high- and low-GSI genes, Fig. 2c).
Determination by quantitative reverse transcription PCR (RT-
qPCR) of specific intronic and exonic sequences in the pre-
mRNA of one low-GSI gene (Id3) and two high-GSI genes (Inadl
and Utrn) using chromatin-associated RNA, confirmed a high or
low proportion of unspliced introns in the low or high-GSI genes,
respectively (Fig. 2d). Notably, functional analysis using Gene
Ontology (GO) revealed that low-GSI genes were strongly
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enriched in transcription and translation GO categories, whereas
high-GSI genes were enriched in transport, metabolism and cell
adhesion categories (Fig. 2e).

Next, we investigated the relationship between GSI and total
nascent pre-mRNA levels. Interestingly, GSI negatively correlated
with total pre-mRNA levels, (Pearson coefficient=−0.17;
p ≤ 0.0001) with a very significant difference between low-GSI
and high-GSI genes (p= 2.81 × 10−31) (Fig. 3a, b), suggesting
that highly transcribed genes tend to have a deficient CTS
efficiency, which might be associated with the difficulties of the
splicing machinery as a limiting factor39 for coping with a high
rate of transcription.

We then explored the effect of gene length on the GSI. A
positive correlation was observed between gene length and GSI
value, with a very significant difference in gene length between
low-GSI and high-GSI genes (p= 1.72 × 10–88) (Fig. 3c, d).
Similar positive correlation was also observed between the GSI
and intron number (p= 8.37 × 10−133) (Fig. 3e, f). Since long
genes tend to contain more introns, we tried to dissect the effect

of both parameters on the GSI, by computing (i) the effects of
gene length in genes with a similar number of introns, and (ii) the
effects of introns number in genes of a similar size. We found that
gene length was positively correlated to GSI even among genes
with similar number of introns (Pearson coefficients 0.3–0.5)
(Supplementary Fig. 3). Similarly, the number of introns was also
positively correlated to GSI for genes with similar size (Pearson
coefficients 0.2–0.4) (Supplementary Fig. 4). These data indicated
that gene length, intron number and pre-mRNA levels are
important factors for gene CTS efficiency.

We then investigated how the combination of gene length, and
gene expression on the same genes influence the GSI parameter.
For that, we divided the gene population into ten bins according
to their length in increasing order (Li, with i= 1, 2, …, 10) and
into another ten bins according to their pre-mRNA levels in
increasing order (Ej, with j= 1, 2, …, 10). A matrix (L x E) was
then constructed by assigning genes to the corresponding
positions ai,j according to their respective length (Li) and pre-
mRNA level (Ej). Supplementary Fig. 5 shows a heatmap with the

Fig. 1 Intron splicing efficiency. a Schematics outlining the two approaches used to measure the intron splicing index (ISI): junction-based ISI (ISIj) and
coverage-based ISI (ISIc). RPKM, reads per kilobase per million mapped reads. b Scatter plot of ISIj and ISIc values correlation. Each point represents the ISIj
and ISIc of a certain intron. c Effect of intron to polyA site distance on ISIc. Introns were divided into ten deciles depending on their distance to the polyA
site. Unpaired Student’s t-test p-values of the indicated decile with respect to the first decile are shown. d ISIc level of the indicated introns of eleven
different genes. e, f Variance of ISIc (e) and ISIj (f) values across introns within the same gene or the same number of randomly sampled introns. Unpaired
Student’s t-test p-values are shown. Sample size (n) of all sets of data are provided in Supplementary Data 4.
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Fig. 2 Gene splicing efficiency. a Schematics outlining the approach used to measure the Gene Splicing Index (GSI). RPKM, reads per kilobase per million
mapped reads. b GSI values ordered from low to high GSI and binned into ten deciles. Low-GSI genes (i.e., genes in the first decile) are indicated in red, and high-
GSI genes (i.e., genes in the last decile), in blue. Student’s t-test p-values of the indicated comparison are shown. c Chromatin-associated RNA-seq (ChrRNA-seq)
IGV snapshots are shown for genes with a low GSI (Id3 and Tbpl1) or a high GSI (Inadl and Utrn). d RT-qPCR determination of intronic and exonic levels of one low-
GSI gene (Id3) and two high-GSI genes (Inadl and Utrn) using chromatin-associated RNA. Represented values are mean ± SEM of four (n=4) independent
biological replicates. Unpaired two-tailed Mann–Whitney p-values of the indicated comparison are provided. e Functional analysis using Gene Ontology (GO) of
high-GSI genes and low-GSI genes. Number of genes in each category is shown. Sample size (n) of all sets of data are provided in Supplementary Data 4.
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number of elements (genes) for each position ai,j. The mean GSI
values of the genes corresponding to each position of the matrix
were computed and represented in a heatmap (Fig. 3g). As
expected from our previous analysis, the mean GSI of a10,1,
corresponding to the largest genes (L10), and the lowest
expression (E1) displayed the highest mean GSI value. Further-
more, a gradient vector field analysis of the L x E matrix indicated

the direction in which the matrix varies more quickly and the rate
of variation in that direction. These analyses revealed that gene
length is a stronger determinant of GSI value than pre-mRNA
levels throughout all lengths and pre-mRNA level ranges.

