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The genome of an apodid holothuroid
(Chiridota heheva) provides insights into its
adaptation to a deep-sea reducing environment
Long Zhang1,7, Jian He1,7, Peipei Tan1, Zhen Gong2, Shiyu Qian3, Yuanyuan Miao1, Han-Yu Zhang4,

Guangxian Tu1, Qi Chen1, Qiqi Zhong1, Guanzhu Han2, Jianguo He 1,5,6✉ & Muhua Wang 1,6✉

Cold seeps and hydrothermal vents are deep-sea reducing environments that are char-

acterized by lacking oxygen and photosynthesis-derived nutrients. Most animals acquire

nutrition in cold seeps or hydrothermal vents by maintaining epi- or endosymbiotic rela-

tionship with chemoautotrophic microorganisms. Although several seep- and vent-dwelling

animals hosting symbiotic microbes have been well-studied, the genomic basis of adaptation

to deep-sea reducing environment in nonsymbiotic animals is still lacking. Here, we report a

high-quality genome of Chiridota heheva Pawson & Vance, 2004, which thrives by extracting

organic components from sediment detritus and suspended material, as a reference for

nonsymbiotic animal’s adaptation to deep-sea reducing environments. The expansion of the

aerolysin-like protein family in C. heheva compared with other echinoderms might be involved

in the disintegration of microbes during digestion. Moreover, several hypoxia-related genes

(Pyruvate Kinase M2, PKM2; Phospholysine Phosphohistidine Inorganic Pyrophosphate

Phosphatase, LHPP; Poly(A)-specific Ribonuclease Subunit PAN2, PAN2; and Ribosomal RNA

Processing 9, RRP9) were subject to positive selection in the genome of C. heheva, which

contributes to their adaptation to hypoxic environments.
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Echinodermata is a phylum of marine animals comprising 5
extant classes, including Holothuroidea (feather star, sub-
phylum Pelmatozoa), Asteriodea and Ophiuroidea (starfish

and brittle star, subphylum Asterozoa), and Echinoidea and
Holothuroidea (sea urchin and sea cucumber, subphylum
Echinozoa)1. Adult echinoderms are characterized by having a
body showing pentameral symmetry, a water vascular system
with external tube feet (podia), and an endoskeleton consisting of
calcareous ossicles2. Echinoderms exhibit a high divergence in
morphology, from the star-like architecture in Asteroidea to the
worm-like architecture in Holothuroidea3,4.

Compared with other echinoderms, holothurians have a unique
body architecture and evolutionary history. The worm-like body of
the holothurian preserves the pentameral symmetry structurally
along the oral–aboral axis5. In addition, holothurians have a soft
and stretchable body, in which the ossicles are greatly reduced in
size2. The order Apodida is a group of holothurians that are found
in both shallow-water and deep-sea environments6. Phylogenetic
analyses showed that Apodida is sister to other orders of
Holothuroidea7,8. Apodid holothurians lack tube feet and complex
respiratory trees, making them morphologically distinct from other
holothurians2. In contrast to other classes of Echinodermata, which
experienced a severe evolutionary bottleneck during the Permian-
Triassic mass extinction interval, Holothuroidea did not experience
family-level extinction through the interval. The deposit-feeding
lifestyle of holothurians conferred a selective advantage during the
primary productivity collapse of the Permian–Triassic mass-
extinction9. As the genomes of only two shallow-water holothur-
ians (Apostichopus japonicus and Parastichopus parvimensis) have
been assembled and analyzed10–12, it is critical to study the genomes
of more holothurians to dissect their special morphological char-
acteristics and evolutionary history.

Cold seeps are areas where methane, hydrogen sulfide, and
other hydrocarbons seep or emanate as gas from deep geologic
sources13. Hydrocarbon-fluid seepage from cold seeps is com-
pletely devoid of O2 and comprises high levels of sulfides. After
reacting with sulfides contained in the fluid, any free O2 is
removed from the deep-sea water. Thus, cold seeps are char-
acterized by high hydrostatic pressure, low temperature, lack of
oxygen, and photosynthesis-derived nutrients, and high con-
centrations of reducing chemicals14. Chemosynthetic microbes
oxidize the reduced chemicals contained in the hydrocarbon
fluids to produce energy and fix carbon into organic matter,
which supports a large amount of invertebrates, including

tubeworms, mussels, clams, and gastropods15. Most of these
macrobenthos depend on the epi- or endosymbiotic relationships
with chemoautotrophic microorganisms for nutrition14,16,17.
Recent genomic analyses have revealed the genetic basis of
adaptation in several seep- and vent-dwelling macrobenthos
hosting symbiotic bacteria18–21. However, the genomic basis of
nutrient acquisition and hypoxic adaptation in cold seep-dwelling
nonsymbiotic animals is still lacking with only one reported
genome22.

