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Genome-wide DNA methylation patterns reveal
clinically relevant predictive and prognostic
subtypes in human osteosarcoma
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Aberrant methylation of genomic DNA has been reported in many cancers. Specific DNA

methylation patterns have been shown to provide clinically useful prognostic information and

define molecular disease subtypes with different response to therapy and long-term outcome.

Osteosarcoma is an aggressive malignancy for which approximately half of tumors recur

following standard combined surgical resection and chemotherapy. No accepted prognostic

factor save tumor necrosis in response to adjuvant therapy currently exists, and traditional

genomic studies have thus far failed to identify meaningful clinical associations. We studied

the genome-wide methylation state of primary tumors and tested how they predict patient

outcomes. We discovered relative genomic hypomethylation to be strongly predictive of

response to standard chemotherapy. Recurrence and survival were also associated with

genomic methylation, but through more site-specific patterns. Furthermore, the methylation

patterns were reproducible in three small independent clinical datasets. Downstream tran-

scriptional, in vitro, and pharmacogenomic analysis provides insight into the clinical trans-

lation of the methylation patterns. Our findings suggest the assessment of genomic

methylation may represent a strategy for stratifying patients for the application of alternative

therapies.
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Osteosarcoma (OSA) is a rare primary bone tumor with
high metastatic potential to spread to the lungs even after
treatment. The systemic management of pediatric OSA,

which includes multi-agent chemotherapy, resulted in improve-
ments in cure rates following the adoption in the 1980s1,2, but has
remained largely unchanged over the past 20 years; additionally,
there is no proven second-line regimen for poor responders. The
five-year survival rate remains at best 70% and it is much lower
for patients who present with or progress to metastatic disease3–7.
While recurrent germline and somatic mutations (including in
RB1, TP53, and ATRX)8–15 and unbalanced chromosomal rear-
rangements (including allele loss on 3q, 13q, 17p, and 18q)16,17,
have been identified, there is no characteristic OSA translocation
and significant genetic heterogeneity exists, posing a challenge
with respect to diagnosis and identification of treatment targets.
Furthermore, clinical assessment of chemotherapy response and
identification of patients who would benefit from additional-line
agents is currently reliant primarily on histologic tumor
necrosis6,18, an imperfect surrogate which can only be assessed
after multiple rounds of therapy have been administered19–21.
Recently, when pathologically assessed response to chemotherapy
was used as a marker to stratify patients for alternate or inten-
sified adjuvant therapies in a large international clinical trial
(EURAMOS), it did not result in a survival benefit6,22,23. This
failure underscores the need for improved prognostic biomarkers
to assist in the development of therapies.

Recent work has focused on post-translational modifications
and epigenetic alterations as potential prognostic markers and
therapeutic targets. Our group has demonstrated that microRNA
(miRNA) expression patterns from various genomic loci, pre-
dominantly those from the 14q32 non-coding region, are pre-
dictive of clinical outcome and capture prognostic information
distinct from that conveyed by pathologic necrosis and/or
metastatic status24–27. We have also previously examined the
modulation of miRNA expression by DNA methylation at
14q3225,27, but the applicability of global methylation patterns in
OSA remains much less clear.

Induction of global hypomethylation has been demonstrated to
result in chromosomal instability and OSA formation in animal
models28, and in vitro treatment with demethylating agents has
been shown to reverse epigenetically silenced tumor suppressor
genes and inhibit OSA cell growth29–31. These observations are
consistent with data showing that DNA methylation inhibitors
preferentially affect genes that are expressed in normal tissue and
silenced in cancer32–34. Genome-wide methylation signatures in
clinical samples have been utilized to distinguish OSA from
Ewing or synovial sarcoma, underscoring the notion of
epigenetically-modified molecular phenotypes35, and global
methylation patterns have been shown to be prognostic of relapse
risk in a small OSA clinical cohort36.

