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Identifying metabolic reprogramming phenotypes
with glycolysis-lipid metabolism discoordination
and intercellular communication for lung
adenocarcinoma metastasis
Xin Li1,5, Lefan Tang1,5, Jiaxing Deng1, Xiuying Qi2, Juxuan Zhang1, Haitao Qi1, Mengyue Li1, Yixin Liu3,

Wenyuan Zhao1, Yunyan Gu 1, Lishuang Qi 1✉ & Xia Li 1,4✉

Tumor metastasis imposes metabolic requirements for escaping from primary tissues, pro-

ducing vulnerability in treatment. This study aimed to explore the metabolic reprogramming

relevant to lung adenocarcinoma (LUAD) metastasis and decode the underlying intercellular

alterations. Using the gene expression profiles of 394 LUAD samples derived from The

Cancer Genome Atlas (TCGA), we identified 11 metastasis-related metabolic genes involved

in glycolysis and lipid metabolism, and defined three metabolic reprogramming phenotypes

(MP-I, -II, and -III) using unsupervised clustering. MP-III with the highest glycolytic and

lowest lipid metabolic levels exhibited the highest metastatic potency and poorest survival in

TCGA and six independent cohorts totaling 1,235 samples. Genomic analyses showed that

mutations in TP53 and KEAP1, and deletions in SETD2 and PBRM1 might drive metabolic

reprogramming in MP-III. Single-cell RNA-sequencing data from LUAD validated a metabolic

evolutionary trajectory from normal to MP-II and MP-III, through MP-I. The further inter-

cellular communications revealed that MP-III interacted uniquely with endothelial cells and

fibroblasts in the ANGPTL pathway, and had stronger interactions with endothelial cells in the

VEGF pathway. Herein, glycolysis-lipid dysregulation patterns suggested metabolic repro-

gramming phenotypes relevant to metastasis. Further insights into the oncogenic drivers and

microenvironmental interactions would facilitate the treatment of LUAD metastasis in the

future.
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Lung adenocarcinoma (LUAD) is the most common type of
lung cancer, with a high mortality rate1,2. Metastasis is the
main cause of LUAD-related death, and the occult systemic

spread of the disease in several patients cannot be detected
through routine methods (such as pathological, clinical, and
radiological evaluation)3. Therefore, a better understanding of the
molecular mechanisms underlying LUAD metastasis is impera-
tive for the identification of patients with occult metastases and
for the development of customized treatment designs.

Metabolic reprogramming, conducted by cancer cells in
response to stress, has been recognized as a requirement for the
malignant progression of cancer, and its inhibition has been
shown to reduce metastatic spread4,5. Recent studies have
demonstrated that the metabolic properties and propensities of
tumors evolve during cancer progression, allowing tumor cells to
acquire cell-autonomous properties associated with enhanced
invasiveness or permitting them to alter the microenvironment to
accelerate tumor metastasis6,7, resulting in significant tumor
metabolic heterogeneity. In tumor cells, the metabolic switch
from oxidative phosphorylation to glycolysis (the Warburg effect)
increases their cellular invasiveness and metastasis by promoting
epithelial–mesenchymal transition and angiogenesis8. Other
metabolic adaptations also contribute to the metastatic cap-
abilities of tumor cells9,10. Therefore, a more sophisticated view of
cancer metastasis-related metabolic reprogramming is required.

The advent of transcriptomic technologies has provided a
platform for the exploration of metabolic heterogeneity. A pan-
cancer analysis has shown that tumor metabolic heterogeneity is
associated with clinical outcomes11. A study on pancreatic ductal
adenocarcinoma reported a dysregulated glycolysis–cholesterol
synthesis axis to be associated with patient outcome12. However,
cancer metabolism is context-specific6. Therefore, whether het-
erogeneity in distinct metabolic pathways can be used to stratify
LUAD into clinically relevant phenotypes, has not yet been
determined. Consequently, comprehensive interactions between
metabolic phenotypes and the tumor microenvironment are not
yet well understood. The emergence of single-cell transcriptomic
sequencing (scRNA-seq) has accelerated the discovery of inter-
cellular communications in context-specific diseases, making it
possible to systematically elucidate the regulatory mechanisms of
metabolic reprogramming in the tumor microenvironment.

This study aimed to identify the metastasis-related metabolic
reprogramming phenotypes of LUAD. Genomic analyses were
performed to unravel the underlying oncogenic events for the
phenotypes. Further analyses of the scRNA-seq data of LUAD
samples were used to validate the metabolic evolutionary trajec-
tory from normal to metastatic phenotypes and reveal the
intercellular communications.

