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A comparative whole-genome approach identifies
bacterial traits for marine microbial interactions
Luca Zoccarato 1✉, Daniel Sher 2✉, Takeshi Miki3, Daniel Segrè 4,5 & Hans-Peter Grossart 1,6,7✉

Microbial interactions shape the structure and function of microbial communities with pro-

found consequences for biogeochemical cycles and ecosystem health. Yet, most interaction

mechanisms are studied only in model systems and their prevalence is unknown. To sys-

tematically explore the functional and interaction potential of sequenced marine bacteria, we

developed a trait-based approach, and applied it to 473 complete genomes (248 genera),

representing a substantial fraction of marine microbial communities. We identified genome

functional clusters (GFCs) which group bacterial taxa with common ecology and life history.

Most GFCs revealed unique combinations of interaction traits, including the production of

siderophores (10% of genomes), phytohormones (3–8%) and different B vitamins (57–70%).

Specific GFCs, comprising Alpha- and Gammaproteobacteria, displayed more interaction

traits than expected by chance, and are thus predicted to preferentially interact synergisti-

cally and/or antagonistically with bacteria and phytoplankton. Linked trait clusters (LTCs)

identify traits that may have evolved to act together (e.g., secretion systems, nitrogen

metabolism regulation and B vitamin transporters), providing testable hypotheses for com-

plex mechanisms of microbial interactions. Our approach translates multidimensional

genomic information into an atlas of marine bacteria and their putative functions, relevant for

understanding the fundamental rules that govern community assembly and dynamics.
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Interactions among aquatic microorganisms such as symbiosis,
parasitism, predation and competition, greatly shape the
composition and activity of microbial communities1–3. In

particular, interactions between heterotrophic bacteria and pri-
mary producers (phytoplankton) influence the growth of both
organisms4,5 with consequences for the ecosystem functioning
and the biogeochemical cycles6,7. For instance, heterotrophic
bacteria consume up to 50% of the organic matter released by
phytoplankton, significantly affecting the dynamics of the huge
pool of dissolved organic carbon in the oceans8. Thus, if and how
a bacterium can interact with other microorganisms may have
important consequences for the biological carbon pump in the
current and future oceans9,10.

Studies using model bacteria in binary co-cultures have started
to elucidate the mechanisms underlying specific interactions with
other marine microbes (mostly phytoplankton, but also zoo-
plankton or other bacteria, e.g. on particles)1,4,5,7,11. Although
these results do not reflect the complexity of natural environ-
ments and the potential for higher-order effects12, they allow to
identify the chemical signals and resulting changes in gene
expression and physiology that underlie these interactions. For
example, bacteria associated with phytoplankton (e.g. within the
phycosphere5,13) gain access to labile organic carbon released by
the primary producers, e.g. amino acids and small sulfur-
containing compounds14–19. In return, phytoplankton benefit
from an increased accessibility to nutrients via bacteria-mediated
processes, e.g. nitrogen and phosphorus remineralization20,
vitamin supply15,21 and iron scavenging via formation of
siderophores22,23. In addition to such metabolic interactions,
direct signalling may also occur between bacteria and phyto-
plankton, with heterotrophic bacteria directly controlling the
phytoplankton cell cycle through phytohormones14,24 or harming
it via toxins19,25. Through such specific infochemical-mediated
interactions, bacteria may also directly affect the release rate of
organic carbon from phytoplankton, as well as rates of mortality
and aggregation19,24,26.

While much is known about how model organisms interact
with other bacteria and with phytoplankton (e.g. specific strains
of Roseobacter14,19–21,25, Alteromonas27–29, Vibrio30,31 or
Cyanobacteria20,32), relatively little is known regarding how
widely distributed the relevant interaction mechanisms are across
natural bacterial taxa. The few experimental studies that measure
microbial interactions across different taxa (e.g. refs. 33–35) are
usually constrained to a fairly narrow phylogenetic scope and are
performed under conditions different from natural marine
environments. Conversely, relevant field studies are still quite
limited (e.g. refs. 11,36). However, the knowledge obtained from
model organisms on the molecular mechanisms underlying
microbial interactions and the increasing availability of high-
quality genomes presents an opportunity to map known inter-
action mechanisms to a large set of bacterial species from various
taxa. Here, we re-analyse 421 previously published genomes of
diverse marine bacteria that represent a substantial fraction of
marine microbial communities (213 genera), providing an atlas of
their functional metabolic capacity. The atlas includes also 52
bacteria isolated from extreme marine habitats, humans and plant
roots which serve as functional out-groups and/or represent well
known symbiotic bacteria. Several previous studies have aimed to
characterize and cluster genomes based on their predicted func-
tional similarity defined usually using individual genes (e.g.
refs. 37–40) or coarse functional categories (e.g. COGs, refs.
39,41,42) (Supplementary Data 1, Supplementary Note 1). We
chose to take a trait-based approach rather than a gene-based one,
which is an intermediate level of resolution between individual
genes and coarse functions. Trait-based approaches offer a new
perspective to investigating microbial functional capacity with a

more mechanistic understanding43 but have been used only in a
few specific cases to highlight putative bacterial interactions (e.-
g.44). We focused on the following traits: (1) KEGG modules
representing the overall functional and metabolic capacity (i.e.
pathways for the synthesis and degradation of specific biomo-
lecules, or gene sets for processing of genetic and environ-
mental information, cell signalling and drug resistance); (2)
specific gene pathways related to the main discovered
mechanisms of bacteria–bacteria and bacteria–phytoplankton
interactions, such as motility, chemotaxis and the capability to
produce molecules such as siderophores, phytohormones and
antibiotics. The combination of these traits in individual gen-
omes allows to classify genomes into coherent functional units,
some of which recapitulate known bacterial groups with well-
defined ecological roles, while others refer to potential yet
undescribed groups. Furthermore, genetic traits can be grouped
into linked trait clusters, representing functions that likely
evolved together and maybe functionally connected (i.e. parti-
cipating in the same process). Our approach maps the
mechanisms of microbial interactions identified in model
organisms across multiple bacterial taxa, suggests specific
groups of bacteria likely to interact using similar trait combi-
nations, and helps to hypothesise how these traits act together
to mediate microbial interactions.

Results and discussion
Genome functional clusters (GFCs) group genomes with
similar ecology. To obtain an overview on the functional cap-
abilities of marine bacteria, we re-annotated a set of 473 high-
quality genomes and analysed them using a trait-based workflow,
which focuses on the detection of complete genetic traits rather
than on the presence of individual genes (Supplementary Fig. 1
and Supplementary Note 2). Genetic traits were represented by
metabolic KEGG modules, secondary metabolite pathways,
transporters, phytohormones and siderophores production, as
well as the degradation of specific sulfur metabolites. Among the
identified genetic traits, those known to mediate cell–cell inter-
actions in bacterial model systems4,5,45 were flagged as interaction
traits (e.g. production of certain vitamins, vibrioferrin or a spe-
cific secretion system; Supplementary Data 2).