In a rare and mostly pediatric tumor, like OSA, one limiting
factor is the lack of easily accessible large and well-annotated
specimen cohorts. In this respect, we leveraged the large NCI
TARGET dataset (Therapeutically Applicable Research to Gen-
erate Effective Treatments), which is a clinically annotated, multi-
omic dataset, recently released by the NCI in order to facilitate
genomic research in OSA. We perform extensive bioinformatic
analysis of the TARGET data and present analyses of genome-
wide (and CpG site subtype-specific) methylation patterns iden-
tifying methylation profiles associated with clinical outcomes. We
validate the clinical prognostic and predictive value of our
molecular profiles in the only other public OSA methylation
profiling dataset with sample survival information currently
available, and the reproducibility of the molecular patterns in two
additional independent datasets. Finally, making use of in vitro
cell line and pharmacogenomic data, we identify candidate gene

targets and drugs. In conclusion, we propose DNA methylation-
based subtypes that warrant further exploration as a prognostic
tool for patient risk stratification for therapies and tailored
therapeutic targeting and drug repurposing in OSA.

Results
Genome-wide methylation patterns of primary OSA samples
are associated with clinical outcomes. We identified four clinical
datasets collectively composed of 147 samples. Three datasets
were analyzed by the same genome-wide array-based methylation
assay (Illumina Infinium HumanMethylation450 BeadChip
(450K array)) and the fourth used a HELP-tagging assay. Clinical
characteristics of the four cohorts, TARGET (n= 83), Albert
Einstein College of Medicine36 (AECM, n= 15), Japanese
National Cancer Center Research Institute30 (JNCCRI, n= 34),
and New York35 (NY, n= 15), are presented in Supplementary
Data 1. 141 samples are biopsies or diagnostic resections collected
prior to therapy. Six metastatic samples were also included in the
JNCCRI dataset. The TARGET initiative sought to characterize
pediatric cases, so it does not include older adult cases found in
the other datasets. The JNCCRI and NY datasets included a larger
fraction of axial cases. Available information indicates most
patients were treated with standard chemotherapy (methotrexate,
Adriamycin (doxorubicin), and cisplatin (MAP)), although
treatment information is not available for all patients.

We first sought to discover if genome-wide methylation
patterns offer insight into OSA clinical outcomes using the large,
well-annotated NCI TARGET dataset. Methylation β values were
downloaded from the TARGET data matrix. Standard pre-
processing including out-of-band signal intensity correction,
Lumi dye bias color correction, and beta mixture quantile
dilation probe bias normalization was already applied. β values
were converted to M values for statistical testing. We considered
the 5% most variant CpG methylation sites (based on M values)
in the dataset to remove statistical noise, leaving 19,264 sites for
analysis (Fig. 1a, Supplementary Data 2). We refer to these sites as
the Global profile. The Global profile was highly enriched
(hypergeometric p ≪ 0.05) for sites in CpG Islands (CGIs) not
associated with gene promoters, and Open Sea regions, parts of
the genome with low CpG density when compared all sites
interrogated by the array (Supplementary Table 1). Additionally,
there was a large enrichment for intergenic CpG sites not
annotated to any known gene (p= 1.03 × 10−281).

Unsupervised hierarchical clustering using the Global profile
revealed two patient subgroups with strikingly different methyla-
tion patterns where one subgroup was largely hypermethylated
relative to the other (Fig. 1b). The hypermethylated subgroup was
enriched for tumors unresponsive to standard chemotherapy
(pathologically assessed tumor necrosis in response to pre-
operative chemotherapy (chemoresponse) < 90%, Odds ratio
(OR)= 6.429, 95% CI= 1.662–24.860, Fisher’s Exact Test (2-
sided), p= 0.007). The hypermethylated group displayed a trend
for shorter Recurrence Free Survival (RFS) and Overall Survival
(OS) in Kaplan–Meier analysis (Supplementary Fig. 1), and were
significantly associated with both outcomes when we stratified
patients by the presence of metastasis at diagnosis (p= 0.006,
p= 5 × 10−4, Fig. 1e, h). The two main cluster groups were not
different with respect to age (p= 0.531), metastasis at the time of
diagnoses (MetDx, a known strong prognostic factor, p= 0.615),
or sex (p= 0.661). We tested differential methylation between the
two groups, and found many strong associations (11,881 sites,
p < 0.001, Benjamini–Hochberg False Discovery Rate (FDR)37