Next we considered how other structural variables, which
theoretically affect splicing, distribute along this matrix. The 5´
and 3´ splice site (ss) motifs are obvious players that affect
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splicing efficiency at the intron level2,3. The intronic 5´ and 3´ ss
strengths were computed using a maximum entropy model40.
Interestingly, the gene average of the 5´ ss strength was low in
small genes (L1 and L2) and tended to be higher in long genes (L9
and L10), with no clear tendency in the intermediate lengths. No
effect of pre-mRNA levels was observed (Fig. 3h). A high 3´ ss
strength was only observed in very long genes (L10) (Fig. 3i).
Differential exon–intron GC content is known to influence exon
inclusion, especially in long genes41. Therefore, we also studied
the distribution of this parameter in the L × E matrix. Our data
show that gene exon/intron %GC ratio was higher than the
average only in long genes (L9 and L10), and was lower than the
average in very short genes (L1), reaching a maximum in very
long genes with very low pre-mRNA levels, coinciding with the
most efficient CTS genes (Fig. 3j).

Next we performed a multiple linear regression model to
estimate the GSI including all the parameters described above.
While a good correlation coefficient was obtained between
predicted and observed GSI values (Pearson coefficient= 0.4),
these variables only accounted for 14.97% of the variance of the
GSI (Fig. 3k). Progressive inclusion of the different variables in the
model again demonstrated that gene length is, by far, the strongest
contributor to the model (Fig. 3l). Matrices shown in Fig. 3h, i,
and j suggest that 5´ and 3´ ss strength and the ratios of exon/
intron GC content change when comparing long or short genes
with respect to intermediate lengths. Indeed, when our linear
regression model was tested only with short (L1+ L2) or long
genes (L9+ L10), the contribution of these variables to the model
was much more important, especially for long genes (Fig. 3m, n).

Taken together, our data indicate that CTS efficiency is a
continuum variable, strongly dependent on gene length and less
strongly dependent on pre-mRNA level, with two extreme
behaviors: highly transcribed short genes encoding mostly
transcription factors or translation proteins, which display
inefficient splicing, and long genes mostly encoding metabolic
enzymes or transport proteins with a not very high level of pre-
mRNA. Interestingly, this last set of genes display strong 5´ ss and
3´ ss motifs and high ratios of exon/intron GC content,
suggesting that these features have been subjected to a strong
selective pressure in long genes to be efficiently spliced.

Finally, we investigate the consequence of the GSI on the level
of mature mRNAs, with respect to the nascent pre-mRNA level.
The steady-state of the mature mRNA levels were determined by
using standard RNA-seq data under the same conditions31.
Importantly, we observed that the ratio of mature mRNA level
versus the pre-mRNA level was significantly higher in genes with
high-GSI values than in genes with low-GSI values (Fig. 3o),
indicating that CTS efficiency influences final expression levels.

TGFβ treatment causes transitory and permanent GSI changes.
Our linear regression model only explains around 15% of the GSI

variance, indicating that other unknown factors should contribute
to GSI determination and eventually to its regulation. Therefore,
we wondered whether the GSI can be regulated by a signal
transduction pathway. To analyze that, we used ChrRNA-seq
data from cells treated with the growth factor TGFβ for 2 h or
12 h, which provokes dramatic changes in the transcriptome that
induce the epithelial-to-mesenchymal transition in NMuMG
cells29–31. The GSI values for the two different time points after
TGFβ addition, from two independent biological replicates, were
determined, and differential GSI values (ΔGSI) at 2 h or 12 h
versus vehicle-treated (control) cells were computed using
LIMMA differential analysis42 (Supplementary Data 3). Overall,
125 or 82 genes showed an increased (ΔGSI ≥ 0.5; p ≤ 0.05) or
decreased (ΔGSI ≤ –0.5; p ≤ 0.05) splicing efficiency, respectively,
at the 2 h time point, while 53 and 65 genes showed an increased
or a decreased splicing efficiency, respectively, at the 12 h time
point. Notably, at the 2 h time point, most genes that presented a
decrease of splicing efficiency were induced by TGFβ. In contrast,
most of the genes that increased CTS efficiency were repressed by
TGFβ (Fig. 4a, b). This was in agreement with our previous
results, which indicated that nascent pre-mRNA levels are
negatively correlated with the GSI. We also observed that a
decreased or increased CTS efficiency at 2 h was transient. In
other words, most of the genes that had increased or decreased
GSI values at the 2 h time point (as compared to the TGFβ
untreated cells) returned to their baseline levels at the 12 h time
point (Fig. 4c, d). These data suggest that an increase or decrease
of gene transcription caused by TGFβ addition promotes a
transient deficiency or improvement of the CTS efficiency,
respectively; however, later, the splicing machinery adapts to the
new transcription rate causing the recovery of the original GSI
values. Fig. 4e shows an example of this behavior in the gene
Ncam1. ChrRNA-seq data showed that Ncam1 nascent pre-
mRNA increased 2 h after TGFβ addition; notably, the exon
signal did not change, leading to a decrease of the GSI (from 2.21
to 1.11) at this time point. However, the increased exon signal at
the 12 h time point caused the recovery of the GSI value. This
slow splicing kinetics has consequences for the mature mRNA
levels (determined by RNA-seq), which only increased at the later
time point (Fig. 4e). A similar behavior was observed for the
TGFβ-induced gene Cacna2d1 (Supplementary Fig. 6a), and an
inverse behavior, for the TGFβ-repressed gene Angpt1 (Supple-
mentary Fig. 6b). Consistent with this delayed splicing efficiency
adaptation, most of the genes that have a decreased GSI value at
2 h after TGFβ addition presented higher levels of mature mRNA
at 12 h than at 2 h (after TGFβ addition) (Fig. 4f). Inversely, most
of the genes that gained in the GSI value at 2 h after TGFβ
addition presented lower levels of mature mRNA at 12 h than at
2 h (after TGFβ addition) (Fig. 4g). In summary, these data
suggest that the GSI changes after 2 h of TGFβ are transitory and
are a consequence of the slow adaptation to the new transcription
rate of the regulated genes.

