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Deciphering tissue structure and function using
spatial transcriptomics
Benjamin L. Walker 1,2, Zixuan Cang 1,2, Honglei Ren1,2,

Eric Bourgain-Chang2 & Qing Nie 1,2,3✉

The rapid development of spatial transcriptomics (ST) techniques has allowed the mea-

surement of transcriptional levels across many genes together with the spatial positions of

cells. This has led to an explosion of interest in computational methods and techniques for

harnessing both spatial and transcriptional information in analysis of ST datasets. The wide

diversity of approaches in aim, methodology and technology for ST provides great challenges

in dissecting cellular functions in spatial contexts. Here, we synthesize and review the key

problems in analysis of ST data and methods that are currently applied, while also expanding

on open questions and areas of future development.

Spatial transcriptomics (ST) methods, in which expression of many genes is measured at a
variety of spatial locations in a tissue sample, preserving the source position of each
expression datapoint, is a powerful emerging method for understanding functions of cells

and their interactions1–4. Because the processes by which cells evolve into tissue and commu-
nicate with each other depend on interactions with the environment around it, spatial infor-
mation allows unprecedented insights beyond what may be accomplished by non-spatial single-
cell transcriptomic data (i.e., scRNA-seq).

While ST data can be collected in a variety of types and resolutions using different tech-
nologies, how to analyze the data to infer spatial organization of cells from discrete datapoints
remains a major challenge. Compared to non-spatial data, transforming a spatial biological
question to an ST data analysis task, such as uncovering spatial regions of different organized
cellular functions from ST data, is often a non-trivial objective whose formulation alone requires
more investigation.

Here, we provide a general framework for analyzing spatial transcriptomics data, review the
computational methods typically used on ST data (see Table 1 for concise list), and overview the
resulting analyses that can be performed. We highlight the considerations and limitations of
these methods, and discuss the intriguing future areas for development in this field.

Overview of spatial transcriptomics data
Data collection methods. Current methods for collecting spatial transcriptomics data include
spatial barcoding, in which the barcodes used in identifying RNA molecules are coded to indicate
location; and fluorescent hybridization, in which RNA molecules are tagged with a fluorescent
compound and then captured using single-molecule imaging; in situ-sequencing based methods;
and dissection methods, where tissue is divided into sections which are then sequenced with
non-spatial methods similar to RNA-seq.

Spatial barcoding procedures place barcodes containing information that allows RNA
captured within to be tied to the original spatial location on a slide, and a slice of tissue is placed
onto the slide such that RNA from cells is tagged with the spatial barcodes4,5. These spatial
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barcodes may be constructed as part of a regular grid of spots, or
through randomly deposited beads. Successive techniques seek to
construct spatial barcodes in which the original position can be
localized with increasingly fine resolution, in addition to
increasing gene coverage and capture efficiency. The Visium
technology6 captures gene expression using an array of
approximately 5000 spots with diameter 55 μm. In addition to
the expression data for each spot, a stained image of the tissue is
captured. Slide-seq7,8 uses beads randomly deposited on a puck,
with a 10 μm spatial resolution. High-definition Spatial Tran-
scriptomics (HDST) captures at a ~ 2 μm resolution9 and Seq-
scope10 further increases the resolution with a center-to-center
distance of ~ 1 μm.

Fluorescence in situ hybridization (FISH) methods rely on
fluorescence to identify specific RNA molecules with high-
resolution optical imaging. In these methods, RNA molecules are
hybridized and then the resulting fluorescent colors are measured
through imaging to identify and localize RNA molecules. By
encoding a particular RNA species as a sequence of colors, and
then tagging that RNA with the respective colors in successive
rounds of imaging, a number of RNA types exponential in the
number of rounds can be distinguished. Then, the RNA
molecules are divided by the cell they originate from to produce
a cell-by-count matrix spatially indexed by the centroid position
of each cell. This contrasts with spatial barcoding methods in
which spatial locations do not directly correspond to individual

cells. Multiplexed Error-Robust FISH (MERFISH)11 uses error
coding to increase accuracy in measurement and can measure
over 10,000 genes. seqFISH+12,13 uses a larger number of colors
to reduce the number of imaging rounds required for data
collection and is capable of measuring counts for up to 24,000
genes. Compared to spatial barcoding methods, FISH datasets
tend to capture a lower number of genes but allow for accurate
localization of individual RNA molecules and significantly higher
capture efficiency5, giving a more accurate picture of the genes
that are captured.