< 0.1), 46.8% of which had an average β value difference > 0.2.
98.5% of these sites were hypermethylated in the poor prognosis
cluster subgroup (Fig. 1b, red). Large average β value differences
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Fig. 1 Global methylation patterns of primary tumors and clinical associations. a Manhattan plot of genome-wide variance in methylation. The 5% most
variantly methylated sites, those above the red line, are analyzed as the Global profile. b Unsupervised hierarchical clustering of the TARGET samples using
the Global profile. Cluster reproducibility (R) indices were high, 0.98/0.95 for two and three groups respectively. c Supervised β value heatmap of the 1725
CpG sites differentially methylated (FDR < 0.1) between the very poor prognosis (ii) and other cluster groups (i and iii) in (b). d Supervised heatmap of the
Global profile. Samples are ordered from low to high average β value. Two sample groups generated by a median split of the average β values were
significantly associated with pathologic response to chemotherapy (Fisher’s exact p= 0.002, OR= 10.2, 95% CI: 2.5–41.7). eMetDx stratified RFS analysis
of the two primary Global cluster groups (not metastatic: median RFS= 63.5 (i) and 104.7 mo. (iii), metastatic: median RFS= 2.3 (i) and 26.7 mo. (iii),
pooled Log-Rank p= 0.006). f RFS analysis of the three primary cluster groups (median RFS= 11.5 (ii), 26.7 (i), and 104.7 mo. (iii), Log-Rank
p= 5.0 × 10−4). Pairwise RFS analysis of the three primary cluster groups. Short (ii, 11.5 mo.) vs. intermediate (i, 26.7 mo.) median RFS Log-Rank
p= 0.034. Intermediate (i) vs. long (iii, 104.7 mo.) median RFS Log-Rank p= 0.022. Short (ii) vs. long (iii) median RFS Log-Rank p= 2.7 × 10−5. g MetDx
stratified RFS analysis of the low and high average methylation groups (median split) from c (not metastatic: median RFS= 65.5 and 104.7 mo., metastatic:
median RFS= 3.5 and 16.9 mo., pooled Log-Rank p= 0.044). h MetDx stratified OS analysis of the two primary cluster groups (not metastatic: median
OS=NYR (i) and NYR (iii), metastatic: median OS= 20.6 (i) and 111.9 mo. (iii), pooled Log-Rank p= 5 × 10−4). i OS analysis of the three primary cluster
groups (median OS= 20.4 (ii), 94,7 mo. (i), and NYR (iii), Log-Rank p= 7.4 × 10−4. Pairwise OS analysis of the three primary cluster groups. Short (ii,
20.4 mo.) vs. intermediate (i, 94.7 mo.) median OS Log-Rank p= 0.067. Intermediate (i) vs. long (iii, NYR) median OS Log-Rank p= 0.008. Short (ii) vs.
long (iii) median OS Log-Rank p= 1.8 × 10−4. j MetDx stratified OS analysis of the low and high average methylation groups (median split) from (c) (not
metastatic: median OS= 126.6 mo. and NYR, metastatic: median OS= 9.7 and 28.2 mo., pooled Log-Rank p= 0.076).
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(Δβ > 0.4) were found at 0.7% of sites, all of which were
hypermethylated in the poor prognosis cluster subgroup. Open
Sea and intergenic sites were enriched in the differentially
methylated sites compared to 5% most variant sites (Supplemen-
tary Table 1). There was a high prevalence of sites located in the
chromosome 14q32.2–32.31 locus among the top sites. Nineteen
of the 100 most differentially methylated sites were located here,
including the most differentially methylated site, cg08175935
which is annotated to MIR127, MIR433, and RTL1 (Supplemen-
tary Data 2). 14q32 is an imprinted region encoding many
microRNAs38,39, the transcription and methylation status of
which we have previously reported being prognostic of patient
survival24,25,27. Region-based analysis comparing the cluster
groups performed using minfi40 and bumphunter41 revealed 60
regions differentially methylated (family-wise error rate < 0.1), 59
of which were hypermethylated in the poor prognosis group
(Supplementary Data 3). Ten of these regions were in 14q32 non-
coding cluster. Eight other regions also overlapped known
imprinted loci, including three in the tumor suppressor region
of chromosome 11p15 associated with Beckwidth–Weidman
syndrome42. Fifteen regions on chromosome 6 encompassing the
HLA locus were identified, as well as five additional regions about
0.5 MB telomeric of the locus overlapping tRNAs and replication-
dependent histones. While not imprinted, many genes in the
HLA locus exhibit monoallelic expression43.