Echinoderms are a rare component of deep-sea chemosyn-
thetic ecosystems23. Chiridota heheva Pawson & Vance, 2004
(Apodida: Chiridotidae) is one of the few echinoderms that
occupies all three types of chemosynthetic ecosystems (hydro-
thermal vent, cold seep, and organic fall)24. This suggests that the
species is well adapted to deep-sea reducing environments. Unlike
most cold seep- and hydrothermal vent-dwelling species, C.
heheva does not host chemosynthetic bacteria6. It derives nutri-
ents from a variety of sources, extracting organic components
from sediment detritus, suspended material, and wood fragments
when available6,25. The cosmopolitan distribution and special
lifestyle of C. heheva make it an ideal model to study adaptation
to deep-sea reducing environments in nonsymbiotic animals.

Here, we assembled and annotated a high-quality genome of C.
heheva collected from the Haima cold seep in the South China
Sea. Evolutionary analysis revealed that the ancestor of C. heheva
diverged from the ancestors of two shallow-water holothurians
(A. japonicus and P. parvimensis) approximately 429Ma ago.
Additionally, demographic analysis suggested that C. heheva
might have colonized the current habitat in the early Miocene.
Comparative genomic analysis showed that the aerolysin-like
protein (ALP) family was significantly expanded in C. heheva
compared with other echinoderms. The expansion of the ALP
family might be involved in the disintegration of microbes during
digestion, which in turn facilitated its adaptation to cold seep
environments. Moreover, several hypoxia-related genes were
subject to positive selection in the genome of C. heheva, which
contributes to their adaptation to hypoxic environments.

Results and discussion
Characterization and genome assembly of C. heheva. The
sequenced sample was collected at a depth of 1385 meters using
manned submersible Shenhaiyongshi from the Haima cold seep in
the South China Sea (16° 73.228′ N, 110° 46.143′ E) (Fig. 1). We
sequenced the sample’s genome on the Nanopore and Illumina
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Fig. 1 Collection of C. heheva. a Map showing the sampling site at the Haima cold seep of northern South China Sea (16° 73.228′ N, 110° 46.143′ E).
b C. heheva at the sampling site (depth: 1385m), where they cohabit with deep-sea mussels. C. heheva individuals are indicated by black arrows. Photo
by Dr. Jian He.
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sequencing platforms. In total, 42.43 Gb of Nanopore reads and
49.19 Gb of Illumina reads were obtained (Supplementary
Tables 1 and 2). Species identity of the sequenced individual was
first determined according to its morphological characteristics. In
addition, we assembled the mitochondrial genome of the indivi-
dual using Illumina reads. The sequence identity between the
published C. heheva mitochondrial genome and our assembled
genome was 99.74%, which confirmed the species identity of the
sequenced individual26. Based on the k-mer distribution of Illu-
mina reads, the size of the C. heheva genome was estimated to be
1.23 Gb with a high heterozygosity of 2% (Supplementary Fig. 1
and Supplementary Table 3). The C. heheva genome was
assembled into 4609 contigs, with a total size of 1.107 Gb and
contig N50 of 1.22Mb (Table 1). We determined the complete-
ness of the assembled genome by running benchmarking uni-
versal single-copy orthologs (BUSCO) and sequencing quality
assessment tool (SQUAT) software. BUSCO analysis with
metazoan (obd10) gene set showed that the assembled C. heheva
genome contained 89.6% complete single-copy orthologs (Sup-
plementary Table 4). Additionally, 91.1% of Illumina reads could
be aligned to the assembled genome with high confidence in
SQUAT assessment (Supplementary Table 5). These results
indicate the high integrity of our assembled genome.

Genome annotation. Repetitive elements represented 624.38Mb
in the C. heheva genome assembly (Supplementary Table 6). Long
interspersed nuclear elements (LINEs) were the largest class of
annotated transposable elements (TEs), making up 9.72% of the
genome. DNA transposons, which were the second largest class of
TEs, represented 33.59Mb (3.03%) of the genome. Additionally,
the C. heheva genome comprised a large proportion (38.39%) of
unclassified interspersed repeats. Comparative genomic analysis
among C. heheva and other echinoderms revealed that the C.
heheva genome consisted of the largest number of TEs (Fig. 2a, b;
Supplementary Table 7). Repetitive elements constituted 56.40%
of the C. heheva genome, and they accounted for 26.68% and
25.02% of the genomes of A. japonicus and P. parvimensis,
respectively. The differences in the repeat content were close to
the size differences between the genomes of C. heheva and the
other two holothurians. This suggests that repeats contributed to
the size differences among the genomes of these three holo-
thurians. Notably, the proportion of LINEs in the C. heheva
genome was substantially higher than that in the genomes of
other echinoderms (Fig. 2b). Kimura distance-based copy-diver-
gence analysis identified a recent expansion of LINEs in the C.
heheva genome (Fig. 2c). Protein-coding genes were identified in
the genome of C. heheva through a combination of ab initio and
homology-based protein-prediction approaches. In total, we
derived 36,527 gene models in the C. heheva genome. The
structure of predicted genes in C. heheva is slightly different to
that of other previously sequenced echinoderm genomes. With