Fig. 3 Characterization of gene CTS efficiency with respect to gene structural variables and pre-mRNA levels. a Correlation between nascent pre-
mRNA levels and GSI values. Data from low-GSI or high-GSI genes are depicted in red or blue, respectively. b Boxplot of pre-mRNA levels in low-GSI and
high-GSI genes. c Scatter plot of gene lengths versus GSI values. d Boxplot of gene lengths in low-GSI and high-GSI genes. e Scatter plot of intron numbers
versus GSI values. f Boxplot of the intron numbers in low-GSI and high-GSI genes. g–j Heatmap matrices of mean GSI levels (g), 5´ ss motif strength (h), 3´
ss motif strength (i) and exon/intron GC content ratio (j), depending on gene length (L) and pre-mRNA level (E). The L × E was constructed by assigning
genes to the corresponding positions ai,j according to their respective length decil (Li) and pre-mRNA level decil (Ej). The number of genes in each position
of the matrix is shown in Supplementary Fig. 5. A gradient vector field that indicates the direction in which the matrix varies more quickly, and the rate of
variation in that direction, is shown. k Correlation between observed GSI and predicted GSI values, determined using a multiple linear regression model
with all considered variables. l–n Pearson correlations coefficients of the linear regression model for GSI estimations using increasing subsets of the
indicated variables for all expressed genes (l), short expressed genes (deciles L1–L2 of matrices panels g–j) (m) or long expressed genes (deciles L9-L10 of
matrices panel g–j) (n). o Boxplot of (mature mRNAs level)/(pre-mRNA level) ratios in low-GSI and high-GSI genes. b, d, f, o Unpaired Student’s t-test p-
values are shown. Sample size (n) of all sets of data are provided in Supplementary Data 4.
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Next, we analyzed genes that changed their GSI at 12 h after
TGFβ addition. At this time point, master regulators of the
epithelial to mesenchymal transition process are expressed, and
morphological changes are already visible31,32; therefore, we
considered that these are stable changes of the GSI. In this case,
and in contrast to what happened at the 2 h time point, genes
with increased GSI values were mostly upregulated by TGFβ,
while genes with decreased GSI values were mostly down-
regulated by TGFβ (Fig. 5a, b). This behavior challenges the
general tendency described above (see Fig. 3a, b, and g) about an
inverse correlation between GSI and pre-mRNA levels. GSI values
at 2 h of these genes were unchanged or slightly changed, in the
same sense, at the later time point (Fig. 5c, d). We next analyzed
in detail two genes representative of this behavior, Wdr1 and
Csrp1. For that, the levels of pre-mRNA in nascent chromatin-
associated RNA, and levels of mature mRNA in the cytoplasmic
fraction of the same samples, were determined by RT-qPCR,
using exon–exon or exon–intron amplicons, at 2 h or 12 h after

addition of TGFβ or (as a control) vehicle. Nascent RNA-seq data
indicated that the increase of the GSI in Wdr1 and Csrp1 genes
was caused by both a moderated increase of exonic reads and a
decrease of intronic reads (Fig. 6a, e). In agreement, RT-qPCR
experiments demonstrated an increased exonic signal and a
decreased intronic signal at 12 h after TGFβ addition with respect
to vehicle addition (Fig. 6b, f). Consistently, the exon/intron ratio
increased dramatically (6.45-fold for Wdr1 and 12.30-fold for
Csrp1) at the 12 h time point (Fig. 6c, g), coinciding also with a
strong increase (4.70-fold for Wdr1, and 56.51-fold for Csrp1) in
the level of both mature mRNAs in the cytoplasm (Fig. 6d, h).
These data indicate that general CTS efficiency of these two genes
is regulated by TGFβ.