Additional methods for the collection of ST data include in situ
sequencing methods, in which RNA molecules are reverse
transcribed into DNA and then sequenced within the cell, such
as FISSEQ (Fluorescent In Situ Sequencing)14, BaristaSeq15, and
STARmap16. Alternately, technologies such as Geo-seq17 and
Tomo-seq18, which use cryosectioning, separate tissue into small
sections and then perform RNA sequencing. This allows for the
final collection to be done using non-spatial sequencing, allowing
for higher capture efficiency, but require increased preparation of
the sample and are therefore significantly limited in both the
number of spatial locations that are extracted and the resolution
at which they are separated.

Multiple resolution scales in spatial transcriptomics data.
Currently, there are three major scales in ST data: multi-cell,
single-cell, and sub-cellular resolution. In multi-cell resolution

Table 1 List of software packages.

Name Summary Platform Reference

Identifying spatially variable genes
Trendsceek Statistical testing on spatial hypothesis (non-parametric) R 25

SpatialDE Gaussian process regression Python 26

SPARK Statistical testing - generalized linear spatial model R 27

SOMDE Self-organizing neural map + Gaussian process regression Python 28

Sepal Assessing spatial variance by length of time to equalize under diffusion Python 29

scGCO Graph cuts to divide based on spatial expression Python 30

SpaGCN Graph convolutional network, joint detection of regions Python 31

Region Segmentation
stLearn Histology-based smoothing + clustering Python 21

Seurat Non-spatial clustering combined with spatial visualization R 22

SmfishHmrf (Giotto) Combining Gaussian expression model with hidden Markov random field R 23,33

SpaGCN Graph convolutional network, joint detection of SVGs Python 31

BayesSpace Fully Bayesian expression model, hyper-resolution segmentation R 34

SEDR Deep auto-encoder based embedding for clustering R 35

Identifying cell-cell interactions
SpaOTsc Optimal transport to match ligand and receptor expression Python 41

Spatial Variance Component
Analysis

Gaussian process model including interaction term Python 42

Misty Multi-component linear model including interaction term, random forest R 43

Node-centric Expression Modeling Graph neural network combining expression data over various length scales Python 44

GCNG Supervised training of graph neural network then allows for identification of novel
interactions

Python 45

Mapping cells to spatial locations
Seurat Alignment for a variety of data modalities including spatial data by pairing a subset of

cells as anchors
R 22

SpaOTsc Optimal transport mapping between spatial and single cell data Python 41

DistMap Matthews correlation coefficient computed on binarized expression R 53

DeepSC Neural network learns to predict locations of cells in space Python 54

GLISS Uses graph-based measure based on similarity of landmark genes Python 55

Tangram Aligns gene expression while also accounting for spatial cell density distribution Python 56

Cell type deconvolution/enrichment scores
Giotto Several algorithms for computing enrichment scores R 23

SPOTLight Non-negative matrix factorization using known marker genes for initialization R 49

SpatialDWLS Dampened weighted least squares for matrix factorization R 50

RCTD Statistical fitting of combination of Poisson distribution models R 51

DSTG Graph neural network to learn cell types and deconvolution from data Python 52
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data (Fig. 1a) each spatial datapoint may contain genetic material
from multiple cells of varying number and type. As such,
downstream analysis typically considers expression as a combi-
nation of contributions from multiple cell types in a manner
similar to bulk RNA-seq analysis, but on a much smaller scale.
Single-cell resolution data (Fig. 1b) is characterized by locations
that are either exactly single cells or spots on the scale of a single-
cell. Sub-cellular resolution (Fig. 1c) data localizes the positions of
RNA molecules on a spatial scale smaller than the size of a cell.
This may take the form of high-resolution spatial barcoding,
where spots are smaller than single cells, or single-molecule
imaging where positions of individual RNA molecules are cap-
tured. Sub-cellular resolution data can also be combined with cell
segmentation to produce single-cell resolution data where
expression is tied to specific cells, which can be processed in
spatially-aware single-cell analysis pipelines.

Some downstream analysis tasks may be associated with data of
a specific resolution. For example, cell type decomposition
analysis is applied to multi-cell resolution data to decompose
the expression into percentage contributions from different cells
or cell types. Alternately, sub-cellular resolution ST data can be
extended beyond analysis of count matrices to also consider the
position of specific RNA species within the cell19, using the
position of RNA molecules inside the cell to provide information
on cell type and state beyond that of summed counts. This
additional information may allow for more detailed or precise
discrimination of cells, but at a tradeoff of increased data
complexity.

Preprocessing of ST data
As in the case of scRNA-seq data, preprocessing is an essential
step in the analysis pipeline. In general, as ST data typically

consists of a collection of transcriptomic barcodes, the same
practices as used in scRNA-seq analysis may be directly applied to
ST data. Standard practices include the steps of filtering out low-
quality barcodes, normalizing counts, and controlling for unde-
sired experimental effects or covariates20.