Based on the occurrence patterns of all traits (Fig. 1), we could
cluster the genomes into 47 genome functional clusters (GFCs;
Supplementary Data 3). In each GFC, genomes encode similar
genetic traits, and thus the bacteria within each GFC are expected
to be coherent in terms of functional and metabolic capacity,
including the ways that they respond to abiotic cues and interact
with other microbes. Previous genome comparison approaches
have identified genome clusters that match ecologically relevant
groups (e.g. ecotypes, as defined for Bacillus pumilus38 and
Prochlorococcus32) or lifestyles (e.g. oligotrophic and copiotrophic
species41). Similarly, in our analysis, we found GFCs that
represent a group of organisms with a defined ecology and life
history, such as the Pelagibacterales group (GFC 2), different
ecotypes of Cyanobacteria (GFCs 15 and 36), or Vibrio groups,
characterized by different host-specificity and pathogenicity
(GFCs 25 and 47) (Supplementary Note 3). Specific GFCs were
also identified for each of three groups of Gammaproteobacteria
(Alteromonas, Marinobacter and Pseudoalteromonas) which are
typically considered as copiotrophs, often associated with organic
particles or phytoplankton46–49. A detailed analysis of the traits
found in each of the respective GFCs (Supplementary Fig. 2)
suggested that Pseudoalteromonas and Alteromonas bore more
genetic traits involved in the resistance against antimicrobial
compounds, as well as regulation for osmotic and redox stresses
in comparison to Marinobacter. They also had similar vitamin B1
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and siderophore transporters, which are different from those
encoded by Marinobacter. Marinobacter possessed several more
transporters for phosphonate and amino acids, as well as specific
regulatory systems for adhesion (e.g. alginate and type 4 fimbriae
production) and chemotaxis. These patterns advocated that there
might be coherent physiological and/or ecological differences
between these three groups. Overall, our GFC framework
recapitulates previous knowledge on bacterial groups with defined
ecology and life history (e.g. the Pelagibacterales, different
Cyanobacteria and Vibrio), and provides a way to delineate and
characterize yet undescribed ecological groups (e.g. Alteromonas,
Pseudoalteromonas and Marinobacter).

The correlation between functional and taxonomic classifica-
tions still represents an open question and, in marine environ-
ments, recent studies have provided both supporting37,50 and

disproving argumentations about the strength of such
correlation39,51. Therefore, we sought to understand the extent
to which our retrieved GFCs overlapped with the genomes’
taxonomy. In our analysis, we defined a GFC as taxonomically
coherent (i.e. monophyletic) when all grouped genomes belonged
to the same taxon and all genomes of that taxon were grouped in
that GFC (see Supplementary Fig. 3 and Supplementary Note 4
for more information). Monophyletic GFCs imply that the
taxonomic affiliation of these bacteria can predict the traits
encoded in their genomes. According to this metric, 23 out of the
47 GFCs were taxonomically coherent, most of them at the genus
level, including all Firmicutes and half of the Alpha- and
Gammaproteobacteria GFCs. The remaining non-monophyletic
GFCs (i.e. paraphyletic and polyphyletic), contained genomes of
multiple taxa (differing at genus, family or even phylum rank) or

Fig. 1 Atlas of Marine Microbial Functional Traits showing patterns of genetic traits across all analysed genomes. Columns represent genomes grouped
into genome functional clusters (GFCs) as shown by the horizontal grey bar. The horizontal colour bar represents the taxonomic affiliation of genomes
(mainly phyla, with the exception of Proteobacteria that are represented at the class level). The number next to each taxon in the legend represents the
percent from the total genomes analysed. Rows represent the genetic traits grouped into linked trait clusters (LTCs) as shown by the vertical grey bar.
LTCs discussed in the text are labelled with the related number alongside the grey bar. The vertical line plot shows the frequency of each genetic trait
across all genomes and the vertical colour bar represents the annotation tool used to identify each trait. Both dendrograms are computed using the
aggExCluster function (R package apcluster) that generates hierarchal clustering from an affinity propagation result. An interactive version of this figure is
available at https://doi.org/10.6084/m9.figshare.16942780.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03184-4 ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:276 | https://doi.org/10.1038/s42003-022-03184-4 |www.nature.com/commsbio 3

https://doi.org/10.6084/m9.figshare.16942780
www.nature.com/commsbio
www.nature.com/commsbio


included taxa that were partitioned among multiple GFCs. These
GFCs comprised genomes of Cyanobacteria, Bacteroidota and the
remaining half of the Alpha- and Gammaproteobacteria.

Overall, half of the detected GFCs were monophyletic and
support the existence of a strong correlation between taxonomy and
functionality in marine bacteria, while the remaining non-
monophyletic GFCs highlight that, in some cases, the taxonomic
partitioning (based on the Genome Database Taxonomy52,53) do
not completely reflect the functional differentiation. Such discre-
pancy may be due to processes of convergent evolution (e.g. via
horizontal gene transfer) which have the highest occurrence in
some of the niches known to be occupied by bacteria grouped in
specific non-monophyletic GFCs (e.g. inhabiting extreme environ-
ments, particles and biofilms; see Supplementary Note 4)54–56. At
the whole-community level, it has been shown that taxonomically
distinct communities exhibit similar functional profiles, which led
to the suggestion that some bacterial clades have similar genetic
capacity, and can replace each other while maintaining unchanged
the community functioning57,58. The polyphyletic GFCs may group
such taxonomically different but functionally similar organisms,
and this is supported by examples in GFCs 33 and 41 (grouping
thermo- and halotolerant bacteria), or GFC 17 (grouping sulfur-
oxidizing and facultative anaerobe bacteria). One of the main
biological processes that mediate such functional homogenisation is
horizontal gene transfer59,60. This process of genetic exchange has a
higher incidence on particle/host-associated bacteria (e.g. ref. 55)
and, indeed, most of the paraphyletic GFCs group organisms with
such lifestyles (e.g. Rhodobacteraceae in GFCs 9, 30 and 40,
Vibrionaceae in GFCs 25 and 47, Alteromonadaceae in GFCs 21
and 24, Oleiphilaceae in GFC 35, or Halomonadaceae in GFC
4314,19,47,61,62). Conversely, another study suggested that this
perceived similarity in community function reflects only known
metabolic pathways, and it is, therefore, possible that adding to our
analysis also unknown genes might separate these GFCs into
monophyletic ones63. Although hypothetical genes would be of no
use (not informative) in a trait-based approach, we hypothesize that
they could complement the horizontal gene transfer hypothesis in
explaining the blurred taxonomic profiles of the paraphyletic GFCs.