Results
Identifying metastasis-related metabolic reprogramming phe-
notypes in LUAD. First, in The Cancer Genome Atlas (TCGA)
dataset (Table 1), using Student’s t-test with 5% false-discovery
rate (FDR), we extracted 431 differentially expressed (DE) genes
between the 185 metastatic LUAD samples with lymph node and/
or distal metastasis and 209 non-metastatic LUAD samples
(Fig. 1a), and found 280 and 151 DE genes to be upregulated and
downregulated, respectively. Besides “Cell cycle” and “DNA
replication” pathways, the upregulated DE genes also enriched in
“Glycolysis/Gluconeogenesis” and “Carbon metabolism” path-
ways (Hypergeometric distribution model, FDR < 0.05, Fig. 1b).
In addition, we found “HIF-1 signaling pathway”, associated with
glycolysis, to be potentially enriched with the upregulated DE
genes (Hypergeometric distribution model, P < 0.05, Fig. 1b). In
contrast, biological pathways related to lipid metabolism,

including “Glycerophospholipid metabolism” and “Ether lipid
metabolism”, were potentially enriched with the downregulated
DE genes (hypergeometric distribution model, P < 0.05, Fig. 1c),
indicating that lipid metabolism may play different roles from
that of glycolysis in LUAD metastasis.

Therefore, we extracted the eight upregulated DE genes
(ALDOA, ENO1, GAPDH, GPI, LDHA, PGAM1, PGM2, TPI1)
from the “Glycolysis/Gluconeogenesis” pathway and three down-
regulated DE genes (PLPP1, GPD1L, PLD3) from the “Glycer-
ophospholipid metabolism” and “Ether lipid metabolism”
pathways (see Supplementary Table 1). The 11 DE genes were
significantly positively correlated with each other within the same
kind of pathway, while significantly negatively correlated with the
genes in other kind pathways (Pearson correlation, FDR < 0.05,
Supplementary Fig. 1). These results indicated that the imbalance
of the glycolysis and lipid metabolism might participate in LUAD
metastasis. Therefore, we performed unsupervised hierarchical
clustering based on the mRNA expression of the 11 DE genes and
found the samples to be clustered into three groups with different
glycolytic and lipid metabolic patterns, defined as metabolic
reprogramming phenotypes (MPs). The heatmap (Fig. 1d) showed
that one MP exhibited lower mRNA expression of glycolytic genes
accompanied with higher lipid metabolic genes; one MP displayed
higher mRNA expression of glycolytic genes accompanied with
lower lipid metabolic genes inversely, and the other MP showed
intermediate mRNA expression of all metabolic genes. Where-
after, we calculated the MP-score of each group (see Methods),
representing the imbalance of the two kinds of genes’ expression,
and defined the MP-I–III by scores from the lowest to the highest.
Compared to the normal samples, the three phenotypes exhibited
gradually increasing mRNA expression of glycolytic genes and
decreasing expression of lipid metabolic genes (Fig. 1e).

We found MP-I–III to be significantly enriched in non-
metastatic, lymph node metastatic, and distant metastatic
samples, respectively (Fisher’s exact test, P < 0.0001, Fig. 1f).
Furthermore, we extracted the stage I treatment-naive patients
and found that MP-III had significantly shorter OS than MP-I
and MP-II (MP-III vs. MP-I: log-rank P < 0.0001; MP-III vs. MP-
II: log-rank P < 0.0001, Fig. 1g), while there was no significantly
different OS between MP-I and MP-II (log-rank P= 0.4947,
Fig. 1g). Similarly, the percentages of distant metastatic samples
were the highest (62.50%) in MP-III and lower in MP-II (27.03%)
and in MP-I (13.04%) with a significant difference in the
GSE1196913 dataset (Fisher’s exact test, P= 0.0169, Supplemen-
tary Fig. 2a, b). Whereas the percentages of lymph node
metastatic samples were not observed to be significantly different
among the three phenotypes (Fisher’s exact test, P > 0.05).

Depicting molecular characteristics and oncogenic events for
metabolic phenotypes. Differences in clinical and molecular
characteristics (see Methods) across the metabolic phenotypes in
the TCGA dataset were evaluated next, and displayed in Fig. 2
whose details are shown in Supplementary Table 2. The percen-
tages of stage IV (15.49%) and stage III (30.99%) in MP-III was
obviously higher than that in the other two MPs, the percentage
of stage II (33.83%) was the highest in MP-II, whereas the per-
centage of stage I (58.15%) was the highest in MP-I (Fisher’s exact
test, P < 0.0001). Analogously, the percentages of magnoid sub-
type, squamoid subtype, and bronchioid subtype (a low invasion
subtype14) were highest in MP-III (80.28%), MP-II (27.94%), and
MP-I (66.31%), respectively (Fisher’s exact test, P < 0.0001). The
hypoxia score15, as well as stemness16 and proliferation scores17,
increase progressively from MP-I to MP-III (Wilcoxon rank test,
P < 0.0001). The immune score18 was the highest in MP-II,
whereas the lowest was in MP-III (Wilcoxon rank test,
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P < 0.0001). In contrast, the tumor mutation burden (TMB) was
observed to be highest in MP-III, while decreased to MP-II and
MP-I (Wilcoxon rank test, P < 0.0001).

To determine the oncogenic events associated with the
different metabolic phenotypes, we further investigated the
differences in somatic mutations and copy number variations
(CNVs) in the 11 metabolic genes and the 28 known LUAD
driver genes (Supplementary Table 3) across the MPs in the
TCGA dataset. We found the frequency of mutations in TP53 and
KEAP1 and CNV deletion in a genomic region containing SETD2
and PBRM1 to be significantly different across the three
phenotypes (Fisher’s exact test, FDR < 0.05, Fig. 2). Of note, all
the genetic events occurred more frequently in MP-III than in
others.