Discussion
Splicing is an essential step of gene expression in eukaryotes that
dramatically increases protein diversity by selecting alternative

Fig. 4 Change of GSI (ΔGSI) after 2 h of TGFβ treatment. a Scatter plot of nascent pre-mRNA level changes (log2FC) versus GSI changes (ΔGSI) after 2 h
of TGFβ treatment. Genes with decreased GSI (ΔGSI < –0.5, p < 0.05) or increased GSI (ΔGSI > 0.5, p < 0.05) are depicted in red or blue, respectively.
b Boxplot of nascent pre-mRNA level changes (log2FC) after 2 h of TGFβ treatment versus vehicle, for genes with decreased or increased GSI values.
Unpaired Student’s t-test p-values are shown. c, d GSI levels at the three conditions tested (vehicle, 2 and 12 h of TGFβ treatment) for genes with decreased
GSI (c) or increased GSI (d) after 2 h of TGFβ treatment. e ChrRNA-seq and RNA-seq IGV snapshot of Ncam1 gene as example of a transient change of GSI
after 2 h of TGFβ. f, g Changes of mature mRNAs level (log2FC) after 2 h or 12 h of TGFβ of genes with decreased (f) or increased GSI (g) at the 2 h TGFβ
time point. c, d, f, g Paired Student’s t-test p-values of the comparison between the indicated distributions are shown. Sample size (n) of all set of data are
provided in Supplementary Data 4.
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exons for the final mature mRNA. However, whether regulated
changes in the splicing efficiency controls the steady-state level of
mature mRNA is unclear. From a kinetic point of view, splicing
has been considered a limiting step in gene expression, with time
estimations for intron removal ranging from 30 s to 1 h15,43–45.
Specific intronic CTS efficiency is dependent on the distance to
the polyA site, consistent with the “first-come, first-served”model
of splicing that proposes that the first introns transcribed are the
first to be committed for splicing46 (note that the universal
validity of this model is currently under debate21–23). Other
factors can also affect CTS efficiency at the intron level in animals
and plants, such as intron and exon length, intron position, and
5´ss and 3´ss strength17–19,45,47,48. Our analysis using nascent
pre-mRNA data and two different intron CTS quantification
methods (ISIc and ISIj), provided similar results. We found a
remarkable similarity between the CTS of different introns within
the same gene. In fact, a coordinated splicing efficiency within a
gene has been noted in two recent publications21,45 using dif-
ferent strategies, but they did not further characterize it, neither
studied the potential regulatory implications of this phenomenon.
To address this, we defined a gene splicing index (GSI) that
reveals the average gene CTS efficiency. We found that, in gen-
eral, long genes with many introns and with a moderate or low
level of nascent pre-mRNA had a high GSI; in contrast, short
genes with few introns and a high level of nascent pre-mRNA had
a low GSI. Positive correlation between gene length and efficiency
is consistent with the co-transcriptional nature of splicing: short
genes have a limited time to carry out the CTS process. Given that
the average transcription rate in mammals is about 1.5 kb/min49

and the average splicing half-life estimated from metabolic
labeling data is 7–14 min43,50, introns that have their 3´ ss closer
than 21 kb from the transcription termination site may have
difficulties to complete splicing before transcription termination.
Thus, it is to be expected that genes shorter than about 20 kb have
a low GSI. However, we observed that GSI linearly depends on
gene length throughout all length ranges. It is possible that longer
times are required to complete whole gene splicing. In this sense,
Bhatt et al.34 reported the existence of full length incompletely
spliced transcripts in the chromatin-associated pre-mRNA frac-
tion, and similar results have been recently reported using single-
molecule sequencing of nascent RNA22,23.

The effect of nascent pre-mRNA level on CTS efficiency is,
however, a more debated issue. In principle, as any other enzy-
matic process, CTS should follow a saturation kinetics