However, ST data includes positional information, and this
data can also be leveraged in the preprocessing step, under the
assumption that nearby cells are more likely to be similar
expression. The stLearn method21 performs smoothing on the
expression count data over the spatial neighborhood of a spot,
using Visium data. To account for the possibility of nearby but
dissimilar cells, the neighborhood smoothing is weighted by a
morphological similarity score, derived from application of a pre-
trained convolutional neural network to an image of each spot,
more heavily weighing neighbors that are deemed morphologi-
cally similar.

In principle, the use of smoothing techniques is helpful in
improving the quality of downstream spatial analyses. For
example, as this step seeks to average out expression profiles from
nearby cells of the same type, an iterative procedure could use
downstream computation of cell types in the spatial smoothing
step. More advanced techniques for in-depth exploration of the
spatial information at the stage of pre-processing are needed.

In order to facilitate pre-processing of data and serve as a
computational framework for downstream analysis, a number of
packages have been introduced for processing transcriptional data
with spatial information, such as Seurat22, Giotto23, Squidpy24,
and stLearn21.

Defining and identifying spatially variable genes
A key step in scRNA-seq pipelines is the identification of highly-
variable genes (HVGs), for which expression exhibits significant

Fig. 1 Spatial Transcriptomics Data: Collection and Resolutions. ST data can be collected with various methods and resolutions. a Illustration of spatial
barcoding, in which spatially-identified barcodes are arranged and then used to tag RNA molecules in tissue. Compare with c, but note these methods are
not restricted to multi-cell resolution. b Illustration of sequential fluorescent imaging, where RNA molecules are sequentially tagged with different color
fluorescent probes and the color sequences are used to identify RNA species. In general, this data is collected at sub-cellular resolution, as show in e, but is
frequently combined with cell segmentation to create single-cell data, as in d. c Multi-cell resolution spots, in which measured expression at one spatial
location is collected across a number of possibly heterogeneous cells. d In single-cell resolution data, each spatial location corresponds to one cell. This
allows for spatial analysis of cell identity and a single-cell understanding of tissue structure and cell-cell communications. e One type of sub-cellular
resolution data is single-molecule imaging. Note the presence of information both in the number of distinct RNA molecules of one type in a cell, and also
the localization of those molecules within the cell. Sub-cellular resolution data may be combined with cell segmentation to produce single-cell data to
facilitate corresponding analysis.
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differences between cells. However, a gene may exhibit variation
from cell-to-cell but not in a way that produces a clear spatial
pattern when viewed using ST data. As such, in order to under-
stand spatial cellular variation, analysis of ST data requires the
identification of spatially variable genes (SVGs). These spatial
variations in gene expression can reflect cell type compositions
that perform specific spatial functions or spatial patterns in
cell-cell interactions23. Spatial expression of SVGs may exhibit
patterns such as clustering and periodicity, depending on the
tissue structure and function. Methods for detecting spatially-
variable genes can be mathematically understood as expressing
the cell-to-cell variation exhibited in gene expression as a com-
bination of spatial variation, which occurs on a coherent pattern
in space, and non-spatial variation, including intrinsic variation
between cells and possibly other terms, such as variation due to
cell-cell interaction (see Supplementary Note 1, Spatially-variable
genes). When the variation of a particular gene is primarily due to
spatial variation, that gene can be said to be spatially variable.

A variety of recent methods have been proposed that vary in the
manner in which spatial variance is represented. Trendsceek25,
SpatialDE26 and SPARK27 are methods based on spatial correla-
tion testing, where the correlation between the distribution of gene
spatial expression and the data site locations is considered. Spa-
tialDE models the variability of gene expression using Gaussian
Process Regression, where the expression variability is decom-
posed into spatial and non-spatial parts26. The spatial covariance
between cells is modeled to decay exponentially with the squared
distance between them, and comparison of the spatial and non-
spatial contributions of variance provides a natural and inter-
pretable explanation of spatial patterns in genes. However, it is
limited by the choice of kernels used in the Gaussian process
model. Trendsceek instead assesses the relationship between gene
expression levels and spatial locations non-parametrically25,
modeling expression as a marked point process. Testing for sig-
nificance with a permutation-based test, non-linear expression
patterns can be identified without the need to specify a distribu-
tion or spatial region of interest. This, however, comes at the cost
of significantly increased computation time. SPARK (Spatial
PAttern Recognition via Kernels) directly models spatial count
data through generalized linear spatial models (GLSM), a mixture
containing both periodic and Gaussian kernels to directly model
the non-Gaussian spatial data, and uses random effects to capture
the underlying stationary spatial process27. The computational
complexity of the above methods grows quadratically as the
number of spatial sites increases, and so they may be difficult to
apply to larger datasets. SOMDE28 instead uses a self-organizing
map neural network model to combine cells into nodes that
preserve the expressional and topological structure of the data,
effectively a coarse-graining step, and then applies a Gaussian
process model similar to SpatialDE.