Reconfirming the metabolic phenotypes of LUAD. The above
result showed that a percentage of early-stage patients without
any metastasis could be clustered into MP-III; thus, we inferred
that these patients might have a high risk of metastasis, resulting
in poor prognoses. Therefore, we first applied hierarchical clus-
tering on stage I patients derived from five public datasets
(Table 1) based on the mRNA expression of the 11 metabolic
genes and confirmed the stage I patients also to be clustered into
three phenotypes (Fig. 3a–e). Survival analysis (Fig. 3f–i) showed
the stage I patients with MP-III to have significantly shorter OS
than those with MP-I and/or MP-II in the GSE3121019 (MP-III
vs. MP-I, log-rank P < 0.0001, HR= 3.00, 95% CI: 1.56–5.76; MP-
III vs. MP-II: log-rank P= 0.0015, HR= 6.34, 95% CI:
1.72–23.44), GSE5008120 (MP-III vs. MP-I, log-rank P= 0.0174,
HR= 1.86, 95% CI: 1.08–3.20; MP-III vs. MP-II: log-rank
P= 0.0043, HR= 3.85, 95% CI: 1.42–10.39), GSE1321321 (MP-
III vs. MP-I, log-rank P= 0.0412, HR= 1.66, 95% CI: 1.00–2.76;
MP-III vs. MP-II: log-rank P= 0.4347, HR= 1.58, 95% CI:
0.50–4.97), and GSE4212722 datasets (MP-III vs. MP-I, log-rank
P= 0.0243, HR= 2.31, 95% CI= 1.02–5.26; MP-III vs. MP-II:
log-rank P= 0.0754, HR= 2.64, 95% CI: 0.86–8.10). In the
GSE6846523 dataset, MP-III also exhibited shorter OS but with-
out statistical significance (log-rank P > 0.05, Fig. 3j), which might
be caused by the lack of one gene (PGM2) for clustering in the
dataset. Additionally, there was no significant difference in OS
between MP-I and MP-II in five independent datasets, but there
was a shorter OS tendency of MP-II than that of MP-I in three
datasets (GSE13213, GSE42127, and GSE68465). Especially, the
GSE13213 dataset (Supplementary Fig. 2c, d) also showed that
30.77% stage I patients in MP-III developed distant metastasis
after surgery, marginally significantly higher than that (8.11%) in
MP-I (Fisher’s exact test, P= 0.0513) and tentatively higher than
that (22.22%) in MP-II (Fisher’s exact test, P= 0.66).

Additionally, in a paired proteomic and transcriptomic dataset
with 110 LUAD samples, derived from the Clinical Proteomic
Tumor Analysis Consortium (CPTAC), we observed the samples
were also clustered into the three MPs, based on the protein
expression of the 11 metabolic genes (Fig. 4a). Moreover, we
found that the mRNA expression of each metabolic gene was
significantly positively correlated with its protein expression in
the dataset (Pearson correlation, FDR < 0.05, Fig. 4b).

Displaying transcriptional trajectory of metabolic phenotypes
at the single-cell level. From one scRNA-seq dataset
(GSE13190724), the 26,436 epithelial cells were cataloged into 14
clusters with 0.1 resolution that the normal cells (Cluster 1, 11, and
13), primary tumor cells (Cluster 4, 8, 9, and 10), and mBrain
tumor cells (Cluster 0, 2, 3, 5, 6, 7, and 12) could optimally be
separated, which was visualized by UMAP plot (Fig. 5a). Average
mRNA expression of the eight glycolytic genes and three lipid
metabolic genes for each cell is shown in Fig. 5b, and they were
significantly higher and lower, respectively, in mBrain tumor cells
than in primary tumor cells and normal cells. Therefore, we sub-
jected the 11 metabolic genes to hierarchical clustering to determine
the metabolic phenotypes of the epithelial tumor cells based on MP-
score (Fig. 5c, d). The result confirmed the significantly higher
percentage of mBrain tumor cells in MP-III than that in MP-I and
MP-II (Fisher’s exact test, both P < 0.0001, Fig. 5e).

We next constructed a metabolic trajectory (Fig. 5f) by
ordering the epithelial cells according to the mRNA expression
changes in the 11 metabolic genes (see Methods). Seven
transcriptional states in the trajectory indicated distinct cellular
metabolic fates. The percentages of each MP in the seven states
are shown in Fig. 5g. Notably, State 1 and State 4 were both
enriched with normal epithelial cells, while the cells in State 4
exhibited very low expression of all the 11 metabolic genes,
which was not observed in the bulk dataset (TCGA), thus they
were not analyzed in the further analyses. Here, the metabolic
trajectory of the glycolysis-lipid imbalance appeared to begin
principally from partial normal epithelial cells, which marked the
beginning of State 1, evolved to MP-I tumor cells majorly at the
end of State 1, and then formed a branched structure with two
major cell fates (Cell fate 1 and 2). Tracing the metabolic
trajectory of Cell fate 1 (ignoring State 4) revealed that MP-I
tumor cells (State 2) evolved into MP-III tumor cells (State 3).
Subsequently, following the trajectory of Cell fate 2, we found
that along the MP-I tumor cell (State 5) trajectory, MP-II and
MP-III tumor cells were mainly located in separate branches of
State 6 and State 7 (Fig. 5g). The mRNA expression of glycolytic
genes generally increased from pre-branch to State 6 (MP-II) and
State 7 (MP-III), while a decrease in lipid metabolic gene
expression was only observed from pre-branch to State 7

Table 1 The datasets of lung adenocarcinoma used in this study.