characterized by a decline in efficiency at high substrate (pre-
mRNA) concentration. Furthermore, work from yeast has
demonstrated a strong competition between pre-mRNAs for a
limited amount of splicing machinery39. Despite these facts, Ding
and Elowitz51, using a single-cell imaging system, have reported
an “economy of scale” behavior, in which splicing efficiency
increases with transcription rate in two specific genes. Several
works have reported a small but significant positive correlation
between mature mRNA level (from RNA-seq data) and intron
CTS efficiency, both in animals and plants19,45,47,48. However,
whether a high level of mature mRNA is a cause or a consequence
of the high CTS efficiency has not been clarified. Given the fact
that we observe a negative correlation between the GSI and pre-
mRNA levels, but a higher mature mRNA/pre-mRNA ratio in
high-GSI versus low-GSI genes, we conclude that a high level of
transcription impairs gene CTS efficiency probably by saturation
of the splicing machinery, which has a negative effect in gene
expression. In contrast, a low level of transcription promotes a
more efficient splicing and a positive effect for gene expression. In
agreement with our data, Tilgner et al.19 reported a positive
correlation between intron CTS efficiency and mature mRNA,
but a negative correlation with the level of RNA polymerase II.
Interestingly, we observed that high-GSI genes were strongly
enriched in metabolic enzymes, transport, and adhesion proteins
while low-GSI genes were enriched in transcription factors and
translation proteins. These functional associations are probably
due, at least in part, to the different lengths of the genes of each
GO functional category. Thus, ribosomal proteins and many
transcription factors (especially immediate early genes) are
encoded by short genes with a short number of introns52–54. In
contrast, extracellular matrix, adhesion molecules, endocytosis,
and transport categories are often encoded by long genes (see
Supplementary Fig. 7). These results seem to define two well-
differentiated strategies for gene expression at the extremes of a
gradient: one for short, highly transcribed genes, for which pre-
mRNA levels are so high that a relatively inefficient splicing has
little consequences; and another for long genes with relatively low
level of transcription, for which it is important to have a very
efficient splicing to maintain acceptable levels of gene expression.
This is in agreement with the fact that very long genes tend to
have stronger 5′ ss and 3′ ss motifs than short genes and a high
exon/intron GC content ratio (Fig. 3h, i, and j). An association of
long introns with strong 5′ ss and 3′ ss and a high exon/intron GC
content ratio has been previously identified41,55. We now extend

Fig. 5 Effect of 12 h of TGFβ treatment on GSI changes (ΔGSI). a Scatter plot of nascent pre-mRNA level changes (log2FC) versus GSI changes (ΔGSI)
after 12 h of TGFβ. Genes with decreased GSI (ΔGSI < –0.5, p < 0.05) or increased GSI (ΔGSI > 0.5, p < 0.05) are depicted in red or blue, respectively.
b Boxplot of nascent pre-mRNA level changes (log2FC) after 12 h of treatment with TGFβ versus vehicle in genes with decreased GSI or increased GSI.
Unpaired Student’s t-test p-values are shown. c, d GSI levels at the three conditions tested (vehicle or 2 and 12 h of TGFβ-treated at the 2 h or 12 h time
point) for genes with a decreased GSI (c) or an increased GSI (d) after 12 h of TGFβ. Paired Student’s t-test p-values of the comparison between the
indicated distributions are shown. Sample size (n) of all set of data are provided in Supplementary Data 4.
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Fig. 6 Effects on gene expression of GSI changes after 12 h of TGFβ addition. a, e ChrRNA-seq and RNA-seq IGV snapshot of Wdr1 (a) and Csrp1 (e)
genes in vehicle or at 2 or 12 h after TGFβ treatment. b, f Exon and intron levels of Wdr1 (b) and Csrp1 (f) transcripts in nascent chromatin-associated RNA
isolated at the three conditions tested: vehicle or at 2 h or 12 h after TGFβ. Levels were determined by RT-qPCR, using exon–exon or exon–intron amplicons
(oligonucleotides indicated as red arrows). c, g Exon/intron ratios for Wdr1 or Csrp1 transcripts using data shown in b, f, respectively. d, h Mature mRNA
levels ofWdr1 and Csrp1 genes at the three conditions tested: vehicle (control) or at 2 h or 12 h after TGFβ addition determined by RT-qPCR using RNA from
the cytoplasmic fraction and exon–exon oligonucleotides (indicated as red arrows). b–d, f–h Values represent the mean ± SEM of four (n= 4) independent
biological replicates. Unpaired two-tailed Mann–Whitney p-values of the indicated comparison are shown. Sample size (n) of all set of data are provided in
Supplementary Data 4.
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this association genome-wide to long genes with a good splicing
efficiency. From a metabolic and energetic perspective, synthesis
of long-gene pre-mRNAs requires massive quantities of nucleo-
tides, energy and time. It seems reasonable to suppose that long
genes have been subjected to a strong selective pressure to have a
very efficient splicing process.

Our data also suggest that GSI changes promoted by signal
transduction pathways, such as the TGFβ pathway, can have
strong regulatory consequences. For instance, we found a number
of genes with a transient change of GSI, caused by a change of the
intronic signal but not in the exonic signal 2 h after TGFβ
addition, indicating that, in these genes, splicing is temporally
decoupled from transcription. However, at the 12 h time point
these genes recovered the original splicing efficiency. This slow
adaptation to the TGFβ-promoted change of transcription rate
correlates, and maybe causes, a delayed change of mature mRNA
levels; thus, it may constitute a splicing-dependent temporal
regulation of gene expression.