longer exons and introns, genes in C. heheva are longer than the
ones in A. japonicus (Supplementary Table 8).

Phylogenomic analysis and demographic inference. With more
than 1400 extant species, Holothuroidea is one of the largest
classes in the phylum Echinodermata1. In addition, holothurians
are well adapted to diverse marine environments, with habitats
ranging from shallow intertidal areas to hadal trenches27,28.
However, due to the lack of body fossils, evolutionary study of
Holothuroidea is more difficult than other classes of Echino-
dermata. To investigate the evolutionary history of C. heheva, a
maximum-likelihood (ML) phylogenetic tree was reconstructed
using single-copy orthologs of C. heheva and 16 other deuter-
ostomes (Supplementary Fig. 2). Chiridota heheva appeared sister
to two other holothurians. In addition, divergence times were
determined among 7 echinoderms that had whole-genome
sequences (Fig. 3a). The divergence time of A. japonica and
other echinoderms was estimated to be approximately 539 million
years (Ma), which is generally consistent with the fossil
records29,30. The ancestor of Chiridota heheva diverged from the
ancestors of two shallow-water holothurians (A. japonicus and P.
parvimensis) approximately 429Ma ago. As Apodida is the basal
taxon in Holothuroidea, these results support the view that
holothurians had evolved by the Early Ordovician31.

To better investigate the evolution of holothurians, we inferred
the histories of ancestral-population sizes of C. heheva and A.
japonicus using the pairwise sequential Markovian coalescent
(PSMC) method (Fig. 3b). Chiridota heheva experienced a decline
in population size approximately 21Ma ago. Ocean temperature
increased slowly between the late Oligocene and early Miocene
(21–27Ma ago) after long-term cooling from the end of the
Eocene32,33. Furthermore, species diversity within Echinodermata
started to increase in the early Miocene34,35. These results
indicate that C. heheva might have colonized the current habitat
in the early Miocene. A decline in ancestral-population size in A.
japonicus started in the late Miocene (approximately 8Ma ago).
Chiridota heheva also experienced a moderate decline in
population size in the early Pliocene. Additionally, the oceans
experienced a decrease in temperature during the late Miocene
(7–5.4 Ma ago)36. These results suggest that global cooling and
environmental changes in the late Miocene were an important
driver of demographic changes in both shallow-water and deep-
sea holothurians.

Hox/ParaHox gene clusters. Apodida do not have tube feet or
complex respiratory trees, which are commonly found in other
holothurians37. It has been demonstrated that Hox genes play a
critical role in embryonic development38. In addition, previous
studies proposed that the presence/absence and expression pattern
of Hox genes might contribute to morphological patterning and
embryonic development in echinoderms10,11. Therefore, to deter-
mine whether Hox genes contribute to morphological divergence
in Holothuroidea, we identified Hox gene clusters and their evo-
lutionary sister complex, the ParaHox gene cluster, in the genomes
of C. heheva and 6 other echinoderms (Supplementary Fig. 3). A
Hox cluster and a ParaHox cluster could be identified in the
genomes of all 7 species. The gene composition and arrangement
of both Hox and ParaHox clusters were highly consistent between
the genomes of C. heheva and A. japonicus, suggesting that Hox/
ParaHox genes do not control the development of tube feet and
respiratory trees in Apodida. Hox4 and Hox6 were missing in the
genomes of both C. heheva and A. japonicus, which is inconsistent
with the view that the loss of Hox4 or Hox6 in echinoderms is a
lineage-specific event5.

Table 1 Genome assembly statistics of deep-sea holothurian
(C. heheva) and shallow-water holothurian (A. japonicus).