Data source Platform Follow-up information Sample count

TCGA Illumina HiSeq 2000 OS 394
GSE11969 Agilent Homo 2.16 K – 90
GSE31210 Affymetrix Plus 2.0 OS 162
GSE50081 Affymetrix Plus 2.0 OS 92
GSE13213 Agilent 4x44K (G4112F) OS 79
GSE42127 Illumina WG-6 V3.0 OS 67
GSE68465 Affymetrix U133A OS 223
GSE131907 Illumina Hiseq 2500 – 11
GSE123902 Illumina HiSeq 2500 – 7
CPTAC (mRNA) Illumina Hiseq 4000 – 110
CPTAC (protein) Tandem mass tags –

OS overall survival
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(Fig. 5h). A similar metabolic trajectory was observed from
normal to mBrain (Supplementary Fig. 3).

Decoding the intercellular communications underlying meta-
bolic phenotypes. To build a metabolic phenotype-specific

cell–cell communication atlas, we extracted 6372 tumor epithe-
lial cells (MP-I, -II, and -III), 2373 stromal cells (fibroblasts and
endothelial cells), and 35,506 immune cells (B lymphocytes, T
lymphocytes, NK, myeloid, and MAST cells) from the primary
tissues of patients with tLung. In total, we identified 41 significant

Fig. 1 Identification of metabolic reprogramming phenotypes (MPs) in the TCGA dataset. a Volcano plot of differentially expressed (DE) genes between
metastatic and non-metastatic samples. Red and blue represented upregulated and downregulated DE genes, respectively. b, c Functional pathways
enriched with upregulated (b) and downregulated (c) DE genes. d Hierarchical clustering heatmap for all the samples based on the mRNA expression (Z-
score) of the 11 DE metabolic genes (n= 394 biologically independent samples). Here, the samples were clustered into the three MPs; the one with lower
expression of glycolytic genes accompany by higher lipid metabolic genes were defined as MP-I, the one with higher expression of glycolytic genes
accompanied with lower lipid metabolic genes was defined as MP-III, and the other one showing intermediate mRNA expression of all metabolic genes was
defined as MP-II. e Average expression of glycolytic and lipid metabolic genes across the three MPs and normal samples. Boxplots extend from the 25th to
75th percentiles, the line indicates the median, and whiskers indicate the range. f Confusion matrix for the number of metastatic samples in the different
MPs. g Kaplan–Meier curves of overall survival for 122 samples obtained from treatment-naive patients with stage I LUAD.
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ligand-receptor pairs between the 10 cell populations (Fig. 6a),
and as expected the MP-III population showed the strongest
outgoing signal, followed by MP-II, with MP-I weakest (Fig. 6b).

Next, significant ligand–receptor pairs associated with the three
metabolic phenotypes were further categorized into 15 signaling
pathways (Fig. 6c), including ANGPTL, EGF, SPP1, and VEGF
pathways. Network centrality analysis of the inferred ANGPTL
signaling network showed the MP-III population to be a unique
source of ANGPTL ligands (ANGPTL4, ANGPTL2) that acted on
endothelial cells and fibroblasts (Fig. 7a). The relative contribu-
tions of each ligand-receptor pair in the signaling pathway and
the role of each cell population are shown in Fig. 7b, c. For the
VEGF signaling pathway, all three MP populations were
prominent sources of VEGF ligands acting on endothelial cells,

and the interaction intensity gradually increased from MP-I to
MP-III (Fig. 7d–f). Furthermore, the three MP populations,
especially MP-II, were found to be receivers in the EGF signaling
pathway, possibly acted upon by themselves as well as by myeloid,
MAST, NK, and endothelial cells (Fig. 7g–i). Notably, the MP-III
population exhibited significant signal sending activities toward
the MP-II population in the EGF signaling.

Collectively, we identified 103 ligand–receptor pairs interacting
MP-III with other cell populations (Supplementary Data 1).
Similarly, we identified 154 significant ligand–receptor pairs
interacting MP-III with other cell populations in an independent
scRNA-seq dataset (GSE12390225). Thereinto, there were 62
overlapped ligand-receptor pairs, significantly higher than expected
(hypergeometric distribution model, P < 0.0001, Supplementary