GFCs are ecologically relevant entities in natural communities.
To quantify the extent of natural diversity covered by the GFCs,
we mapped the 16S rDNA reads from a natural coastal com-
munity that was sampled at high temporal frequency64 to the
16S rDNA of the GFCs (Supplementary Note 5 and Supple-
mentary Fig. 4). Firstly, a considerable fraction of the natural
community was represented with high fidelity in the GFCs
(mean 22.9% of the 16S rDNA reads, range 12.7–44.3%). Thus,
despite the inherent bias derived from using only high-quality,
closed genomes available (mainly) from cultured bacteria
(legend of Fig. 1), the GFCs represented a substantial fraction of
bacterial diversity. Similar results were obtained with an open-
ocean community from the Eastern Mediterranean sampled
each season for 2 years65 (mean 13.9% of the 16S rDNA reads,
range 0.5-60.0%), where the GFCs represented a considerably
higher fraction of the microbial community on particles >11 μm
compared to free-living bacteria (5–0.22 μm; Supplementary
Fig. 5). Secondly, using a temporal deconvolution analysis of
the coastal site64, we found that individual 16S phylotypes
belonging to the same GFC displayed significantly more syn-
chronous temporal trends (p-value < 0.001) than phylotypes
belonging to different GFCs (Supplementary Note 5 and Sup-
plementary Fig. 6). Assuming that similar temporal trends
suggest similar ecological niches, these results advocate that (at
least some of) the GFCs display dynamics that are expected
from ecological units in the oceans.

Specific GFCs are enriched in interaction traits. We next
focused on selected traits potentially involved in microbial
interactions—vitamin exchange, siderophore and phytohormone
production and antibiosis—asking whether we could observe
patterns in their distribution across the genome dataset. As
shown in Fig. 2, these traits are not equally distributed among the
GFCs—rather, some GFCs were significantly enriched in inter-
action traits (Supplementary Fig. 7a, b). As the number of genes is
strongly correlated with genome size66, we expected that large
genomes may encode for more interaction traits than small
genomes, as previously demonstrated e.g. for the biosynthetic
pathways of secondary metabolites66,67. However, while the
number of interaction traits depended to some extent on genome
size, we found that Gammaproteobacteria and several Alpha-
proteobacteria encoded more interaction traits than expected by
their genome size, while Bacteroidota encoded fewer (Supple-
mentary Fig. 7c, d). Overall, GFCs grouping genomes of typical
host- or particle-associated bacteria, such as of (most) Alpha- and
Gammaproteobacteria62,68, are predicted to bear almost the full
combination of these traits to sense (chemotaxis, quorum sen-
sing), reach (motility and adhesion) and fight (production/resis-
tance towards antimicrobial compounds, secretion systems) for a
targeted hotspot. Conversely, some ubiquitous copiotrophs (e.g.
Bacteroidota)62,68 and known free-living taxa (e.g. pico-
Cyanobacteria and Pelagibacterales)32,69 possess only a scarce
and scattered combination of such traits and are expected to
exhibit a rather independent lifestyle. Below, we describe in more
detail some of the main observations on the distribution of
interaction traits across diversity.

Many bacteria need to shop for their vitamins. Vitamins B1, B7
and B12 are essential cofactors for microbes. Some microorgan-
isms (including abundant phytoplankton) are auxotrophic for
these vitamins and need to obtain them from co-occurring
bacteria70,71. Vitamins are found at low concentrations in aquatic
ecosystems72,73 and their supply can limit biogeochemical cycles,
e.g. through limiting primary productivity in the Southern
Ocean74. Less than half of all the genomes in our dataset were
predicted to produce all three vitamins (~39%, including all pico-
Cyanobacteria, Actinobacteriota and many Gammaproteo-
bacteria; Fig. 3a). Of the rest, ~29% synthesized at least two B
vitamins (e.g. some Alphaproteobacteria, Bacteroidota and the
rest of Gammaproteobacteria which could produce vitamin B1
and B7) and ~23% could produce only one type of B vitamin (or
~9% none at all). This suggests that there is a major market for B
vitamins, and indeed almost all genomes (~83%) encoded
transporters for at least one of these vitamins.

A more detailed analysis of the genomes suggested that marine
bacteria could be divided into three main groups based on their
predicted strategy for B vitamins acquisition: (1) “Consumers”,
which lacked the biosynthetic genes but harboured the vitamin
transporters (we assumed transporters were for uptake; see
Supplementary Note 6 and Supplementary Data 5 for details on
transporters’ directionality); (2) “Independents”, which encoded
the biosynthetic pathways but not the relevant transporters; (3)
“Flexibles”, which encoded both the biosynthetic pathways and
transporters for a specific vitamin. Bacteria possessing the latter
strategy can potentially switch from being consumers to
independent or vice-versa, according to what is more efficient
given the surrounding conditions (e.g. availability of extracellular
vitamins). The proportion of these three groups changed with the
B vitamin studied and the taxonomy of the genomes (Fig. 3b).
Very few genomes were flexibles for all three vitamins (~2%), and
these were mostly Actinobacteriota (Fig. 3c). There were almost
equal proportions of flexibles and independents for vitamin B1
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(Gammaproteobacteria and Cyanobacteria, respectively), whereas
the most common bacterial strategies for vitamin B7 and B12 were
independent (Fig. 3b). Many different combinations of synthesis
and uptake of the three vitamins were represented in the genomes
(51 out of 64 possible combinations, Fig. 3c and Supplementary
Fig. 8a), several being enriched in specific GFCs (Supplementary
Fig. 9 and Supplementary Note 7). Notably, most strategies
required the exogenous uptake of at least one vitamin. While the
perceived lack of biosynthetic capacity could be due to the
utilization of precursors or to gaps in the pathway annotations
(Supplementary Fig. 10 and Supplementary Note 8), we speculate
that this could be a potential manifestation of the Black Queen
hypothesis, which stipulates that bacteria outsource critical
functions to the surrounding community, enabling a reduction
of their metabolic cost75. In our dataset, the highest fraction of
B-vitamin consumers, and hence putative auxotrophs, was
observed for vitamin B1, followed by B12 and B7. This order,
however, does not reflect the metabolic costs of producing such
vitamins, as B12 would be the most expensive with about 20 genes
involved76, whereas only four genes are required to synthesize
B770 and five genes for B177,78. Therefore, we hypothesized that
vitamin B1 supplies might be more stable or frequent (e.g. as a
result of higher export or lysis of producing bacteria) than that of

vitamin B12. Nevertheless, very few organisms were predicted to
be auxotrophic for all three vitamins, suggesting that completely
relying on exogenous sources for vitamins represents a risky
strategy in marine pelagic environments. Taken together, these
data provide a comprehensive overview of the potential market
for B vitamins in marine environments by defining specific roles
(e.g. consumer, independent, flexible/source) and identifying
which bacteria (taxon and GFC) fulfil each role.