C. heheva A. japonicus11 A. japonicus10

Estimated genome
size (Gb)

~ 1.23 ~ 1.0 ~ 1.0

Assembled genome
size (bp)

1,106,937,276 952,279,490 804,993,085

Number of contigs 4609 21,303 7058
Contig N50 (bp) 1,221,604 45,411 190,269
Scaffold N50 (bp) – 195,518 486,650
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NLR repertoire in C. heheva. NACHT and leukine-rich, repeat-
containing proteins (NLRs) are important components of
pathogen-recognition receptors (PRRs) involved in animal innate
immune systems, which can perceive pathogen-associated mole-
cular patterns (PAMPs) of viruses and bacteria39. The bona fide
NLRs contain a NACHT (NAIP, CIITA, HET-E, and TP1)
domain, which belongs to the signal transduction ATPases with
numerous domain (STAND) superfamilies, and a series of
C-terminal leukine-rich repeats (LRRs)40,41. The Pfam hidden
Markov model (HMM) search combined with phylogenetic
analysis approach identified only 53 NLRs in C. heheva (Sup-
plementary Table 9), compared with a largely expanded set of 203
NLRs in purple-sea urchin (Strongylocentrotus purpuratus)42.
Chiridota heheva contained 24 NLRs with one or more N-terminal
death/DED domain, 22 NACHT-only NLRs, 6 NLRs with other
domains, including the immunoglobulin V-set domain, which was
not identified in sea-urchin NLRs, and only one NLR with LRRs
(Supplementary Table 9). Taken together, these results indicate
that the C. heheva NLR repertoire shows different abundances and
structural complexities than the sea urchin.

We performed phylogenetic analysis of C. heheva NLRs and
other representative NLRs of metazoans, including humans,
Amphimedon queenslandica, S. purpuratus, Acropora digitifera,
Nematostella vectensis, Pinctada fucata, Capitella teleta, mol-
lusks, and arthropods43. We found that the majority of C.
heheva NLRs form a monophyletic lineage with sea-urchin
NLRs (Fig. 4), supporting the lineage-specific evolution of NLRs

in Echinodermata44. Given that human IPAF (ice protease-
activating factor) and NAIP (neuronal apoptosis-inhibitory
protein) proteins were reported to have originated before the
evolution of vertebrates44, one C. heheva NLR clustering with
these two proteins indicates that this NLR may have an ancient
independent origin (Fig. 4).

Gene-family evolution. We performed gene-family analysis
based on the phylogenetic tree of 7 echinoderms (Fig. 3a).
Compared with other echinoderms, 66 gene families were
expanded, and 25 gene families were contracted in C. heheva
(P < 0.05) (Supplementary Data 1 and Supplementary Table 10).
Several significantly expanded gene families are involved in the
processes of cell cycle progression, protein folding, and ribosome
assembly. As high hydrostatic pressure causes cell cycle delay and
affects protein folding45,46, expansion of these families may have
contributed to the adaptation of C. heheva to cold seep
environments.

Aerolysins, which are pore-forming toxins (PFTs), were first
characterized as virulence factors in the pathogenic bacterium
Aeromonas hydrophyla47,48. As typical pore-forming proteins,
aerolysin and related proteins are found in a large variety of
species and possess diverse functions49. ALPs in eukaryotes
originated from recurrent horizontal gene transfer (HGT)50.
ALPs of the same origin have similar functions, while the ones of
different origins possess diverse functions50. The ALPs were
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significantly expanded in the genome of C. heheva (7 copies)
compared with other echinoderms (0 or 1 copy) (P < 0.05)
(Supplementary Data 1). To investigate the possible origin and
function of C. heheva ALPs, we reconstructed the phylogenetic
tree of ALPs in echinoderms and diverse species. Chiridota
heheva ALPs did not cluster with ALPs from other echinoderms.
Additionally, these two groups of ALPs were clustered with
aerolysins from distinct groups of bacteria (Fig. 5). This suggests
that ALPs from C. heheva and other echinoderms have different
origins. Chiridota heheva ALPs form a clade with ALPs from
stony corals (Stylophora pistillata, Pocillopora damicornis, and
Orbicella faveolata) and sea anemones (Nematostella vectensis and
Ecaiptasia diaphana). This indicates that ALPs from C. heheva,
stony corals, and sea anemones might have the same origin and
similar biological functions. It was shown that ALPs from hydra
and sea anemones (N. vectensis) are involved in prey disintegra-
tion after predation by lysing cells through pore formation on
membranes50,51. The microbial communities of cold seeps are
very different from those of other seafloor ecosystems52. More-
over, some of these microbes have unique cellular structures that
might be difficult to disintegrate53, which impedes nutrient
acquisition of C. heheva from free-living microbes of cold seeps.
Therefore, the expansion of the ALP family might have
contributed to microbe digestion in C. heheva, which in turn
facilitated its adaptation to cold seep environments.