We also observed stables changes of GSI. After TGFβ treat-
ment, Wdr1 and Csrp1 genes presented only small changes in
nascent pre-mRNA level but major changes in exon/intron ratios
and in cytoplasmic mature mRNA levels. Our data suggest that
the strong increase in mature mRNA levels is a consequence of a
better splicing efficiency. What factors can be responsible for this
change in splicing efficiency? One possibility is that TGFβ affects
the RNAPII elongation rate of these genes. The kinetic model of
coupling between alternative splicing and transcription elonga-
tion proposes that the RNAPII elongation rate influences alter-
native splicing by affecting the pace at which splice sites and
regulatory sequences emerge in the nascent pre-mRNA during
transcription. Large differences in elongation rate have been
reported between genes, mostly caused by the level of transcrip-
tion, the exon density, or the chromatin configuration of the gene
body (nucleosome density, histone variant composition and his-
tone posttranslational modification), which are ultimately deter-
mined by the level of transcription49,56,57. An alternative
possibility is that certain signal-dependent transcription factors
are able to recruit splicing factors to the promoters of their target
genes, which in turn can modulate CTS efficiency. For example, a
role of nuclear receptors transcription factors in alternative spli-
cing has been well documented58,59. Finally, it is also possible that
transcription factors recruit certain loci to specific nuclear
domains or nuclear membraneless organelles involved in splicing,
thereby increasing splicing efficiency60.

During the last years it is becoming clear that, in addition to
alternative splicing, other regulatory processes related to splicing
play an important role in gene expression regulation. One clear
example is retention of specific introns that causes nonsense-
mediated mRNA decay and nuclear sequestration (recently
reviewed in ref. 60). We anticipate that control of gene expression
through modulation of whole gene splicing rate is going to be an
important mechanism that will be very much explored in the near
future. In addition, our data suggest that pre-mRNAs for many
transcription factors encoding genes present a very inefficient
splicing. It is possible that some of these relatively stable pre-
mRNAs play regulatory roles acting as regulatory long coding
RNAs (rlcRNA).

Methods
ChrRNA-seq and RNA-seq data processing. Chromatin-associated RNA-seq
(ChrRNA-seq) and total RNA-seq data from NMuMG cells after 2 h or 12 h of
TGFβ treatment, or vehicle as control, were obtained from GSE14055231. Ribo-
somal RNA from Chromatin-associated or total RNA samples were depleted using
Ribominus technology (Thermo Fisher) and libraries were prepared with the
TruSeq Stranded TOTAL RNA kit (Illumina). To process data, reads were aligned
to the mm9 mouse reference genome using subjunc function from Rsubread
package61; TH1 = 2 and unique= TRUE parameters were used. The downstream

analysis was performed on bamfiles with duplicates removed using the samtools62

rmdup command. IGV tools 2.8.263 was used to visualize chromatin-associated and
total RNA-seq data.

Transcriptome annotation file building. To better fit the transcriptome infor-
mation to our data, a new transcriptome annotation file was built using our total
RNA-seq data (all conditions and replicates merged) and the guide of the tran-
scriptome annotation file from ENSEMBL (including only protein coding genes).
To achieve that, Stringtie64 with –-rf and default parameters and GffCompare65

with -T, -K and default parameters were used. After that, transcripts were filtered
including only transcripts with class_code {=, c, j}. Resulting GTF file was used for
all downstream analysis. To avoid considering multiple transcripts for each gene, a
new GTF considering only the longest transcript was used for ISIj and ISIc
computation.

Junction-based ISI calculation. To compute junction-based ISI (ISIj) for indivi-
dual introns of expressed genes in vehicle condition squid.py (https://github.com/
Xinglab/SQUID) was used with default parameters and considering each replicate
separately. The output PI_junction value, for each intron from squid.py corre-
sponds to the proportion of intron inclusion, therefore to calculate intron splicing
efficiency ISIj we subtracted it from 1:

ISIj ¼ 1� PI junction ¼ 1� ðEI þ IEÞ ´ 0:5
EI þ IEð Þ ´ 0:5þ EE

ð1Þ

where EI and IE are the number of exon–intron junction reads and EE is the
number of exon–exon junction reads.

To study the relationship of ISIj value and distance to polyA sites all introns
were divided into decils according to polyA distance and ISIj distributions were
plotted for each decile. To assess gene ISIj variance from random introns, ISIj
values for individual introns were randomized using sample() function from R,
mantaining the number of introns per gene.

Coverage-based ISI calculation. To compute coverage-based ISI (ISIc) for indi-
vidual introns, first a new GTF file with intron coordinates information was created
from our previous GTF. Then, ChrRNA-seq reads from vehicle condition (after
merging replicates) were assigned to exon or intron independently using feature-
Counts function from Rsubread package with following parameters: GTF.feature-
Type= “exon”, GTF.attrType= “exon” and strandSpecific= 2, or
GTF.featureType= “intron”, GTF.attrType= “intron” and strandSpecific= 2,
respectively. Then, RPKM (reads per kilobase per million mapped reads) values
were obtained using exon or intron length and total mapped reads information.
After that, ISIc was computed as follow:

ISIc ¼ 1� Ii
Ei þ Eiþ1

� �
´ 0:5 ð2Þ

where Ii is the RPKM value for intron i and Ei and Ei+1 are RPKM values for
adjacent exons. To study the relationship of ISIc value and distance to polyA sites
all introns were divided into decils according to polyA distance and ISIc dis-
tributions were plotted for each decile. To assess gene ISIc variance from random
introns, ISIc values for individual introns were randomized using sample() function
from R, maintaining the number of introns per gene. Only expressed genes were
considered. For Supplementary Fig. 2 only genes of the indicated number of
introns were used. For randomization introns from genes of the indicated number
of introns were used.