Production of siderophores and phytohormones—key mechan-
isms of synergistic microbial interactions. The production and
exchange of common goods such as siderophores79, as well as of
specific phytohormones like auxin80, represent traits that may
mediate synergistic microbial interactions (e.g. refs. 14,81). As
shown in Fig. 2, approximately 10% of the genomes have the
capacity to produce siderophores (mainly Actinobacteriota and
Gammaproteobacteria), while almost half of the genomes, from
multiple taxa, encoded siderophore transporters (45% of the
genomes). Occurrence of siderophore biosynthetic traits was
partially consistent with GFC clustering (e.g. nearly all genomes
in GFCs 8 and 25 possessed those traits) and partially scattered
across single genomes in different GFCs. In contrast, the

Fig. 2 Distribution of interaction traits known to mediate cell–cell interactions in bacterial model systems. Each slice shows the interaction traits
present in a genome functional cluster (GFC) and, as a dendrogram, the functional similarity of genetic traits between the grouped genomes (hierarchical
clustering of the r-correlation matrix with complete agglomeration algorithm). The dark bars show the number of interaction traits annotated in each
genome. Genomes belonging to model bacteria, used in literature to discover some of these traits, are highlighted in blue if the interaction was positive
(e.g. enhancing phytoplankton growth), in red if it was negative (e.g. kill the host) or in grey if the interaction shifted from positive to negative.
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distribution of the transporters mainly followed the GFC
grouping (Fig. 2). Furthermore, microorganisms can utilize
siderophore-bound iron also without the need for siderophore
transporters, e.g. using ferric reductases located on the plasma
membrane82 or via direct endocytosis83. In this regard, 5% of the
genomes encoded the capacity to produce vibrioferrin (Supple-
mentary Fig. 11), which is available to a wide range of organisms
upon photolysis22. Field studies revealed that siderophore bio-
synthesis is widespread in the ocean84, and that bacteria producing
e.g. vibrioferrin can represent a relevant percentage of the total
bacterial communities85. Thus, siderophores can be considered as
keystone molecules (sensu86), produced by a limited subset of
organisms but utilizable by a wide range of bacteria87–89.

Several recent studies have shown that bacteria can influence
the growth of phytoplankton through the production of
phytohormones14,19,25, and indeed the auxin hormone indole-3-
acetic acid (IAA) has been identified in natural marine samples14.
Nearly all genomes (~92%) in our dataset are predicted to
produce IAA. Four pathways for the production of IAA were
identified, with some organisms encoding more than one
pathway. The tryptamine pathway was the most common one
and was present in nearly all GFCs comprising genomes of
Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria and
Actinobacteriota (Fig. 2). The indole-3-pyruvate pathway was the
second most common with an almost identical distribution to the
tryptamine pathway (missing in GFCs 36 and 15, pico-

Fig. 3 Different genomic configurations of traits responsible for the biosynthesis and transport of vitamins B1, B12, and B7. a Capabilities to produce or
transport these vitamins, b different configurations to either produce and/or transport each of these vitamins and c the most abundant configurations to
produce and/or transport these vitamins across genomes; the remaining combinations are shown in Supplementary Fig. 8a. Overall, the horizontal bar
chart indicates the total number of genomes for each trait, the dark connected dots indicate the different configurations of traits and the waffle bar chart
indicates the number (and percentage) of genomes provided with such a configuration; each piece of a waffle bar represents a genome and it is coloured
according to the taxon.
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Cyanobacteria, and 28, Alphaproteobacteria), whereas the last
two pathways were rarer (<10% of genomes) and limited to
Alphaproteobacteria (indole-3-acetonitrile) and some genomes of
Cyanobacteria and Actinobacteriota (indole-3-acetamide). It is
tempting to speculate that the widespread distribution of the
capacity to produce IAA, and the diversity of biosynthetic
pathways, suggest that many heterotrophic bacteria can directly
increase phytoplankton growth through specific signalling (e.g.
refs. 14,19). However, all pathways for IAA production are tightly
intertwined with the metabolism of tryptophan, either involved in
tryptophan catabolism (to cleave the amino group for nitrogen
metabolism) or as a release valve to avoid the accumulation of
toxic intermediates (e.g. α-keto acid indolepyruvate and indolea-
cetaldehyde). Additionally, IAA can be catabolized as a carbon
source for growth (see ref. 90 and references therein). Given the
wide distribution of the tryptamine and indole-3-pyruvate
pathways (70–78% of genomes), we hypothesize that they might
be more linked to the metabolism/catabolism of tryptophan,
whereas the indole-3-acetonitrile and indole-3-acetamide path-
ways (3–8% of genomes) could be responsible for the production
of IAA involved in phytoplankton–bacteria interactions. This
hypothesis is supported by the presence of the latter traits in
GFCs 9 and 40 that group model organisms known to interact
through auxin with phytoplankton (Fig. 2)14,19,25, and by the fact
that genes specifically related to these two pathways were found
to be upregulated in one of those studies14.

Traits underlying potential antagonistic interactions. Experi-
mental measurements of interactions among marine bacteria
suggest that antagonism is common (>50% of the tested
isolates)33,35, but in most cases the mechanisms behind
such antagonistic interactions are unclear. Antimicrobial com-
pounds may underlie many antagonistic interactions in marine
environments (e.g. refs. 91–93), and indeed genes encoding for the
production of such compounds were found in several bacteria in
our dataset (Supplementary Tables 7 and 8). Interestingly, anti-
microbial compounds were predicted to be produced in ~30% of
genomes (inner ring in Fig. 2), including also GFCs poor in other
interaction traits. The most abundant traits across GFCs were
bacteriocin and beta-lactone production94,95 (Supplementary
Fig. 12). Traits involved in the resistance to antimicrobial com-
pounds were also relatively common (78% of genomes; Fig. 2),
however, along with specific traits (e.g. specific efflux pumps for
antibiotics), we noticed that many KEGG modules annotated as
resistance traits were also involved in other cellular functions (e.g.
cell division, protein quality control and transport of other
compounds; Supplementary Table 7)96,97. All GFCs which
grouped genomes of Cyanobacteria, Actinobacteriota, and Bac-
teroidota possessed only these non-specific resistance traits
(Supplementary Fig. 12), suggesting that such clades are less
efficient in resisting microbial chemical warfare. In support of this
hypothesis, some Cyanobacteria strains are indeed used as mar-
kers for antibiotic contamination because of their sensitivity (e.g.
refs. 98,99), and Bacteroidota are often inhibited when co-cultured
with other bacteria that express antagonistic behaviour33,35.
Overall, these genome-based predictions are in agreement with
previous experimental results33,35, which suggested that Alpha-
and Gammaproteobacteria commonly inhibited other bacteria,
whereas Bacteroidota had a low inhibitory capacity and were the
most sensitive to inhibition by other bacteria.