Positively selected genes. To better understand the genetic basis
of its adaptation to a deep-sea reducing environment, we searched
for positively selected genes (PSGs) in C. heheva. Compared with 6
other echinoderms, 27 PSGs were identified in the C. heheva
genome (Supplementary Table 11). Four hypoxia-related genes
(pyruvate kinase M2, PKM2; phospholysine phosphohistidine
inorganic pyrophosphate phosphatase, LHPP; poly(A)-specific
ribonuclease subunit PAN2, PAN2; and ribosomal RNA proces-
sing 9, RRP9) were identified as PSGs in C. heheva54–57. PKM2
promotes transactivation of HIF-1 target genes by directly inter-
acting with the HIF-1α subunit. In addition, the transcription of
the PKM2 gene is activated by HIF-1. This positive-feedback loop
increases glycolysis and lactate production and decreases oxygen
consumption under hypoxic conditions54. LHPP interacts with
PKM2 to induce ubiquitin-mediated degradation of PKM2 and
impede the glycolysis and respiration under hypoxia55. Thus,
selection against these two interacting genes (PKM2 and LHPP)
might play a key role in the hypoxic adaptation in C. heheva.
Interestingly, the LHPP was also subject to positive selection in
cetaceans, which are hypoxia-tolerant mammals58. Furthermore,
both C. heheva and cetaceans have the same amino acid sub-
stitution at position 118 of the LHPP protein (Fig. 6), which
indicates a possible convergent evolution in the LHPP during the
adaptation of cetaceans and C. heheva to hypoxic environments. A
positively charged amino acid (histidine, H) in two shallow-water
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holothurians is substituted to a negatively charged one (aspartic
acid, D) in C. heheva at this position, which might cause a con-
formation change that contributes to the hypoxic adaptation in C.
heheva. To study the potential underlying structural effects of this
substitution, we predicted the three-dimensional structures of
LHPP from echinoderms (Supplementary Fig. 4). The substitu-
tion, which is located in an α-helix, does not change the con-
formation of LHPP. The effect of the substitution of the LHPP
protein needs to be further investigated.

A large number of metazoans reside in cold seeps and
hydrothermal vents, which are challenging environments with high
concentration of toxic compounds and chronic hypoxia59,60. Several
physiological and molecular modifications of the respiratory system
have been identified to cope with hypoxia in organisms living in
these environments60. The concentration of hemoglobin, which is
an oxygen-binding protein, is higher in seep- and vent-dwelling
species than closely related species living in well-oxygenated
environments60. In addition, hemoglobins from deep-sea organisms
have higher affinity for oxygen than hemoglobins from shallow-
water relatives61. This facilitates seep- and vent-dwelling species to
thrive in the extreme environments by improving the efficiency of
oxygen transportation. Four hypoxia-related genes (PKM2, PAN2,

LHPP, and RRP9) were identified to be positively selected in C.
heheva. PKM2 increases glycolysis and decreases oxygen consump-
tion by promoting transactivation of HIF-1 target genes through
directly interacting with the HIF-1α subunit under hypoxic
conditions54. This suggests that animals living in deep-sea
chemosynthetic environments might also adapt to hypoxic
conditions through reprogramming glucose metabolism. Intrigu-
ingly, LHPP gene was subjected to positive selection in both C.
heheva and cetaceans. This indicates a possible convergent
evolution, in which echinoderms and mammals utilize similar
strategies to cope with hypoxic challenges.

Methods
Sample collection and genome sequencing. The C. heheva sample used in this
study was collected using manned submersible Shenhaiyongshi from the Haima
cold seep in the South China Sea (16° 73.228′ N, 110° 46.143′ E, 1385 m deep) on
August 2, 2019. The C. heheva individuals were kept in an enclosed sample
chamber placed in the sample basket of the submersible. Once the samples were
brought to the upper deck of the mothership, the muscle of the individuals
was dissected, cut into small pieces, and immediately stored at −80 °C. The
samples were then transported to Sun Yat-sen University on dry ice and stored
at −80 °C until use.
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To construct Nanopore sequencing library, high-molecular-weight genomic
DNA was prepared by the CTAB method. The quality and quantity of the DNA
were measured via standard agarose-gel electrophoresis and with a Qubit 4.0
Fluorometer (Invitrogen). Sequencing library was constructed and sequenced by
Nanopore PromethION platform (Oxford Nanopore Technologies). Additionally,
DNA was extracted to construct Illumina sequencing library. The quality and
quantity of the DNA were measured via standard agarose-gel electrophoresis and
with a Qubit 2.0 Fluorometer (Invitrogen). Sequencing library was constructed
and sequenced by Illumina Novaseq platform (Illumina).