Based on the mathematical principle that non-spatial variation
will correspond to higher-frequency modes in space, and spatially
significant variation to lower-frequency, Sepal29 performs a
Gaussian diffusion on the spatial expression. Because higher-
frequency variation decays exponentially faster under diffusion,
the timescale on which spatial variation persists through diffusion
is indicative of the significance of spatial structure in a gene.
Mathematically, this can be understood as representing variation
on a continuous scale between spatial and non-spatial. scGCO
(single-cell graph cuts optimization) applies a graph cut method
analogous to those used in image segmentation30. scGCO applies
a Delaunay triangulation across tissue to generate a sparse
graph representation of data sites and then adopt binary cuts
on the graph via optimization of Markov Random Fields.
SpaGCN identifies spatial domains and SVGs jointly31 by using a
graph convolutional neural network to learn a representation

aggregating gene expression data from surrounding spots. The
adjacency graph used in the convolution is constructed based on
both spatial location and histology, which enables identification
of SVGs and domains with coherent expression and histology.

Compared to other analyses, it is much more difficult to
quantify what exactly constitutes a spatial pattern, despite how
obvious it is to the human eye. Consequently, when identifying
genes with interesting patterns in a dataset is important, it may be
particularly useful to apply multiple methods with differing
approaches, which may have the capacity to recover different
types of patterns.

Segmentation of spatial regions with distinct biological
functions
While clustering cells into groups with similar expression is a
common task in scRNA-seq analysis, spatial data allows for the
much more powerful segmentation of data into distinct spatial
regions. Cells contribute to various biological functions when
cooperating with other nearby cells, and using spatial tran-
scriptomics data, we can identify these spatially associated groups
to understand how different cells work together to perform
complex functions. This leads to the task of dissecting the tissue
into spatial domains. Depending on the type and resolution of
data, the spatial locations that are being segmented into regions
may be, for example, individual cells or spots in a spatial bar-
coding array, but below we will refer to any such single location in
a spatial transcriptomics dataset as a spot for brevity.

Before developing computational tools for identifying these
domains, it is necessary to define what constitutes a domain in the
first place. Segmentation can be loosely viewed as an optimization
problem, attempting to group spots into maximally similar spatial
regions under some objective defining similarity (see Supple-
mentary Note 1, Segmentation). The simplest approach is to look
for spatially contiguous regions of cells with maximally similar
gene expression (Fig. 2a). This is analogous to the typical clus-
tering analysis in scRNA-seq analysis pipelines, but conscious of
spatial position. However, if viewing regions from a functional
perspective, they may not simply consist of a homogeneous col-
lection of cells with similar gene expression. Other ways of
defining a spatial domain lead to different interpretations which
are still underexplored. For example, regions might consist of
heterogeneous collections of cells with differing gene expression,
but distributed such that there are not clear sub-regions (Fig. 2b).
Regions might also be defined by the particular arrangement of
cell types (e.g., salt and pepper versus layers, Fig. 2c), or may be
distinguished in terms of morphological features, revealing
functions associated with morphological characteristics. Note that
while the regions depicted in Fig. 2c could be divided into
meaningful sub-regions, other aspects beyond simple transcrip-
tional similarity could also reveal function differences between
spatial regions—for example, spatial domains associated with
functions regulated by cell–cell communications (Fig. 2d) could
be identified by performing domain segmentation downstream of
cell–cell communication inference. However, current approaches
for identifying spatial regions primarily center on the first defi-
nition, identifying spatially nearby groups of cells with maximal
similarity in gene expression.

One approach to identifying regions in spatial data is to apply
standard clustering techniques used in scRNA-seq analysis, such
as the clustering functionality in Seurat22. This allows for some
visualization of spatial clusters; however, without incorporating
spatial information, the full potential of the data is not used. This
can be improved with a pre-processing step that incorporates
spatial information into the similarity used in the clustering
algorithm. For example, spatialLIBD32 first identifies specifically
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genes exhibiting layer-based variation in expression in a human
prefrontal cortex dataset, and then performs clustering analysis
only using those SVGs. In this way, output represents functional
layers as opposed to simply cell types. stLearn21 applies a pre-
processing step in which expression data is smoothed based on
morphological similarity between cells as determined using a pre-
trained computer vision algorithm trained on image classification
tasks, applied on staining images which are often available as
byproduct of spatial transcriptomics. This increases the similarity
between morphologically similar locations, and as a consequence
after performing clustering morphologically similar regions of the
tissue will be more likely to be associated into a domain. In order
to ensure spatial contiguity of domains, after the clustering step
any disconnected clusters are split into subclusters representing
contiguous regions. While morphological similarity measures are
highly interesting in the analysis of spatial data, given the relative
ease of access compared to other alternate data modalities, there
remains significant room for future research into the develop-
ment of automated image analysis tools tuned specifically on
histology images and designed to integrate with downstream ST
data analyses.