Antimicrobial compounds or toxins often need to be delivered into
the target organism, e.g. using type IV or type VI secretion systems
(T4SS and T6SS, respectively). Approximately 24% of the strains
encoded T4SS or T6SS, and these were found primarily in GFCs
containing Alpha- and Gammaproteobacteria (Fig. 2). The two

secretion systems had different distributions among the GFCs, with
only GFC 25 and 31 (comprising Vibrio and Burkholderia, genera of
Gammaproteobacteria) bearing both systems. The T4SS system can
perform multiple roles, including conjugation, DNA exchange and
toxin delivery in bacteria-bacteria or bacteria-eukaryote
interactions100. T4SSs were detected more frequently in Alphapro-
teobacteria (5 out of 8 GFCs). To date, T6SSs are known to be
involved only in antagonistic interactions, including among marine
bacteria101, suggesting that the presence of this trait is a high-
confidence predictor of the ability to directly inhibit other cells (102

and references therein). In our dataset, T6SSs occurred almost
exclusively in GFCs comprising Gammaproteobacteria, specifically in
Marinobacter and Vibrio, suggesting a strong capacity for contact-
mediated antagonistic interactions in these taxa. Type III secretion
systems (T3SS), which deliver effector molecules that maintain the
bacterial association with the host103, were found only in a few
genomes as the Vibrio clustered in GFC 25. This GFC grouped
known zooplanktonic hosts61, suggesting a more specific role for
T3SS in metazoan host-microbe interactions.

Linked trait clusters (LTCs) delineate functional connectivity
between individual interaction traits. While individual traits may
be important in determining the outcome of microbial interactions,
such interactions are often highly complex and require multiple
traits such as motility, signalling and metabolic interactions to
operate together (e.g. refs. 14,19,21,24,25). If these interaction
mechanisms are evolutionarily conserved, traits that are functioning
together to mediate such interactions should co-evolve, meaning
that selection would favour maintaining all relevant traits in the
same genome104,105. To identify cases of co-evolving traits, we used
linkage disequilibrium analysis and clustered traits which were
found together more often than expected by chance (adjusted p-
value < 0.05) into Linked Trait Clusters (LTCs; Fig. 1, Supplemen-
tary Data 8 and Supplementary Fig. 13). For example, LTC 10
includes pathways for assimilatory sulfate reduction, siroheme and
heme biosynthesis, as well as vitamins B1 and B7 biosynthesis. These
traits appeared together more often than random pairs of traits
(mean r within this LTC is 0.38, compared to 0.09 among all trait
pairs; Supplementary Fig. 13b) and they are also functionally linked.
In fact, siroheme is a prosthetic group for assimilatory sulfite
reductases106,107 and, in sulfate-reducing bacteria, siroheme can be
hijacked for the biosynthesis of heme108. Finally, once reduced,
sulphur can be incorporated into essential molecules such as amino
acids (methionine and cysteine) and membrane lipids, as well as
into vitamins B1 and B7109.

Similar to pangenome analyses, we divided all LTCs into core
(present in >90% of genomes), common (<90% and ≥30%) and
ancillary (≤30%; Supplementary Fig. 13c). Note that, while
pangenome analysis is based on single gene distributions, each
LTC included different genetic traits and each trait often involved
>3 genes. Two core LTCs, 3 and 5 (mean r of 0.30 and 0.35),
occurred in nearly all genomes (>93%; Fig. 1) and, as expected,
they linked traits that mediate for core metabolic functions,
common to almost any cell. These include biosynthesis of
nucleotide (DNA and RNA) and amino acids, as well as core
metabolic pathways (glycolysis, pentose phosphate pathway and
the first three reactions of the TCA cycle). In contrast, other
common LTCs (i.e. 2, 4 and 7) highlighted cases in which major
metabolic pathways such as the TCA cycle or pathways for the
cell wall assembly were missing in specific bacterial clades. These
absence patterns were consistent with previous studies (Supple-
mentary Note 9 for detailed description). The LTC concept can
therefore be used to identify traits that may function together,
providing hypotheses of unknown modes of interaction that can
be tested experimentally.
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Analysis of auxiliary LTCs which include interaction traits such
as secretion systems suggested that these are often linked to traits
encoding for chemotaxis, motility and adhesion. We posit that
these traits represent a typical set a bacterium would need to
locate, reach and settle on an organic matter particle or
eukaryotic hosts (phytoplankton, zooplankton, fish). Moreover,
other genetic traits (e.g. metabolic or regulatory) were linked
within these LTCs and they may also be involved in microbial
interactions (Fig. 4). For example, LTC 11 (mean r= 0.40)
included, in addition to T6SS, traits for adhesion, a flagellar
regulatory system, quorum sensing (controlling for swarming and
biofilm formation), chemotaxis and a nitrogen transporter with
the regulation system. The same LTC also encoded for the
biosynthesis of ubiquinone, vitamins B6 (pyridoxal) and B7, and
for two regulatory systems (BarA-UvrY, RstB-RstA), which are
known to modulate virulence, cellular metabolism, biofilm
formation, stress resistance, quorum sensing and secretion
systems110,111. This LTC was common in the GFCs grouping
Gammaproteobacteria such as Pseudoalteromonas (GFC 21)
Alteromonas (GFC 24), Marinobacter (GFC 35), Shewanella
(GFC 37) and Vibrio (GFCs 25 and 47; Supplementary Data 3
and 8). All these organisms are known as particle and
phytoplankton associated bacteria (e.g. refs. 46–49,62), and in such
micro environments they can potentially engage in microbial

interactions using these linked traits (i.e. biosynthesis of B
vitamins, quorum sensing and T6SS101,112). Interestingly, the
other two secretion systems, T4SS and T3SS, were also linked
with regulation systems for nitrogen metabolism and with
vitamin B7 or B12 transporters as part of LTC 25 and LTC 17,
respectively. We propose that the linkage between these traits
across different LTCs suggests that these processes occur together in
multiple interaction modes. In principle, there could be a direct link
in which the injection of an effector molecule modifies the response,
for example, to nitrogen starvation (as shown for phosphate
starvation in response to the toxin cylindrospermopsin113).
However, the linkage between these traits may also be the result
of complex interactions that require the coordinated exchange of
multiple metabolites and signals (e.g. ref. 14).