Mitochondrial and nuclear genome assembly. Low-quality (reads with ≥10%
unidentified nucleotide and/or ≥ 50% nucleotides having phred score < 5) and
sequencing-adapter-contaminated Illumina reads were filtered and trimmed with
Fastp (v0.21.0)62 to obtain high-quality Illumina reads, which were used in the
following analyses. Mitochondrial genome of C. heheva was assembled using the
two-step mode of mitoZ (v2.4)63 with the high-quality Illumina reads. The
assembled genome was annotated using mitoZ (v2.4) with parameter “–clade
Echinodermata”.

The size and heterozygosity of C. heheva genome were estimated using high-
quality Illumina reads by k-mer frequency-distribution method. The number of k-
mers and the peak depth of k-mer sizes at 17 was obtained using Jellyfish (v2.3.0)64

with the -C setting. Genome size was estimated based on the k-mer analysis as
described previously65. The heterozygosity of C. heheva genome was determined by
fitting the k-mer distribution of Arabidopsis thaliana using Kmerfreq implemented
in SOAPdenovo2 (r242)66.

Low-quality Nanopore reads were filtered using custom Python script. Two
draft-genome assemblies were generated using filtered Nanopore reads with Shasta
(v0.4.0)67 and WTDBG2 (v2.5)68, respectively. The contigs of the two draft
assemblies were subject to error correction using filtered Nanopore reads with
Racon (v1.4.16)69 three times. The corrected contigs were then polished with high-

quality Illumina reads with Pilon (v1.23)70 three times. The error-corrected contigs
of Shasta assembly and WTDBG2 assembly were assembled into longer sequences
using quickmerge (v0.3)71. The merged contigs were subject to error correction
using filtered Nanopore reads with Racon three times, and then using high-quality
Illumina reads with Pilon three times. As the heterozygosity of C. heheva genome is
high, haplotypic duplications in the assembled genome were identified and
removed using purge_dups (v1.2.3)72. The completeness and quality of the
assembly was evaluated using BUSCO (v4.0.5)73 against the conserved Metazoa
dataset (obd10), and SQUAT with high-quality Illumina reads74.

Genome annotation. Repetitive elements in the assembly were identified by de
novo predictions using RepeatMasker (v4.1.0) (https://www.repeatmasker.org/). A
de novo repeat library for C. heheva was built using RepeatModeler (v2.0.1)75. To
identify repetitive elements, sequences from the C. heheva assembly were aligned to
the de novo repeat library using RepeatMasker (v4.1.0). Additionally, repetitive
elements in C. heheva genome assembly were identified by homology searches
against known repeat databases using RepeatMasker (v4.1.0). A repeat landscape of
C. heheva genome was obtained using an R script that was modified from https://
github.com/ValentinaBoP/TransposableElements. To compare the proportion and
composition of repetitive elements among the genomes of echinoderms, genome
sequences of Strongylocentrotus purpuratus (GCA_000002235.3), Lytechinus var-
iegatus (GCA_000239495.2), Acanthaster planci (GCA_001949165.1), and
Anneissia japonica (GCA_011630105.1) were downloaded from NCBI. Genome
sequence of Parastichopus parvimensis was downloaded from echinobase (http://
bouzouki.bio.cs.cmu.edu/Echinobase/PpDownloads, retrieved September 2021).
Repetitive elements in the genomes of these species were identified by homology
searches against known repeat databases using RepeatMasker (v4.1.0). The pro-
portion and composition of repetitive elements of Apostichopus japonicus was
obtained from Li et al. (2018)11.
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We applied a combination of homology-based and de novo predication
methods to build consensus-gene models for the C. heheva genome assembly. For
homology-based gene prediction, protein sequences of Helobdella robusta,
Lytechinus variegatus, Strongylocentrotus purpuratus, Dimorphilus gyrociliatus,
Apostichopus japonicus and Acanthaster planci were aligned to the C. heheva
genome assembly using tblastn. The exon–intron structures then were determined
according to the alignment results using GenomeThreader (v1.7.0)76. In addition,
de novo gene prediction was performed using Augustus (v3.3.2)77, with the
parameters obtained by training the software with protein sequences of Drosophila
melanogaster and Parasteatoda tepidariorum. Two sets of gene models were
integrated into a nonredundant consensus-gene set using EvidenceModeler
(v1.1.1)78. To identify functions of the predicted proteins, we aligned the C. heheva
protein models against NCBI NR, trEMBL, and SwissProt database using blastp (E-
value threshold: 10−5), and against eggNOG database79 using eggNOG-Mapper80.
In addition, KEGG annotation of the protein models was performed using
GhostKOALA81.