In addition to modifying and adapting preprocessing steps in
scRNA-seq data analysis for spatial transcriptomics data analysis,
models can be designed natively for spatial data at the clustering
step, removing the need for post-processing to ensure domains
are connected in space. A hidden Markov random field (HMRF)
method, SmfishHmrf33, also included in Giotto23, combines a
Gaussian model of gene expression with a spatial term that
explicitly incentivizes cells that are adjacent in the proximity
graph to be part of the same region. Using an expectation-

maximization algorithm, optimization is simultaneously per-
formed over the type of each cell and the expression pattern of
each cell type. The HMRF method produces regions that are
contiguous in space, but is limited by the simple Gaussian model
used for expression and has a tendency to create blocky regions
without complex boundaries. However, the formulation easily
lends itself to adaptation with other segmentation objectives (e.g.,
as shown in Fig. 2b–d) so it may be useful in future methods
development. BayesSpace34 uses a more powerful, fully Bayesian
formulation to model spatial region-based gene expression, using
a Markov random field prior to create spatial coherence. Of
particular note in the BayesSpace method is an additional part of
the algorithm in which each spot in the array is subdivided into
subspots whose expression levels are learned to allow the subspots
to fit into different regions, constrained by the original spot-level
expression. This approach allows for results to be projected on a
resolution higher than the data was originally collected at.
However, the structuring of the Bayesian approach is specific to
the arrangement of spots, and is therefore more difficult to adapt
to non-Visium data.

Recent work has also sought to apply machine learning
methods to learn how to separate cells or spots into regions. As
mentioned previously, SpaGCN31 detects both SVGs and spatial
regions jointly through application of a graph convolutional
network. Spatially Embedded Deep Representation (SEDR) con-
structs an embedding that jointly captures expression and spatial
information through a deep autoencoder framework35. Such deep
learning embedding methods offer increased discriminatory
power through the more complex model, but can suffer from lack
of interpretability in the resulting embeddings. However, the

Fig. 2 Illustration of different traits that can separate spatial regions. a–d Dotted line indicates division between two regions. Red and blue cells indicate
groups with consistent expression across some set of spatially variable genes. a Regions are characterized by different gene expression, equivalent to the
groups identified by cluster analysis such as the Louvain algorithm on non-spatial data. b Regions are not entirely homogeneous, but instead differ in
distribution of observed expression. c Regions have similar distributions, but differ in the spatial patterning of gene expression. d Red lines connect
interacting cells. Beyond cell type indicated by gene expression, regions may be distinguished by higher-level properties such as patterns of cell-cell
interactions. Performing region identification downstream of other analyses could allow for detecting variance in such properties.
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high-information embedding can be leveraged for additional
downstream analyses such as trajectory inference and batch
correction35.

Cell-cell interactions in space
In most tissues, the interaction and communication among cells
happen at a short timescale compared to cell movement and
migration. Given the relative stability of cellular locations, spatial
transcriptomics allows us to reveal cell–cell interactions (CCI),
also referred to as cell-cell communications (CCC), with fewer
false positives than similar analysis with scRNA-seq data. Ana-
lysis of interactions between cells can be divided into two sec-
tions: identifying pairs of genes that interact, such that expression
of the gene in one cell influences that of the other gene in others
(Fig. 3a); and identifying pairs of cells in which that gene pair
interacts. Here we will discuss methods that identify pairs of
interacting genes from ST data, as well as those that use prior

knowledge of interacting genes to identify interactions between
cells or groups of cells.

Ligand-receptor (L-R) interactions follow chemical pathways
whose existence is not specific to any one organism, and often not
even any one species, and as such, identification of CCI can benefit
particularly heavily from borrowing previous knowledge, typically
in the form of curated L-R databases whose entries correspond
to known interactions that have been established in prior
literature36–39. Given such a database, inference of cell–cell com-
munications can be naturally extended to the spatial case using an
approach that looks for pairs of cells that co-express a particular
known L-R pair and are also sufficiently nearby in space21,40, as
shown in Fig. 3b. In this way, interactions between cells that would
be presumed when only considering L-R co-expression can be
filtered out if there is not a physical possibility for communication
between them (Fig. 3d). SpaOTsc41 uses an optimal transport
method to match ligand and receptor distributions to create a cell-
level map of which cells communicate with which other cells.