Notably, LTC 17 (which encodes the T3SS; mean r= 0.47)
included also amino acid and sugar transporters, and two
regulation systems (UhpB-UhpA, CitA-CitB). The UhpB-UhpA
genes control the motility and colonization of fish pathogens114

and, not surprisingly, the LTC was found in GFCs 46 and 47
which included known pathogenic bacteria (grouping Aeromonas
and V. natriegensis genomes; Supplementary Data 3 and 8)115,116.
LTC 17 was also found in GFCs that grouped non-pathogenic but
still host-associated taxa (GFC 25, which includes V. alginolyticus,
and GFC 13 grouping Enterobacteriaceae)117, supporting the role

Fig. 4 Conceptual representation of predicted interaction modes for a hypothetical bacterial genome analysed with our trait-based approach. The
bacterium is assigned to a GFC, visualized here as a jigsaw puzzle, and every puzzle piece represents one of the linked trait clusters (LTCs) possessed in
that GFC. LTCs 3 and 5 (marked in red) are the core LTCs that are present in any GFC. LTC 19 holds traits mediating potential interactions with
phytoplankton cells, while LTC 11 confers the capability to interact with other bacteria on organic particles and LTC 17 enables interactions with other
eukaryotic hosts such as zooplankton. Green arrows indicate traits with positive effects (e.g. enhancing growth), grey arrows traits mediating metabolites/
chemical exchange, movement or attachment, and red arrows traits with negative effects (e.g. pathogenicity). A solid arrow is used when the mediated
mechanism has already been described in the literature, while a dashed arrow indicates a yet uncharacterized mechanism.
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of this LTC (as well as of the T3SS it encodes) in interactions with
a broad range of eukaryotic hosts including zooplankton,
phytoplankton and fish (Fig. 4). Moreover, CitA–CitB regulation
system controls the citrate metabolism in response to changes in
amino acid concentration or pH118. We speculate that the link
between microbial interaction traits, citrate metabolism and
protein and amino acid transporters within LTC 17 may be
relevant for a host-associated bacteria during the dispersal stage
(lower amino acid concentration and change in pH).

Finally, the analysis of LTC 19 (mean r= 0.34) lent further
support for the hypothesis that some IAA production pathways
are involved in phytoplankton–bacteria interactions and not just
in the tryptophan catabolism (see above). This LTC included the
indole-3-acetonitrile and indole-3-acetamide pathways, along
with other key microbial–phytoplankton interaction traits such
as quorum sensing25,119 and taurine degradation14,17. Other
linked genetic traits hint to additional molecular mechanisms: the
manganese/iron transporter suggests a micronutrient-dependent
response, the transport of capsular polysaccharide may be
involved in resistance to host defence and pathogenicity120, and
the biosynthesis of putrescine can stimulate phytoplankton
growth, productivity and stress tolerance, as shown previously
in plants121. Moreover, the LTC was found complete in GFCs 9,
30 and 40 (Supplementary Data 8) which grouped genomes of
bacteria known to interact via IAA with phytoplankton (e.g.
Dinoroseobacter, Sulfitobacter and Phaeobacter)14,19,25,122. We
propose that possessing this LTC indicates that the relevant
bacterium is capable of affecting the growth of phytoplankton
through a combination of specific hormone signalling pathways
and metabolic interactions.

Conclusions. We present a framework that extrapolates from
studies of specific model organisms to predict the interaction
potential of other bacteria based on the traits encoded in their
genomes (Fig. 4). By focusing on biologically relevant traits
(including specific interaction traits), we reduced a highly com-
plex genomic dataset to a tractable matrix of organisms by
functions. By organizing the ensuing genomic information into
GFCs, we further simplified the interpretation of complex geno-
mic datasets, while at the same time highlighting the non-trivial
grouping of organisms by phenotypic traits, sometimes irre-
spective of taxonomic boundaries. The LTCs provided evidence
for the functional and evolutionary linkage between traits, raising
hypotheses as to how these traits act together in the context of
complex processes such as microbial interactions. This approach
can be easily scaled to different systems such as freshwater, ter-
restrial or other host microbiomes (e.g. zooplankton and fish; see
LTC 17 in Fig. 4), and expanded to include information from
additional data sources (e.g. metabolomics or high-throughput
functional assays). It also facilitates the investigation of the
functional and interaction potential of metagenomes (e.g. to
identify communities where interactions might be more relevant
than others) and high-quality metagenome-assembled genomes
in field studies.

Applying this approach to a wide diversity of bacterial taxa, we
showed that marine bacteria encode different configurations of
interaction traits. Known particle-associated taxa of Alpha- and
Gammaproteobacteria possessed the full set of traits to interact
with particles and living hosts, while Bacteroidota, a known
ubiquitous copiotroph taxon, did not have this capacity.
Actinobacteriota and Cyanobacteria represented potential sources
for B7 in the B vitamin market, while most Alphaproteobacteria
appeared as obligate customers. We suggest that siderophores,
and vibrioferrin in particular, are keystone molecules being
produced by only a few bacteria (Actinobacteriota and

Gammaproteobacteria) but affecting a much larger diversity of
potential users, in agreement with the Black Queen Hypothesis75.
Finally, the production of IAA might be more common than
expected, and in some cases (e.g. GFCs 9, 30 and 40 encoding LTC
19) this may be linked with other traits involved in
phytoplankton–bacteria interactions (Fig. 4).

The GFC and LTC concepts are both statistical in nature,
representing the probability of bacteria having similar functional
capacity, and of traits being functionally and/or evolutionarily
linked. In support of the GFC concept, a study of marine
Vibrionaceae suggested that ecologically cohesive unit (similar to
GFCs) are likely to interact using similar trait combinations30.
However, some interaction phenotypes, such as the ability to
inhibit multiple target bacteria (super-killers), are not phylogen-
etically conserved30,123. Experimental studies using both estab-
lished and new model systems across multiple scales of diversity
(e.g. between and within GFCs) are needed to test the GFC
framework, whereas genetic manipulation of linked traits to test
their effect on microbial interactions will be required to
determine to what extent traits within LTCs are functionally
linked. Nevertheless, GFCs and LTCs describe how putative
interaction traits vary across different bacterial taxa, and thus can
be used to quantify how the fraction of natural communities
potentially ready to interact changes over space and time. In turn,
this should help to elucidate fundamental rules that govern
community dynamics and assembly in the oceans, and the roles
played by microbial interactions in global ecosystem-level
processes and biogeochemistry.