Phylogenomic analysis. Protein sequences of 15 metazoan species (A. planci, S.
purpuratus, Lytechinus variegatus, A. japonicus, Anneissia japonica, Saccoglossus
kawalevskii, Branchiostoma floridae, Ciona intestinalis, Danio rerio, Gallus gallus,
H. robusta, Mus musculus, Pelodiscus sinensis, Petromyzon marinus, and Xenopus
laevis) proteins were downloaded from NCBI. Protein sequences of Parastichopus
parvimensis were downloaded from Echinobase12. OrthoMCL (v2.0.9)82 was
applied to determine and cluster gene families among these 16 metazoan species
and C. heheva. Gene clusters with >100 gene copies in one or more species were
removed. Single-copy othologs in each gene cluster were aligned using MAFFT
(v7.310)83. The alignments were trimmed using ClipKit (v1.1.3)84 with “gappy”
mode. The phylogenetic tree was reconstructed with the trimmed alignments using
a maximum-likelihood method implemented in IQ-TREE2 (v2.1.2)85 with H.
robusta as outgroup. The best-fit substitution model was selected by using Mod-
elFinder algorithm86. Branch supports were assessed using the ultrafast bootstrap
(UFBoot) approach with 1000 replicates87.

To estimate the divergent time among echinoderms, single-copy orthologs were
identified among A. japonica, A. planci, A. japonicus, P. parvimensis, C. heheva, L.
variegatus, and S. purpuratus after running OrthoMCL pipeline as mentioned
above. Single-copy orthologs were aligned using MAFFT (v7.310), trimmed using
ClipKit (v1.1.3) with ‘gappy’ mode, and concatenated using PhyloSuite (v1.2.2)88.
Divergent time among 7 echinoderms were estimated using the concatenated
alignment with MCMCtree module of the PAML package (v4.9)89. MCMCtree
analysis was performed using the maximum-likelihood tree that was reconstructed
by IQ-TREE2 as a guide tree and calibrated with the divergent time obtained
from TimeTree database (minimum= 193 million years and soft maximum =
350 million years between L. variegatus and S. purpuratus)90.

Demographic inference of C. heheva and A. japonicus. Paired-end Illumina reads
of A. japonicus were downloaded from NCBI SRA database11. The reads of A.
japonicus were filtered and trimmed with fastp (v0.21.0). The Illumina clean reads
of C. heheva and A. japonicus were aligned to the respective reference-genome
assembly using BWA (v0.7.17)91 with “mem” function. Genetic variants were
identified using Samtools (v1.9)92. Whole-genome consensus sequence was gen-
erated with the genetic variants using Samtools (v 1.9). PSMC (v0.6.5)93 was used
to infer the demographic history of C. heheva and A. japonicus using the whole
genome consensus sequences. The substitution mutations rate and generation time
of C. heheva and A. japonicus was set to 1.0 × 10−8 and 3 years according to the
previous study of A. planci94.

Homeobox gene analysis. Homeobox genes in C. heheva genome were identified
by following the procedure described previously95. Homeodomain sequences,
which were retrieved from HomeoDB database (http://homeodb.zoo.ox.ac.uk)96,
were aligned to C. heheva genome assembly using tbalstn. Sequences of the can-
didate homeobox genes were extracted based on the alignment results. The
extracted sequences were aligned against NCBI NR and HomeoDB database to
classify the homeobox genes.

Identification of NOD-like receptors (NLRs) in C. heheva. We used HMMER
(v3.1)97 to search against the proteome of C. heheva with the HMM profile of
NACHT domain (PF05729) retrieved from Pfam 34.0 as the query and an e cutoff
value of 0.01. Proteins identified by the HMM search were retrieved from the
proteome and aligned with 964 representative proteins from eukaryotes and
prokaryotes98, and other representative metazoan NLRs43 using hmmalign method
implemented in HMMER (v3.1) based on the STAND NTPase domain. The
alignment was refined by manual editing. The large-scale phylogenetic analysis was
performed using an approximate maximum likelihood method implemented in
FastTree99. Representative SWACOS and MalT NTPases were used as outgroups98.
Significant hit clustering with metazoan NLRs was regarded as NLRs, and protein-
domain organizations were annotated through hmmscan method implemented in
HMMER (v3.1).

Phylogenetic analysis of Chiridota NLRs and other representative metazoan
NLRs. To explore the evolutionary relationships among C. heheva NLRs and other
representative metazoan NLRs, we reconstructed the phylogenetic tree of NLRs.
The NACHT domains of C. heheva NLRs and representative metazoan NLRs were
aligned using MAFFT (v7.310), and then refined by manual editing. The repre-
sentative metazoan NLRs were chosen from literature43. The phylogenetic tree was
reconstructed using a maximum-likelihood method implemented in IQ-TREE2
(v2.1.2). The best-fit substitution model was selected by using ModelFinder
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algorithm. Branch supports were assessed using the UFBoot approach with
1000 replicates.