Gene Splicing Index calculation. To compute Gene Splicing Index (GSI)
ChrRNA-seq reads were assigned to exons (considering exons coordinates) or pre-
mRNA (considering whole transcripts coordinates) using featureCounts function
from Rsubread package with following parameters: GTF.featureType= “exon”,
GTF.attrType= “gene_id” and strandSpecific= 2, or GTF.featureType= “
transcript”, GTF.attrType= “gene_id” and strandSpecific= 2, respectively. Then,
GSI was computed as follow:

GSIgene A ¼ log2

∑
n

i¼1
reads exoni

∑
n

i¼1
length exoni

reads pre�mRNA
length pre�mRNA

ð3Þ

with i= 1, 2, …, n (number of exons of gene A)
For Figs. 2 and 3 GSI was calculated independently for vehicle conditions after

merging replicates. To study the effect of GSI, all expressed genes were divided into
deciles according to its GSI value. All comparisons were done using genes from first
decile (low-GSI genes) against last decile (high-GSI genes). Only expressing genes
were considered.

Differential GSI (ΔGSI) from TGFβ2h or TGFβ12h versus vehicle (data from31)
was calculated as follow: we performed a differential analysis using linear GSI
values (2GSI) from two independent replicates of each condition, using a typical
voom/limma pipeline42. To select those genes with a differential GSI we choose as
cutoff | ΔGSI | ≥ 0.5 and p-value < 0.05.
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Gene Ontology. Gene Ontology analysis (GO) for biological process was per-
formed using DAVID tools (https://david.ncifcrf.gov/).

Differential gene expression analysis. To assess differential gene expression, first
FeatureCounts() function from Rsubread package was used to assign reads to our
newly created GTF annotation file using GTF.featureType= “exon”, GTF.attr-
Type= “gene_id” and strandSpecific= 2 parameters on duplicate removed bam-
files. Then differential gene expression analysis was performed using the voom/
limma (v.3.34.9) and edgeR (v.3.20.9) Bioconductor packages66. CalcNormFac-
tors() function using TMM method was used to normalize samples.

L x E matrix construction. To create matrix according to length and pre-mRNA
leveles, genes were ordered according increasing length or pre-mRNA levels and
divided into deciles for length (Li, with i= 1, 2, …, 10) and pre-mRNA levels (Ej,
with j= 1, 2, …, 10), separately. Then matrix (L x E) was constructed by assigning
genes to the corresponding positions ai,j according to their respective length (Li)
and pre-mRNA level (Ej). Mean GSI, mean 5’ and 3’ ss strength and differential GC
content of the genes corresponding to each position of the matrix were computed
and depicted in a heatmap.

Gradient vector analysis. Given the L x E matrix defined above, where elements
ai,j are values of a scalar variable, a vector field is an assignment of a vector to each
position ai,j of the matrix. A gradient vector is a vector field that indicates for each
position ai,j (with i or j ≠ 1; and i or j ≠ 10) the direction in which the matrix L x E
varies more quickly and its module (vector length) represents the rate of variation
in that direction. Computation of gradient vector field was performed using ras-
ter(), CRS(), persp() and vectorplot() from raster, rasterVis, and RnetCDF R
packages.

Motif strength computation. Maximum Entropy Model was used to compute
motif strength for 5’ and 3’ splice sites according to ref. 67. Nine nucleotides
sequence (3 bases in exon and 6 bases in intron) and 23 bases (20 bases in intron
and 3 bases in exon) were used to compute 5’ and 3’ ss score, respectively. First and
last intron for each transcript were excluded from this analysis.

Differential GC content. Bedtools nuc68 was used to compute GC content for
exons and introns separately. Differential GC content for each gene was calculated
as: %GC_exons/%GC_introns.

Model construction. lm() function from R was used to perform multiple linear
regression considering two or more input parameters. Models were constructed
including increasing number of input parameters for all considered genes, short
genes (genes included in the two first deciles of genes ordered according to
increasing size) and long genes (genes included in the two last deciles of genes
ordered according to increasing size). Percentage of the variance of the output
parameter (GSI) was computed using calc.relimp() function from realimpo R
package.

Cell culture and treatments. Normal murine mammary gland NMuMG cells
(provided by José Antonio Pintor-Toro, CABIMER, in 2014) were cultured in
Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum (FBS) and
10 μg/ml insulin (complete medium). Cells were tested for mycoplasma con-
tamination periodically. For TGFβ treatments, 5 ng/ml TGFβ1 diluted in 4 mM
HCl, 1 mg/ml BSA (240-B, R&D Systems) or 4 mM HCl 1 mg/ml BSA (vehicle, as
control), was added to the medium for the indicated time. All TGFβ treatments
were performed after 6 h of serum starvation.