Fig. 3 Illustration of techniques in extracting cell-cell interactions from ST data. a Cell-cell interactions occur when transfer of a ligand from a sender cell
to a receiver cell triggers a downstream response, ultimately leading to changes in gene expression in the receiver cell. b Common techniques identify co-
expression of known L-R pairs in cells adjacent in a spatial proximity network, and use this to mark interactions between cells. c Alternatively, some
methods probabilistically capture different sources explaining variance in spatial gene expression, including terms capturing intra- and inter-cellular effects.
When inter-cellular effects dominate a particular gene’s expression, it is indicative of cell-cell interaction. d Insights made from CCI analysis of spatial data
include the ability to determine interactions of a particular cell by filtering out spurious long-range connections, and investigations into the relationship
between L-R interactions, and mechanistic interactions and cell proximity.
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Similar to methods for identifying spatially variable genes,
statistical models of gene expression in space that model multiple
genes simultaneously can identify pairs of genes whose interac-
tion explains large amounts of variance and thereby extract
interacting genes (Fig. 3c). These methods allow for the discovery
of novel interactions supported by the data, which is not possible
when only using L-R interactions from databases. Spatial Var-
iance Component Analysis (SVCA)42 uses a Gaussian process
model where the covariance matrix has a term modeling inter-
action between cells, and if this term is large compared to other
covariance terms representing intrinsic variation and random
noise, the cells are considered to be interacting. Misty43 uses a
similar multi-component model using a random forest machine
learning framework to learn the different components in the
model. Node-centric expression modeling (NCEM)44 uses a
graph neural network model on varying length scales, allowing it
to learn higher-order interactions and determine characteristic
spatial scales of interaction. This attention to identifying from
data not only interactions but also length scales is particularly
interesting and highlights a key benefit of analysis of CCI on ST
data over scRNA-seq data. GCNG45 uses supervised machine
learning on known interacting pairs to produce a model that can
then identify novel pairs from ST data. However, the supervised
training approach may be particularly sensitive to the choice of
data originally used to train the model.

In addition to inferring the communications among cells based
on known ligand-receptor pairs, spatial transcriptomics also
allows for more detailed study of the interplay between spatial
arrangement and CCC. For example, identifying adjacent cells
from spatial data can reveal CCC through membrane-bound
proteins, which lack the longer-range diffusion of other com-
munication methods23. Beyond just identification of interactions
between cells, inferences can further be made into the role that
ligand-receptor interactions play in higher-order tasks such as the
spatial arrangement of cells40.

Determining spatial distribution of cell types in multi-cell
resolution data
Widely used ST techniques such as the Visium technology6 col-
lect data at a spatial resolution that often corresponds to 2–8 cells.
In order to understand spatial tissue structure in terms of single
cells, the ST data can be augmented with cell type information
either from a provided atlas or in an unsupervised manner from
scRNA-seq data through standard clustering analysis such as with
the Louvain algorithm46.

One way to quantify the presence of cell types at each spot is to
compute enrichment scores, which represent the relative
expression level of some set of genes. By identifying a set of
marker genes for a particular cell type, the enrichment score of
that gene set at some spot is informative of the presence of that
cell type at that spot (Fig. 4a). The Seurat package22 allows for
computation of enrichment scores through the AddModuleScore
function. The Giotto package23 computes enrichment scores in
three ways: using the PAGE algorithm47 in which a normal-
distribution based statistical test is used to assess significance; an
algorithm that uses gene expression rankings to avoid the need to
compute explicit sets of marker genes, and a hypergeometric test
on an expression contingency table. Multimodal Intersection
Analysis (MIA) computes an enrichment score for cell types over
spatial regions by identifying marker genes for each cell type and
each spatial region, and measuring the extent of overlap between
corresponding sets of marker genes48.

An alternative to enrichment scores is deconvolution
analysis, in which the total expression at each spot is broken
down into a percentage decomposition of different cell types

(see Supplementary Note 1, Deconvolution analysis). Compared
to enrichment scores, this decomposition is more directly inter-
pretable and allows for cell types to be clearly mapped to different
regions in space. A non-negative matrix factorization regression7