Gene-family expansion and contraction analysis. r8s (v1.7)100 was applied to
obtain the ultrametric tree of 7 echinoderm species, which is calibrated with the
divergent time between A. planci and S. purpuratus (541 mya) obtained from
TimeTree database. CAFÉ (v5)101 was applied to determine the significance of
gene-family expansion and contraction among 7 echinoderm species based on the
ultrametric tree and the gene clusters determined by OrthoMCL (v2.0.9). The
divergence time reported by TimeTree database might not be precise as it is a
consensus of divergence times estimated in previous studies. Therefore, we repe-
ated the analysis twice, in which the divergence time between A. planci and S.
purpuratus was set to 461 mya and 495 mya according to the previous studies,
respectively102,103. All the three analyses had the same result.

We used HMMER (v3.3.2) to search against NCBI nonredundant protein
database (accessed on July 2021) with the HMM profile of aerolysin domain
(PF01117) retrieved from Pfam 34.0 as the query and a e cutoff value of 0.001.
Proteins identified by the HMM search were retrieved and filtered for the ones that
have less than 75 residues. The filtered proteins were aligned with aerolysin-like
proteins (ALPs) from C. heheva, A. japonicas, and P. parvimensis using MAFFT
(v7.310) and trimmed using ClipKit (v1.1.3) with ‘gappy’ mode. The phylogenetic
tree was reconstructed using a maximum-likelihood method implemented in IQ-
TREE2 (v2.1.2). The best-fit substitution model was selected by using ModelFinder
algorithm. Branch supports were assessed using the UFBoot approach with 1000
replicates.

Identification and analysis of positively selected genes. Branch-site models
implemented in the codeml module of the PAML package is widely used to identify
positively selected genes (PSGs). Thus, we identified PSGs in the C. heheva genome
within the single-copy orthologs among 7 echinoderm species, based on the
branch-site models using GWideCodeML (v1.1)104. C. heheva was set as the
‘foreground’ phylogeny, and the other species were set as the ‘background’ phy-
logeny. An alternative branch site model (Model= 2, NSsites= 2, and fix_-
omega= 0) and a neutral branch site model (Model= 2, NSsites= 2,
fix_omega= 1, and omega= 1) were tested. Genes with Bayesian empirical Bayes
(BEB) sites > 90% and a corrected P-value < 0.1 were identified to have been subject
to positive selection.

To investigate LHPP gene evolution, sequences of LHPP from 8 mammals
(Odobenus rosmarus, Orcinus orca, Lipotes vexillifer, Tursiops truncates, Physeter
catodon, Balaenoptera acutorostrata, Mus musculus, and Homo sapiens) and 7
echinoderms (A. japonica, A. planci, A. japonicus, P. parvimensis, C. heheva, L.
variegatus, and S. purpuratus) were aligned using MAFFT (v7.310). To reconstruct
the phylogenetic tree, OrthoMCL (v2.0.9)82 was applied to determine and cluster
gene families among these 15 species. Gene clusters with >100 gene copies in one
or more species were removed. Single-copy othologs in each gene cluster were
aligned using MAFFT (v7.310)83. The alignments were trimmed using ClipKit
(v1.1.3)84 with “gappy” mode. The phylogenetic tree was reconstructed with the
trimmed alignments using a maximum-likelihood method implemented in IQ-
TREE2 (v2.1.2)85. H. robusta was used as outgroup. The best-fit substitution model
was selected by using ModelFinder algorithm86. The three-dimensional structure of
a protein provides important information for understanding its biochemical
function and interaction properties in molecular detail. In this study, the three-
dimensional structure of four LHPP proteins from (O. orca, H. sapiens, A.
japonicus and C. heheva) was generated through homology modeling using the
SWISS-MODEL workspace (http://swissmodel.expasy.org/workspace/)105.

Statistics and reproducibility. Alpha levels of 0.05 were regarded as statistically
significant throughout the study, unless otherwise specified.

Data availability
Raw reads and genome assembly are accessible in NCBI under BioProject number
PRJNA752986. Assembled genome sequences are accessible under Whole Genome
Shotgun project number JAIGNY000000000. Raw reads and genome assembly are also
available at the CNGB Sequence Archive (CNSA) of China National GeneBank DataBase
(CNGBdb) with accession number CNP0002134. The genome assembly, related
annotation files, and source files for generating figures can be accessed through
Figshare106 at https://doi.org/10.6084/m9.figshare.15302229.

Code availability
Custom script used in this study is available at Figshare106 (https://doi.org/10.6084/
m9.figshare.15302229). Versions and parameters for other software packages used in this
study are described in the reporting summary and elsewhere in the “Methods.”
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