Fig. 2 Clinical and molecular characteristics of the MPs in the TCGA dataset. Circle heatmap of clinical information (stage, age, gender, transcriptomics
subtypes, molecular scores, and TMB) and oncogenic events (TP53, KEAP1, SETD2, and PBRM1). The significance of differences (P value) among the three
MPs, estimated by Fisher’s exact test, is shown after each characteristic. The radar chart (inner) displays four molecular scores and TMB of the three MPs.
The detailed numbers of each characteristic in the MPs are presented in Supplementary Table 2.
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Fig. 3 Reconfirmation of the MPs and survival in multiple cohorts. a–e Hierarchical clustering heatmap for treatment-naive patients with stage I LUAD
based on the mRNA expression (Z-score) of the 11 metabolic genes in the GSE31210 (n= 162 biologically independent samples), GSE50081 (n= 92
biologically independent samples), GSE13213 (n= 79 biologically independent samples), GSE42127 (n= 67 biologically independent samples), and
GSE68465 (n= 223 biologically independent samples) datasets. f, j Kaplan–Meier curves of overall survival for the five datasets.
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Fig. 4). Notably, mRNA expression of nine ligands expressed on
MP-III, including ANGPTL4, VEGFA, etc., was significantly higher
than that on MP-I in the GSE131907, which were all validated in
another scRNA-seq dataset (Wilcoxon rank test, FDR < 0.05,
Supplementary Table 4). Furthermore, in the TCGA dataset, we
found the mRNA expression of all the nine ligands to be
significantly correlated with the mRNA expression of 11 metabolic
genes, which could be regulated by TP53 and KEAP1 mutations,
and SETD2 and PBRM1 deletions (Pearson correlation, FDR <
0.05). A comprehensive network was constructed to link the
intracellular oncogenic and metabolic events of MP-III with
intercellular communications (Fig. 8).

Discussion
Metabolic reprogramming is a hallmark of tumor cells and
has been recently regarded as a key contributor in tumor
progression26. In this study, we found that upregulated and
downregulated DE genes in metastatic samples were enriched in
glycolysis and lipid metabolism pathways, respectively, thereby
indicating that the imbalance of glycolysis and lipid metabolism
may promote LUAD metastasis. Glycolysis is known to facilitate
tumor invasion and metastasis27. Among the eight upregulated
glycolytic genes, ALDOA, GAPDH, LDHA, and PGAM1 have
been reported to be associated with poor prognosis28–31. Lipid
metabolism and its metabolites can also induce tumor aggres-
siveness in LUAD32. Therefore, we extracted corresponding eight
upregulated glycolytic genes and three downregulated lipid
metabolic genes to characterize the metabolic reprogramming
patterns of the samples and found LUAD to be clustered into
three phenotypes (MPs). MP-III, characterized to have sig-
nificantly high glycolytic and low lipid metabolic levels, was
enriched in distant metastatic samples and associated with the
poorest prognosis. Notably, in the TCGA dataset, there was no
significant difference in stage I patients’ OS between the high-
and low-glycolysis groups clustered by eight glycolytic genes (log-
rank P= 0.66, Supplementary Fig. 5a, b). While, in the high-
glycolysis group, the patients with low expression patterns of lipid
metabolism exhibited significantly shorter OS than the others
(log-rank P < 0.0001, Supplementary Fig. 5c, d). These results
suggested that high glycolytic and low lipid metabolic levels might
synergistically accelerate tumor progression in LUAD. Addi-
tionally, we also found that a lot of other glycolytic and lipid
metabolic genes were significantly correlated with the MPs
(Pearson correlation, FDR < 0.05, Supplementary Data 2), such as
a key glycolytic enzyme (PKM) gradually increasing from MP-I to

MP-III. Suggesting the stronger dysregulations of the two kinds of
pathways in MP-III.

MP-III possessed the highest hypoxia, proliferation, and
stemness scores, indicating its high metastatic potency. Notably,
MP-III was characterized with the highest TMB but the lowest
immune score. Previous studies have found that metabolic dys-
regulation of tumor cells could suppress the infiltration of
immune cells and antitumor immunity33, resulting in the
high TMB tumor translating into an immunologically “cold”
tumor34,35. Our further genetic analysis revealed that the muta-
tions of TP53 and KEAP1, and deletions of SETD2 and PBRM1
might be underlying the metabolic reprogramming. The
exploration of the genetic responsibility for MP-III would guide
us in designing the studies of a clinical drug combination that
may succeed in transforming these patients into those responsive
to immunotherapy35.

The MPs could be confirmed in multiple independent cohorts,
and the stage I LUAD patients with MP-III exhibited the worst
prognosis and the highest risk of developing distant metastasis
after surgery. In contrast, MP-II was inclined to be enriched with
lymph node metastatic samples, while it was not observed to have
a significantly poorer prognosis than MP-I, which might be
explained by the treatment strategy of lymph node dissection
after surgery for LUAD36. Notably, the independent cohorts were
detected with microarray, scRNA-seq, and protein platforms,
suggesting the cross-platform robustness of the MPs.