Cellular fractionation, RNA extraction, and RT-qPCR. Cellular fractionation was
carried out according to ref. 69, based in the protocol described in ref. 12. After
treatments, cells were trypsinized and cell pellets were resuspended in 400 μl cold
cytoplasmic lysis buffer (0.15% NP-40, 10 mM Tris pH 7.5, 150 mM NaCl) and
incubated on ice for 5 min. The lysates were layered onto 1 ml cold sucrose buffer
(10 mM Tris pH 7.5, 150 mM NaCl, 24% sucrose w/v), and centrifuged in
microfuge tubes at 3500 × g for 10 min. The supernatant containing cytoplasmic
fraction was centrifuged at 14,000 × g and stored at 4 °C until obtention of chro-
matin fraction. The nuclear pellets were gently resuspended into 250 μl cold gly-
cerol buffer (20 mM Tris pH 7.9, 75 mM NaCl, 0.5 mM EDTA, 50% glycerol). An
additional 250 μl of cold nuclei lysis buffer (20 mM HEPES pH 7.6, 7.5 mM MgCl2,
0.2 mM EDTA, 0.3 M NaCl, 1 M urea, 1% NP-40, 1 mM DTT) was added to the
samples, followed by a pulsed vortexing and incubation on ice for 2 min. Samples
were then spun in microfuge tubes for 2 min at 13,000 × g. Fifty microliters of cold
phosphate-buffered saline (PBS) was added to the remaining chromatin pellet, and
gently pipetted up and down over the pellet, followed by a brief vortex. Then RNA
was extracted from cytoplasmic and chromatin fractions using TRIZOL and treated
with RQI RNAse-free DNAse (Promega) for DNA removal according to manu-
facturer’s instructions.

Complementary DNA (cDNA) was generated from 2 μg of total RNA using
MultiScribe Reverse Retrotranscriptase (Thermo Fisher) following manufacturers
instructions. Then, 2 µl of generated cDNA solution was used as a template for
real-time PCR (qPCR). Gene products were quantified by qPCR with the Applied
Biosystems 7500 FAST Real-Time PCR System, using Applied Biosystems Power
SYBR Green Master Mix. Values were normalized to the expression of the Chd8
gene. At least four biological independent replicates and two technical
determinations were performed in each case. All oligonucleotide sequences used
are listed in Supplementary Table 1.

Statistics and reproducibility. Statistical and graphical data analyses were per-
formed using either Prism 8 (Graphpad) software or R package. To determine the
significance between two groups, comparisons were made using two-tailed
unpaired Mann–Whitney non-parametric test for n < 30. For n ≥ 30 the Central
Limit Theorem indicates that the distribution is approximately Gaussian and then,
a two-tailed, paired or unpaired Student t-test was used. Number of biological
independent replicates is indicated in the figure legends. For all RT-qPCR
experiments, four biological independent replicates and two technical determina-
tions of each were performed. For statistical test and standard error determination,
only independent replicates were considered. For correlation, Pearson coefficient
was calculated using Prism 8 (Graphpad). The horizontal black line of the boxplot
represents the median value, the box spans the 25th and 75th percentiles, and
whiskers indicate 5th and 95th percentiles. Sample size (n) used to derive statistics
of all set of data are provided in Supplementary Data 4.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets supporting the conclusions of this article are available in Gene Expression
Omnibus database (GEO) with the accession number GSE140552 and have been
published in ref. 31. Source data for all graphs and charts are provided in Supplementary
Data 5.

Code availability
We used the following software in the computational analysis: R v3.4.4 (https://cran.r-
project.org/bin/linux/ubuntu/), RStudio v0.99.879, (https://rstudio.com/products/
rstudio/download/), RSubread v1.28.1 (https://bioconductor.org/packages/release/bioc/
html/Rsubread.html), Bioconductor v2.38 (https://www.bioconductor.org/install/)
Stringtie. (https://ccb.jhu.edu/software/stringtie/), GffCompare. (https://ccb.jhu.edu/
software/stringtie/gffcompare.shtml), squid.py (https://github.com/Xinglab/SQUID),
DAVID tools (https://david.ncifcrf.gov/)., Limma-Voom (v.3.34.9) (https://ucdavis-
bioinformatics-training.github.io/2018-June-RNA-Seq-Workshop/thursday/DE.html),
edgeR (v.3.20.9) (https://bioconductor.org/packages/release/bioc/html/edgeR.html,
https://www.rdocumentation.org/packages/edgeR/versions/3.14.0/topics/
calcNormFactors), rasterVis (https://cran.r-project.org/web/packages/rasterVis/
rasterVis.pdf), RnetCDF (https://www.unidata.ucar.edu/software/netcdf/) and bedtools
v2.27.1 (https://bedtools.readthedocs.io/en/latest/content/installation.html).
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