When we considered three, instead of two, main clustering
groups, we noticed an increased RFS and OS discrimination
(Fig. 1f, i). These three groups remained significantly associated
with both outcomes when stratified for metastasis at the time of
diagnosis (Supplementary Fig. 1). The third subgroup was a
subset of the hypomethylated subgroup but displayed more
balanced methylation pattens and its members had poor long-
term survival. The only two samples in this subgroup with
chemotherapy information had suboptimal responses, and half of
the patients in this subgroup presented with metastatic disease.
We compared the methylation profiles of the small cluster group
with exceptionally poor prognosis to the other samples and
identified 1725 differentially methylated sites (FDR < 0.1, Fig. 1c),
92.4% of which had an average β difference > 0.2, and 48.9%
which were hypermethylated in the poor prognosis group. 8.3%
of the sites had an average β difference > 0.4, of which 48.6% were
hypermethylated in the poor prognosis subgroup. The differen-
tially methylated sites were strongly enriched in Open Sea and
Enhancer regions (Supplementary Table 1). Inspection of the β
values at these sites revealed the poor prognosis group is
hypermethylated at a small number of CGIs and a subset of
Open Sea sites, and hypomethylated at a larger subset of Open
Sea sites (Fig. 1c).

We also sought to explore individualized patient outcome
prediction using the global methylation patterns by applying a
supervised average methylation approach. To do this, we ranked
patients by their average β value of the Global profile and created
two, three, and four patient groups using the median, tertile, and
quartile average methylation values. These patient groups were
significantly associated with response to chemotherapy (χ2 test,
p= 0.002, 0.002, and 0.017, respectively, Fig. 1d). We observed an
inverse relationship between global methylation and chemor-
esponse where hypomethylated samples were more likely to have
an optimal response and hypermethylated samples were more
likely to have a suboptimal response. Furthermore, we found
evidence of a methylation stratified effect between methylation
and chemoresponse when we performed pairwise comparisons
between each of the groups, as all the odds ratios displayed a
consistent and expected relationship (OR < 1). A trend for
association between these same β value-based risk groups and
RFS was observed (Supplementary Fig. 1), and the groups were

significantly associated with RFS and trending for association
with OS when stratified for metastatic disease at diagnosis
(Fig. 1g, j).

We then investigated if methylation patterns of specific
genomic regions differ from those observed at the genome-wide
scale and if they offer additional insights into clinical outcomes.
We thus performed hierarchical clustering using CGI, Shore,
Shelf, Open Sea, and Enhancer regions. The two main cluster
groups generated using methylation of each of these regions were
not associated with patient age (Fisher’s exact test, p > 0.05). CGI-
defined cluster groups exhibited a balance of relative hyper and
hypomethylation (Fig. 2a), contrasting the patterns observed
across the entire genome (Fig. 1b), and in CpG sparse regions
(Open Sea, Fig. 2b). The methylation patterns of each region
(except for Shelf regions) generated two groups of samples with
very different responses to chemotherapy (Fisher’s exact test,
OR > 8, p < 0.005 for all four analyses). The suboptimal response
subgroup was largely hypermethylated in the Shore, Open Sea,
and Enhancer regions. Sample risk subgroups generated by CGI
and Enhancer methylation patterns provided the strongest
discrimination for RFS and OS (Fig. 2d–i, l–o, significant (KM
log-rank p < 0.05) results marked with *). When we stratified for
MetDx, we observed that the cluster groups generated with each
of the genomic regions were significantly (KM log-rank p < 0.05)
associated with RFS and OS (Supplementary Fig. 2). Average β
value-based risk groups generated using only CGI or Enhancer
sites were not associated with survival, unlike groups generated by
clustering, given the mix of hyper and hypomethylation in most
samples observed in Fig. 2. However, average β value-based risk
groups generated with each region were significantly associated
with chemotherapy response (p < 0.05) and the hypermethylated
groups contained fewer responders.