Metastasis imposes metabolic modifications that allow cancer
cells to migrate away from primary tissues by altering their
microenvironment37. Therefore, we first used the scRNA-seq
dataset of LUAD to confirm that MP-III was enriched in mBrain
tumor cells and to demonstrate a metabolic evolutionary trajec-
tory of epithelial cells from normal to MP-II and MP-III through
MP-I. Notably, the evolutionary trajectory exhibited a unique
low–low metabolic phenotype (State 4) in the scRNA-seq dataset,
which has been reported in melanoma34, meriting further vali-
dation and exploration. Subsequently, the intercellular commu-
nication analysis revealed the ANGPTL signaling pathway to be a
unique one, in which MP-III population influences endothelial
cells and fibroblasts. Padua et al. found that tumor cell-derived
ANGPTL4 disrupted vascular endothelial cell–cell junctions,
increased the permeability of lung capillaries, and facilitated the
trans-endothelial passage of breast tumor cells38. Several studies
have also shown the upstream role of ANGPTL4 with respect to
VEGF, indicating its role in angiogenesis39,40. Our results also
showed that all three MP populations could interact with

Fig. 4 Reconfirming of metabolic phenotypes in the proteomic dataset. a Hierarchical clustering heatmap based on the protein expression (Z-score) of
the 11 metabolic genes from CPTAC. b Correlation matrix for the mRNA and protein expression of the 11 metabolic genes.
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Fig. 5 Cell trajectory and branched expression analyses for the MPs in the single-cell RNA-sequencing dataset. a UMAP plot of 26,436 epithelial tumor
cells colored based on the major cell lineages and normal, tLung, and mBrain tissues in the GSE131907 dataset. b Average expression of the eight glycolytic
and three lipid metabolic genes within normal, tLung, and mBrain tissues represented by UMAP plots and box plots. c Hierarchical clustering heatmap
for epithelial tumor cells based on the mRNA expression (Z-score) of the 11 metabolic genes. d Raincloud plot for the average expression of glycolytic
and lipid metabolic genes in the three MPs and normal cells. e Sankey diagram showing the flow/change of tumor tissues (tLung/mBrain) in the MPs.
f Unsupervised transcriptional trajectory of epithelial cells based on the 11 metabolic genes using Monocle (version 2), colored based on MP-I, -II, -III, and
normal. g Relative percentages of the MP populations for each cell state as shown in trajectory. h The mRNA expression (Z-score) heatmap for the 11
metabolic genes in a branch-dependent manner. Genes (rows) are clustered and cells (columns) are ordered according to the pseudotime development,
which along the pre-branch to State 6 and State 7. Boxplots extend from the 25th to 75th percentiles, the line indicates the median, and whiskers indicate
the range.
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endothelial cells in the VEGF signaling pathway and that MP-III
exhibited interactions with the most significant intensity. MP-III
population not only contributed to its own EGF signaling path-
way but also significantly activated the EGF pathway in the MP-II
population, indicating the role of MP-III in MP-II deterioration.
We also decoded more sophisticated interactome of the MPs with
refined subdivided cell subtypes and observed similar results, such
as ANGPTL and VEGF signaling pathways (Supplementary
Fig. 6, Supplementary Data 3). We additionally observed that
Cytotoxic and Exhausted CD8+ T lymphocytes be sources of
IFNG in the IFN-II signaling pathway that acted on MP-II and
MP-III populations (Supplementary Fig. 6). Finally, in order to

comprehensively elucidate the underlying molecular alterations
for metastasis, we recapitulated a metabolic phenotype-specific
cell-cell communication atlas of LUAD and linked it with cell-
autonomous oncogenic events (TP53, KEAP1, SETD2, and
PBRM1) through metabolic genes, thereby providing candidate
therapeutic targets. Recent studies have shown that mutations in
TP5341–43 and KEAP144 contribute to various metabolic disorders
and play pivotal roles in metabolic reprogramming and
cancer progression. Furthermore, the protein-protein interaction
network from the STRING database (https://string-db.org/)
indicated that TP53 could activate the glycolysis pathway through
up-regulating PGM241, and hereby enhance the intercellular

Fig. 6 Identification of ligand-receptor pairs across 10 cell populations. a Crosstalk intensity heatmap for significant ligand–receptor pairs across ten cell
populations. b Dot plot showing the outgoing and incoming signaling patterns of intercellular communications for ten cell populations. c Crosstalk intensity
heatmap for corresponding signaling pathways of ligand–receptor pairs in each cell population.
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communication of MP-III with endothelial cells on the VEGF
signaling pathway (VEGFA-KDR). Meanwhile, TP53 could reg-
ulate lipid metabolism by interacting with HIPK4 to PLD3. Pre-
vious studies have shown that the mutation in KEAP1 could
activate NRF2, directing epithelial cells toward metabolic repro-
gramming of glucose metabolism44,45. In this study, we found
that KEAP1 mutation might indirectly interact with a glycolytic
gene (LDHA) through COPS5, which is related to the activation of
glycolysis46. Meanwhile, KEAP1 might also affect lipid metabo-
lism through indirect interaction with TP53. Additionally, the
histone H3K36 methyltransferase SETD2 and the chromatin
remodeling factor PBRM1 are frequently mutated or deleted in a
variety of human tumors47–50. These studies indicated that

SETD2 and PBRM1 deletions might participate in glycolysis-lipid
metabolism discoordination by indirectly interacting with TP53
and KEAP1.