approximates the expression matrix as the product of a (non-
negative) coefficient matrix and the expression pattern of known
cell types from scRNA-seq data. This coefficient matrix can then
be interpreted as a decomposition of each spot in terms of cell
types. SPOTLight49 extends the non-negative matrix factorization
approach by using known marker genes to initialize the factor
matrices, improving stability over the base NMF method.
SpatialDWLS50 similarly uses a Dampened Weighted Least
Squares algorithm, originally designed for bulk RNA-seq data to
decompose expression at spots into individual cell types,
obtaining higher accuracy than NMF methods. Robust Cell-Type
Decomposition (RCTD)51 fits a statistical model in which gene
counts are assumed to be Poisson distributed to infer a decom-
position of cell types at each spot, and directly accounts for the
effects of experimental differences between the spatial data and
the single-cell data. Given that there are likely to be significant
differences on how data was collected between the spatial and
single-cell datasets, correcting for batch effects, a highly studied
phenomenon in the literature, is a natural and valuable step to
add to this process. DSTG52, a machine-learning based alter-
native, uses graph convolutional networks to predict cell type
compositions. In this approach, scRNA-seq data is used to create
a pseudo-ST dataset, in which spots are generated by randomly
combining expression data of cells. This pseudo-ST dataset is
used to train a graph convolutional network that predicts cell type
decompositions in the real ST data. However, there remains room
for deeper investigation into how to construct such pseudo-ST
datasets for training machine-learning based approaches and
perform more detailed comparisons between machine learning
and more traditional approaches.

Utilizing scRNA-seq data to improve resolution of spatial
transcriptomics data
When analyzing multi-cell resolution ST data, scRNA-seq data
can also be used to produce a finer, single-cell resolution spatial
dataset by relating single cells to spatial positions through a
similarity measure between the ST data and the scRNA-seq data,
as illustrated in Fig. 4b. These techniques allow for the analysis
pipelines from single-cell resolution spatial transcriptomics to be
extended to spatial data collected from spatial barcoding meth-
ods. In this case, each cell in an scRNA-seq dataset is matched to
a location by comparing expression data between the scRNA-seq
and the spatial transcriptomics data. Typically, the expression
data of each cell is compared to each spot and a similarity score is
computed, possibly in some shared latent space, combined with a
statistical test for significance. Mapping to the latent space can be
viewed as a dimensionality reduction problem, and can also be
used to address other issues such as batch effects and technical
noise. The DistMap algorithm53 binarizes gene expression and
then scores the similarity between cells and spots using the
Matthews correlation coefficient. The SpaOTsc method41 poses
the problem as matching two distributions of cells over tran-
scriptional space and applies a structured optimal transport
algorithm to find a matching between cells and locations that
maximizes similarity between the expression data of the cells and
that at their imputed location, while ensuring cells are properly
distributed over the area. Seurat22 includes a method that projects
spatial and scRNA-seq datasets to a shared latent space using
canonical correlation analysis, scoring similar cells by shared
neighborhood and distance in that space. DeepSC54 uses a deep-
learning method to learn an adaptive metric representing the
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probability of a given cell occurring at a particular location given
the respective expression data of each, and then matches cells to
their most likely originating location. GLISS55 is a graph-based
method that uses a Laplacian Score to identify landmark genes,
constructs a graph based on similarity of gene expression among
landmark genes, as well as between landmark genes and SV genes.
Tangram56 maps single-cell data to spatial data probabilistically
by minimizing KL divergence of cell density at spatial regions
while also accounting for correlations between gene expression of
single cell and spatial data and spatial origins.

For the integration methods depending on gene expression
similarities, the constructions of the correlation or similarity
matrices between scRNA-seq and spatial data is crucial to the
mapping quality. The aforementioned methods introduce differ-
ent criteria for selecting genes to use in the mapping, as blindly
using all common genes or simply non-spatial HVGs may cause
contamination of the connectivity matrix from spatially unmea-
ningful genes. Differences in construction of the similarity or
correlation metric can also significantly affect results. Generally, a
sparser connectivity matrix leads to more precise but less robust
mappings. Another challenge is that the gene expression levels
between scRNA-seq and spatial transcriptomics are not linearly
related in practice, and therefore methods using similarity mea-
surements based on ranking or binarized values may produce
more robust results. Furthermore, a potential issue of high-
resolution mapping between scRNA-seq and ST data is that
individual cell-spot pairs may be less reliable, as higher spatial

resolution typically leads to fewer counts, similar to scRNA-seq
data analysis in which observations of groups of cells are more
generally reliable than those of individual cells. To tackle this
issue, the cluster-level mapping between scRNA-seq and ST data
discussed in the section Determining spatial distribution of cell
types in multi-cell resolution data may be used as a measurement
of confidence of the individual cell-spot level mapping.

Conclusions and future outlook
Recent advances in spatial transcriptomics technologies allowing
higher resolution, greater gene coverage, and lower experimental
cost have sparked an explosion in methods for analyzing the
resulting data. These advances thus drive the growth of compu-
tational methods and pipelines for ST data analysis, allowing
deeper discovery of biological insights. In this review, we have
surveyed the primary types of analysis that are performed along
with current methods and software, highlighting their variations
in suitability for different datasets and in outcomes.