Methods
Genome selection. A dataset of complete and high-quality draft genomes of
marine bacteria was compiled performing extensive research on metadata available
from NCBI (http://www.ncbi.nlm.nih.gov/genome), JGI (https://img.jgi.doe.gov/
cgi-bin/m/main.cgi?section=FindGenomes&page=genomeSearch), and MegX
(https://mb3is.megx.net/browse/genomes) websites. Although the focus of the
analysis was on bacteria inhabiting the marine pelagic environment, some genomes
from organisms isolated in extreme marine environments (i.e. thermal vents, saline
and hypersaline environments, estuaries) and sediment, as well as from human and
plant symbionts (Sinorhizobium and Mesorhizobium) were kept for comparison.
The final list of 473 genomes includes all of the genomes that, using CheckM
1.0.11124, were defined closed (i.e. each DNA molecule, such as chromosome and
plasmids, was represented as a single sequence in the fasta file) or high-quality draft
genomes (>90% of completeness, <10% of contaminations, >18 tRNA genes and all
three rDNAs present)125. The final dataset included 473 complete genomes with
117 closed genomes and with >81% genomes that were >99% complete. Of these
473 genomes, 421 were isolated in marine pelagic and coastal zones, 34 in extreme
environments (e.g. salt marsh or hydrothermal vent), 6 in marine sediment and, of
the remaining, 8 were human associated and 4 plant roots associated (Supple-
mentary Data 3).

Genome annotation. Genome taxonomic classification was obtained using the
protein phylogeny workflow implemented in GTDB-tk 1.4.052 with the command
classify_wf (standard settings), and all retrieved genomes were functionally re-
annotated using a standardized pipeline. In brief, gene calling and first raw
annotation steps were performed with Prokka 1.14.5 (standard settings and
--rnammer for rRNA prediction)126. The amino acid sequences translated from the
identified coding DNA sequences of each genome were annotated against hidden
Markov model profiles of KEGG Orthologs (KEGG database 94.0) using
KofamScan 1.2.0 (standard settings) and only matches with scores above pre-
computed KO-specific thresholds were retained127. Additional targeted analyses
were performed to annotate secondary metabolites, phytohormones, specific
transporters and utilization of sulfur metabolites. The genbank files generated by
Prokka were submitted to a local version of Anti-SMASH 5.1.2 (--clusterblast
--subclusterblast --knownclusterblast --smcogs --inclusive --borderpredict --full-
hmmer --asf --tta), which generated a list of predicted secondary metabolite bio-
synthesis gene clusters128. Pathways for the biosynthesis of the phytohormone
indole-3-acetic acid (IAA) were manually identified by annotating (blastp 2.10.0+
best hit, e-value < 1e-5 and bit score > 60)129 the translated amino acid sequences
against the KEGG orthologies required to generate IAA from trypthopan in the
KEGG map01070 (Supplementary Data 9). Translated amino acid sequences were
also used as input for a GBlast search (BioV suite 1.0; default settings)130 to identify
transmembrane proteins mediating the transport of B vitamins and siderophores
(Supplementary Data 5). For downstream analysis, only annotations with a
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transmembrane alpha-helical overlap score > 1 and a blast e-value < 1e-6 were
retained. Production and transport of photoactive siderophores (i.e. vibrioferrin)22

were identified with functional annotations from the most similar (BLAST best hit)
sequences. The predicted protein sequences were blasted (e-value < 1e-5 and amino
acid similarity >30%)131 against a reference dataset assembled using all available
sequences of related genes (pvsABCDE and pvuBCDE operons)132 available in
UniProt (Supplementary Data 10). The same approach was carried out to annotate
the dimethylsulfoniopropionate (DMSP) degradation pathways of demetilation and
cleavage blasting (e-value < 1e-70) against a reference dataset that contained all
Uniprot sequences of the genes listed in133,134 (Supplementary Data 10). Catabolic
pathways of other two sulfur metabolites, 2,3-dihydroxypropane-1-sulfonate
(DHPS) and taurine, were identified checking for the presence of key reactions in
the KEGG Orthologs annotations: all known routes to degrade DHPS share a
sulfopropanediol 3-dehydrogenase (hpsN gene; K15509)15, while taurine can enter
the TCA cycle either via taurine-pyruvate aminotransferase (tpa gene; K03851) or
via taurine dehydrogenase (tauXY genes; K07255+ K07256), followed by a sul-
foacetaldehyde acetyltransferase (xsc gene; K03852)135.

KEGG module reconstruction. KEGG Orthologs (KOs) annotations generated by
KofamScan were recombined in KEGG modules (KMs) using an in-house R script.
The KMs represent minimal functional units describing either pathways, structural
complexes (e.g. transmembrane pump or ribosome), functional sets (essential gene
sets as Aminoacyl-tRNA synthases or nucleotide sugar biosynthesis) or signalling
modules (phenotypic markers as pathogenicity). Briefly, using the R imple-
mentation of KEGG REST API136, the script fetches the diagrams of all KMs from
the KEGG website. Each diagram represents a reactions’ scheme of a KM listing all
known KOs that can perform each of the reactions necessary to complete that
scheme (Supplementary Fig. 1b). The completeness of a KM in a genome was
assessed as the number of required reactions for which at least one KOs was
annotated and only complete KMs were retained in downstream analyses (e.g. a
KM with 7 out of 8 reactions is incomplete and would be discarded). However, to
partially compensate for possible annotation issues, one missing reaction was
allowed in KMs with ≥3 reactions (i.e., a KM with 7 out of 8 annotated reactions is
considered complete; see Supplementary Note 10 and Supplementary Data 11 for
more details).

Genetic and interaction traits identification. The annotated complete KMs,
secondary metabolites, phytohormones and transporters represent the genetic traits
identified in the genomes. From this list, the subset of interaction traits was
manually extracted based on current knowledge about processes that likely play a
role in microbial interactions (list of picked interaction traits in Supplementary
Data 2). Within the KMs we identified traits related to vitamin biosynthetic
pathways, quorum sensing, chemotaxis, antimicrobial resistance, motility and
adhesion (Supplementary Data 6). Since the ecological role of most secondary
metabolites is still unclear, a careful literature search was performed to identify and
retain only the secondary metabolite clusters with a proposed function that can be
linked to microbial interaction processes, such as siderophore production, quorum
sensing and antimicrobial compound biosynthesis (Supplementary Data 7). The
phytohormone annotations revealed the capability of producing indoleacetic acid
(auxin) through four different pathways (Supplementary Data 9). Vitamin and
siderophore transporters were identified in the transporter annotations looking for
the related transporter families (e.g. TonB, Btu) and the substrate information
(Supplementary Data 5).