This study still had some limitations. First, the metabolic
phenotypes defined in this study were based on the mRNA
expression of the 11 metabolic genes, thus the activities of gly-
colysis and lipid metabolisms need to be validated by estimating
their metabolites. Second, the cell-cell interactions discovered in
this study should be carefully determined, as they were spec-
ulative by the mRNA expression of ligands and their receptors.
Though the significantly more interactions of the MP-III popu-
lation with other populations were validated in another scRNA-
seq dataset, the relative reliability of the communications still

Fig. 7 Network centrality analysis of specific pathways. a Hierarchical plot showing the interactions between the MPs and other cells in the ANGPTL
signaling pathway. This plot consists of two parts: Left and right portions highlight the autocrine and paracrine to MPs and to other cells, respectively. Solid
and open circles represent source and target, respectively. Circle sizes are proportional to the number of cells in each cell group and edge width represents
the communication probability. Edge colors are consistent with the signaling source. b Relative contribution of each ligand-receptor pair to the overall
communication network of the ANGPTL signaling pathway. c Relative importance of each cell population based on the computed four network centrality
measures of the ANGPTL signaling pathway. Details are described in the original article57. d–f VEGF signaling pathway. g–i EGF signaling pathway.
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needs further experimental verification. Furthermore, the other
modes of metabolic reprogramming in altering the micro-
environment, such as metabolites, merit further exploration.

In conclusion, we determined a metabolic phenotype (MP-III)
relevant to the (occult) metastasis of LUAD, which was char-
acterized by glycolytic and lipid metabolic discoordination. The
Discovery of the four oncogenic events underlying this metabolic
reprogramming and its pivotal interactions (especially the
ANGPTL signaling pathway) with other cells provides candidate
therapeutic strategies against LUAD metastasis.

Methods
Data sources. In this study, ten LUAD cohorts were obtained from the TCGA
(https://portal.gdc.cancer.gov/), Gene Expression Omnibus (GEO, https://
www.ncbi.nlm.nih.gov/geo/), and Clinical Proteomic Tumor Analysis Consortium
data portal (CPTAC, https://cptac-data-portal.georgetown.edu/). Informed consent
was obtained from all participants.

Two metastasis datasets (TCGA and GSE11969) that met the inclusion criteria of
including LUAD patients with distant metastases, lymph node metastasis, and non-
metastasis, were selected. The TCGA dataset included the mRNA expression profiles
of 394 LUAD samples, comprising 25 distant metastatic, 160 lymph node metastatic
samples (collectively termed “metastatic samples”), and 209 non-metastatic samples.
Among them, mutation and CNV data were available for 390 and 385 samples,
respectively. The GSE11969 dataset included the mRNA expression profiles of 18
distant metastatic, 15 lymph node metastatic, and 35 non-metastatic samples. Five
other LUAD expression datasets for survival analysis were selected based on the

inclusion criteria that the number of stages I patients not receiving adjuvant therapy
after surgical resection (treatment-naive) was more than 50. Therein, the GSE13213
dataset also recorded the follow-up metastasis information of the stage I patients
after surgery within five years, among which nine patients developed distant
metastases, one patient had lymph node metastasis and 52 patients did not have any
metastasis. Clinical information of the patients in the datasets is presented in
Supplementary Table 5. Furthermore, we downloaded a paired mRNA and protein
expression dataset containing 110 LUAD samples from CPTAC.

In addition, we collected two scRNA-seq LUAD datasets (GSE131907 and
GSE123902). In the GSE131907 dataset, we extracted 208,506 cells derived from
the primary tissues of 11 patients with tLung, metastatic tissues of 10 patients with
mBrain, and 11 distant normal lung tissues. In the GSE123902 dataset, we
extracted 18,511 cells derived from the primary tissues of seven patients
with tLung.

Data pre-processing. For the RNA-seq dataset (TCGA) generated by the Illumina
HiSeq 2000 platform, the fragments per kilobase of transcript per million mapped
reads values were log2-scaled plus 1 for gene expression measurements. For the
scRNA-seq (GSE131907 and GSE123902) dataset derived from the Illumina HiSeq
2500 platform, the unique molecular identifier count for genes in each cell was log-
normalized to transcripts per million-like values, and then log2-scaled plus 1.
Ensembl (ENSG) gene IDs and symbols were mapped to their Entrez gene IDs. For
the microarray datasets (GSE31210, GSE50081, and GSE68465) generated by
Affymetrix platforms, a robust multi-array average algorithm51 was used to pre-
process the raw data. For the microarray datasets (GSE42127 and GSE13213)
generated by the Illumina and Agilent platforms, the originally processed data
(series matrix files) were used. Probe IDs were mapped to gene IDs according to
the corresponding platform files.

Fig. 8 Comprehensive network linking the intracellular oncogenic and metabolic events of MP-III with intercellular communications. The correlation
network includes four genetic events (TP53mutation, KEAP1mutation, SETD2 deletion, and PBRM1 deletion), the 11 metabolic genes, and 45 ligand–receptor
pairs of MP-III interacting with other cells in the tumor microenvironment. Here, the interacting genes expressed on MP-III were restricted to the nine
ligands that were significantly upregulated in MP-III compared to MP-I. The nodes represent these genes and the edges represent the significant
correlation between two nodes in the TCGA dataset (Pearson correlation, FDR < 0.05). The dotted box is the protein–protein interaction network between
genetic events and the 11 metabolic genes from the STRING database, within the solid lines, represent significant correlation (Pearson correlation,
P < 0.05).
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For somatic mutation data derived from the Illumina Genome Analyzer DNA
Sequencing GAIIx platform, only 17,821 nonsynonymous mutations were
included, and a discrete mutation profile (mutated or not) was generated using
Mutect2 somatic variant calls in mutation annotation format. CNV data were
processed using the GISTIC algorithm52, with thresholds of 0.3 and −0.3 for
amplified and deleted regions, respectively. CPTAC proteomic data was processed
using the Common Data Analysis Pipeline53.