There remain a number of promising avenues of research in
future development of computational tools, which will lead to
more extensive and rigorous analysis of ST datasets, allowing
deeper discovery of biological insights. While new methods for
performing region segmentation continue to be developed at a
significant pace, current methods center on the same notion of
similarity from scRNA-seq, looking for groups of cells with
maximally similar gene expression, but constrained to exhibit
spatial coherence. Because functional regions of tissues may not

Fig. 4 Enhancing spatial transcriptomics data with scRNA-seq data. This analysis step augments ST data using scRNA-seq data. a By using scRNA-seq
data onto the spatial dataset, the composition of individual spots can be understood in terms of single cells, such as by computing enrichment scores,
which measure the expression of certain gene sets (such as marker genes from a particular cell type) relative to the norm, or through deconvolution, which
decomposes the overall expression data from a spatial spot into a combination of contributions from several cell types. b scRNA-seq data can be used to
increase resolution of multi-cell ST data, by mapping cells to spatial locations, producing a spatial dataset at single-cell resolution. The primary choices in
such methods are the computation of similarity scores between cells and spots, and the method by which matching is computed from the similarity matrix.
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be composed entirely of cells with identical expression patterns
(as shown in Fig. 2b–d), this limits the potential to detect
meaningful regions in ST data. Recent work on deep generative
models44,57 for modeling gene expression suggests the possibility
of capturing more complex expression patterns in each region
than a simple maximization of transcriptional similarity. Addi-
tionally, as regions consist of multiple cells, the native inclusion of
multi-cell properties such as cell-cell interactions will enhance the
ability of region segmentation methods to understand the struc-
ture and function of the tissue.

There is also significant room for the development of improved
and accessible tools for inferring cell–cell communications from
spatial data. For example, the use of spatial data allows for
informed predictions to be made about potential communications
between individual cells, instead of analysis between groups of
cells that is typical in scRNA-seq data, and this may be a focus in
future methods. While gene regulation and ligand-receptor
interaction are major mechanisms by which cells interact, there
are also other aspects in cell-cell interactions that may come to
light using spatial data such as downstream reactions caused by
mechanical pressure and physical contact between cells (Fig. 3d).
This analysis, previously intractable, is now possible by analyzing
the morphological characteristics of cells with the detailed cell
shapes revealed by imaging combined with ST data. Alternately, a
recent technology, PIC-seq58, isolates and sequences pairs of cells
in physical contact, providing a different type of spatial infor-
mation than traditional ST data, which could be combined with
traditional ST data to improve analysis of physical relations
between cells. As validation is a challenging problem in inference
of cell–cell communications from both spatial and non-spatial
data, these new data modalities and corresponding computational
analyses present an opportunity for a clearer and more robust
picture of cell–cell communications.

Another notable avenue for improved development of spatial
algorithms is pseudotime analysis, which has been used exten-
sively on scRNA-seq data to understand phenomena such as cell
differentiation and cancer progression. Traditionally, cell state
trajectories are built from single-cell expression snapshots, where
the spatial structure within a tissue is largely ignored. This can
hinder our discovery and understanding of the dynamics of
progression on the tissue level. Recently, stLearn21 has proposed a
concept of pseudo-space-time (PST), calculated by taking a linear
combination of non-spatial diffusion pseudotime and spatial
distance. Whereas pseudotime values computed from a particular
root cell represent distance along the manifold of gene expression
taken by cells through development, a measure of spatial pseu-
dotime should represent a combined distance in physical and
expression space, such that a small value indicates a cell located
close to the root cell that also has a similar transcriptional profile.
This remains a largely unexplored question and promising for
future work, considering different ways for constructing such a
combined spatial pseudotime beyond a simple linear combination
and investigating potential inferences into the development of
tissue and biological structures.

Similarly, multi-nomics integration, previously studied in
scRNA-seq data, is posed for improvement in applications to
spatial transcriptomics data. While multi-omics integration
combining single-cell transcriptomics data with proteomics or
other forms of data has been performed in the past, extending
these methods to explicitly handle positional data would leapfrog
on the additional inferences that spatial data provides. Recent
research has begun to explore this, such as a study of fibroblast
fate during tissue repair, integrating single cell chromatin land-
scapes (scATAC-seq), gene expression states (scRNA-seq), and
spatial transcriptomic profiling59. Future developments in the

collection of spatial -omics data will create a further need for
integration of multiple fully spatial datasets.

New developments of research on these interesting problems,
as well as many more that have yet to be discovered, place spatial
transcriptomics in a position to create a revolution in the
understanding of expression and behavior of cells even beyond
that of single cell transcriptomics. Because of the additional
dimension of complexity created by spatial data, we emphasize
the need for a detailed understanding of the nature of different
types of ST data and ST analyses, and how these aspects affect the
ultimate conclusions.
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