Mapping to environmental datasets. The selected datasets represent amplicon
time series generated with Illumina sequencing of the V4 region of the 16S rDNA
of bacterial communities sampled in a coastal (between 1–5 m of depth, Canoe
Cove, Nahant, MA, USA)64 and a pelagic (between 10–500 m of depth, n-1200
station, Easter Mediterranean sea)65 site. Mapping between the full 16S rDNAs
extracted from genomes and amplicon sequences was performed with BLAST
(blastn, e-value < 1e-5) using different identity thresholds to filter the best hits:
100%, 97%, 94.5% and 86.5%. The first two values represent a new proposed
threshold and the most commonly used threshold to define operational taxonomic
units (OTUs)137, while the last two values were suggested as thresholds to classify
OTUs at genus and family levels138. In addition, for each identity threshold, we
inspected the top blast hits (up to 20) and calculate a mapping specificity index as
the number of hits assigned to the same GFC over the total number of hits
(Supplementary Figs. 4a and 5a). To avoid spurious mapping, we only retained in
downstream analyses sequences with a specificity index= 1 (i.e. all best blast hits
belonged to the same GFC).

The evaluation of the GFC concept was performed by using the coastal time
series, because it offers a high (daily) temporal resolution of changes in the bacterial
community composition and the authors applied a time deconvolution analysis to
characterize the OTU temporal dynamics64. The OTUs included in the
deconvolution analysis represented ~97% of the total sequences in the dataset and
for each pair of OTUs, the authors calculated the frequency interaction score (the
higher the score, the more synchronous were the temporal dynamics of both
OTUs, and vice-versa). From the list of all pairs, we only considered OTU pairs for

which at least one of the two OTUs mapped to a GFC. We wanted to exclude cases
of OTUs pairs that could belong to the same, but yet unknown, GFC. To test for
the GFC concept, we compared the frequency interaction score between OTU pairs
mapped to the same OTU (i.e. both OTUs mapped to the same GFC) versus OTU
pairs mapped to different GFCs (e.g. the two OTUs mapped to different GFCs, or
one of the OTU was unmapped). For each identity threshold, the normal
distribution of the frequency interaction score was assessed with the Shapiro test
(r’s function shapiro.test; p-values « 0.001), and t-test (r’s function t-test) was
performed to test for a significant difference in the mean ranks between the two
groups of OTU pairs. We repeated the test by randomly assigning OTU pairs to the
same-GFC and different-GFC groups by keeping the same group sizes and by
creating two groups of equal size.

Statistics and reproducibility. The presence/absence matrix of genetic traits
across genomes served as a basis to cluster the former into linked trait clusters
(LTCs) and the latter into genome functional clusters (GFCs). Both clustering
approaches implemented the Pearson coefficient r (also known as phi coefficient
when applied to dichotomous variables) to calculate the genome and trait corre-
lation matrices. While no pair of genomes scored a negative r value (as they all
shared core functional traits), negative correlations between pairs of genetic traits
were thresholded to zeros to ensure that the trait clustering was only driven by
positive correlation. Moreover, only pairwise correlations with a FDR-corrected p-
value < 0.05 (chi-square test, df= 1) were retained. The parsed correlation matrices
were fed as similarity matrices into the affinity propagation algorithm implemented
with the apcluster function (q= 0.5; R package apcluster 1.4.8)139. This machine-
learning algorithm was chosen because it does not require the number of clusters to
be determined a priori, allowing instead this feature to emerge from the data140.
Briefly, a functional similarity matrix is used to construct a network where nodes
and edges are known to be genomes (or genetic traits) and their pairwise r-cor-
relation, respectively. Starting from a random set of exemplar nodes, clusters are
created by expansion towards the adjoining and most similar nodes. Through
iterations of this procedure, the algorithm tries to maximize the total similarity
between nodes within each cluster, eventually converging towards the best set of
clusters. Clustering robustness and accuracy of both GFCs and LTCs were tested by
performing a sensitivity analysis of the ‘q’ parameter which controls the clustering
sensitivity in the apcluster function, and by down-sampling overrepresented taxa at
80%, 60% and 40% of their genome coverage (Supplementary Note 10 and Sup-
plementary Fig. 15).

For the LTC delineation, genetic traits were pre-filtered to remove noisy signals
and only traits found in ≥3% of the genomes (≥14 genomes) were used in the
clustering (i.e. 379 genetic traits out of 578 in total). Similar to the context of
linkage disequilibrium141, Pearson coefficient r indicates non-random association
between genetic traits because those traits are interactively linked to fitness, or
simply because they are closely located on the chromosome (i.e. lower chances of
recombination). However, as the genetic traits analysed commonly involve multiple
genes, the second possibility is less likely. While exploring the functional potential,
an LTC was considered present in a genome when >50% of the grouped genetic
traits were present and it was considered present in a GFC if it was present in >50%
of the grouped genomes. The genetic traits belonging to LTCs that were never
found to be complete in at least one GFC were considered as unclustered.

All analyses were performed in R 4.0.4142. Heatmaps were plotted using the
packages ComplexHeatmap 2.8.0143 and iheatmapr 0.5.1144, the circular
visualization with the package circlize 0.4.13145, the intersection plots with the
package ComplexUpset 1.3.0146 and waffle 0.7.0147. The remaining plots were
generated using ggplot2 3.3.4148 while the packages dplyr 1.0.7149 and reshape2
1.4.4150 were used for data manipulation.

Caveats of the bioinformatic analysis. As with any bioinformatic approach, also
our workflow aimed to identify functional traits on genome sequences, has
inherent limitations. On average, only 63% of genes were functionally annotated
across genomes (range ~40–80%), with the remaining genes either annotated as
hypothetical or not annotated at all. This is a strong reminder of the limitations of
current genomic and metabolic knowledge. Moreover, although the analysed
genomes represented a substantial fraction of bacterial taxa in marine environ-
ments (Supplementary Figs. 4 and 5), we still lack high-quality genomes for many
taxa. Future work, both culture-dependent and independent, is required to obtain
an unbiased view of the numerous traits encoded in marine microorganisms.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All genomes are available in the online repositories of NCBI and JGI under the accession
number listed in Supplementary Data 3. Fasta files with protein sequences for the
annotation of phytohormone, vibrioferrin and DMSP pathways, as well as HTML
interactive figures are provided at https://figshare.com with the https://doi.org/10.6084/
m9.figshare.16942780. Source data underlying Fig. 3 is presented in Supplementary
Data 4.
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Code availability
The scripts for functional annotation, reconstruction of KEGG modules and statistical
analysis are available on GitHub at https://github.com/lucaz88/
genome_comparison_code and are archived at https://zenodo.org with the https://
doi.org/10.5281/zenodo.5662367.
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