Differential expression and functional enrichment analyses. The student’s t-test
was used to identify the DE genes between two groups. Functional enrichment
analysis for DE genes was performed by a hypergeometric distribution model.
Functional pathways were downloaded from the Kyoto Encyclopedia of Genes and
Genomes signaling pathway database (https://www.genome.jp/kegg/pathway.html).

Identification of metabolic reprogramming phenotypes. First, hierarchical
clustering was performed on samples to distinguish different clusters following
Ward’s method, which is based on Pearson correlation between the upregulated
glycolytic and downregulated lipid metabolic genes. We pre-deleted the samples (or
cells) whose expressions of all DE metabolic genes were zero before clustering and
scaled the gene expression. Next, we calculated an MP-score estimating the
expression imbalance of the glycolytic and lipid metabolic genes in each cluster as
follows:

MP� score ¼ ∑
n

a¼1
∑
k

i¼1

Gai

n � k� ∑
m

b¼1
∑
k

i¼1

Lbi
m � k ð1Þ

where Gai and Lbi represent the expression of ath glycolytic gene and bth lipid
metabolic gene in ith sample, respectively; n and m are the numbers of glycolytic
and lipid metabolic genes, respectively, and k represents the number of samples in
the cluster.

Correlation and survival analyses. Wilcoxon rank test was used to determine
differences in molecular scores (including hypoxia15, stemness16, proliferation17,
and immune scores18) and TMB between multiple groups. Here, TMB was esti-
mated as (total number of mutations in genes/total number of bases in genes × 106.
Fisher’s exact test was performed to evaluate whether the percentages of stages,
transcriptomics subtypes54, and frequencies of genetic lesions were significantly
different across the multiple groups. Pearson correlation analysis was used to
estimate the correlation of gene expression with another gene expression, gene
mutation statuses, CNVs, and protein expression, respectively.

OS was defined as the time from the date of initial surgical resection to the date
of death or last contact (censored), which was truncated at 60 months. Survival
curves were drawn using the Kaplan–Meier method and were statistically
compared using log-rank test55. Univariate Cox regression model was used to
analyze the association between clinical factors of patients and their OS. HRs and
95% CIs were generated using Cox regression models.

Single-cell RNA-sequencing data analyses. The unsupervised clustering of
epithelial cells was performed by “RunPCA” and “JackStraw” functions of Seurat
package v4.0.1, based on the first 20 principal components of the top 2000 most
variable genes among the whole-genome. UMAP (“RunUMAP” function) was used
for the visualization of clustering. “Featureplot” function was used to show the
average mRNA expression of genes on each cell. The subdivided cell subtypes were
identified by SingleR v0.2.0 and manual validated in CellMarker database.

Cell trajectory and branched expression analyses were performed based on the
Monocle package (version 2), using the reverse graph embedding machine learning
algorithm to learn the changes in 11 metabolic gene expression sequences that each
cell must go through as part of a dynamic biological process (here, metabolic
reprogramming). The dimensionality of the cells was reduced by the DDRTree
method, sequenced in pseudotime trajectory, and finally, visualized56.

Inference of intercellular communications was analyzed using CellChat package
v1.0.057. Ligand–receptor interactions and related signaling pathways were
downloaded from the CellChat database (https://www.cellchat.org/). This method
inferred the potential interaction intensity of a ligand–receptor pair between two
cell populations, which considered their gene expression, signaling cofactors, and
cell percentages57. Significance was evaluated through a permutation test (1000
times). Only receptors and ligands expressed in more than 25% of cells in the
specific cell subsets and those with significantly higher levels in specific cell
populations than in other cells, with a threshold of P < 0.05 and log2-fold
change > 0.5, were analyzed. Outgoing and incoming strengths of each cell
population were calculated as the cumulative interaction intensities of ligands and
receptors expressed on this kind of cell respectively.

Statistics and reproducibility. The details about statistics used in different data
analyses performed in this study are given in the respective sections of results and
methods. Statistical analyses were performed using R version 3.4.0 (https://www.r-
project.org/). P-values were adjusted using the Benjamini–Hochberg procedure for
multiple testing to control FDR58. Statistical significance was defined as two-sided
P < 0.05 or FDR < 0.05 for multiple testing. Although there was no duplicate

sample, the experimental results were verified in multiple independent datasets,
supporting the repeatability of the results.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All datasets generated or analyzed during this study were collected from public databases,
shown in Table 1 and Supplementary Table 5, which could be downloaded from the
official website of the databases (see Methods). Data underlying figures in the main text
are presented in Supplementary Data 4.

Code availability
Code utilized in these analyses is immediately available from the corresponding author
upon reasonable request.
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