Methylation signatures are associated with clinical outcomes in
univariate probe-level analysis. After observing that broad
methylation patterns are associated with outcome, we sought to
discover subsets of individual CpG methylation sites most
strongly associated with outcome and thus potentially clinically
applicable for prognostication. We analyzed individual probes for
association with RFS and CR using a Benjamini-Hochberg FDR
corrected p value of 0.1 as a cutoff to identify sites associated with
the RFS and CR outcomes. With this approach, we found
885 sites were associated with RFS and 6224 associated with CR
(Fig. 3a–d and Supplementary Data 2). Additionally, we tested for
associations with MetDx, but did not identify any significantly
associated sites. We observed a significant degree of overlap
between the RFS and CR associated lists (hypergeometric test
p < 0.001), so we refined more specific outcome profiles by
removing probes shared by more than one of these lists. This
generated a list of 374 sites associated with RFS and 5641 with
CR. We trimmed the CR profile to the 374 most significant sites
to increase specificity and match the size of the RFS profile. Both
the RFS and CR profiles were significantly enriched (hypergeo-
metric test p < 0.05) for sites in CpG sparse regions (Open Sea)
and depleted for sites in CpG dense regions (CGI). The depletion
of CGI-associated sites was strongest for non-promoter CGIs in
the RFS profile, and promoter-associated CGIs in the CR
profile. Additionally, the RFS profile was significantly enriched
for intragenic sites, whereas the CR profile was significantly
enriched for intergenic sites (complete results in Supplementary
Table 1).

We secondarily tested for methylation associations with the
more distant OS endpoint and identified 149 sites significantly
associated (FDR < 0.1) with this outcome, 93.3 and 29.5% of
which were members of the 885 and 374 RFS associated site lists,
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respectively. In a targeted manner, we tested the RFS-associated
sites for association with OS. Not surprisingly, we found 97.6 and
95.7 % of the 885 and 374 RFS sites were also significantly
associated (FDR < 0.1) with OS.

Then using the refined outcome profiles, we performed semi-
supervised hierarchical clustering to visualize the methylation
patterns (Fig. 3c, d). The two primary patient cluster groups were
not different with respect to age or sex (Fisher’s exact test
p > 0.05). The RFS profile displayed a balance of hypo and
hypermethylation across patients, where the poor prognosis
subgroup (red) was defined by predominantly hypomethylated
CGIs and hypermethylated Open Sea genomic regions (Fig. 3e).
We observed that the RFS signature predicted a few patients with
suboptimal chemotherapy response to achieve long-term survival,
noteworthy as it is known that a small subset of patients who do
not respond to therapy can still have good outcomes. The CR
profile displayed methylation patterns similar to the Global
profile (Figs. 1b, 3f), with a largely hypermethylated poor
chemoresponse group and a hypomethylated optimal chemor-
esponse group. Of the small subset (n= 13) of CR profile CpG
sites with an opposite methylation-chemoresponse association, 11

were in CpG islands, and the other two were in neighboring Shore
regions.

We tested if the outcome profiles produced similar sample
classifications to the Global profile. The CR profile generated
sample classifications highly concordant with the Global profile
(Cramer’s V= 0.783, Fisher’s exact test p= 1.18 × 10−13). The
RFS profile also classified samples similar to the Global profile
(Cramer’s V= 0.255, p= 0.026), although the association was not
as strong, indicating long-term outcome and tumor aggressive-
ness may be mediated by different and more specific epigenetic
mechanisms than response to chemotherapy.

While we avoided testing potential associations between the
outcome defined methylation signatures and their respective
outcome out of concern for overfitting, to illustrate the effect size
of the constituent CpG sites in the RFS profile, we performed KM
analysis using patient groups defined by methylation value
quantiles of select sites of possible biologic interest ranked close to
the top of list (Supplementary Fig. 3). We observed a potential
methylation level stratified relationship between methylation of
these sites (and others) with RFS, whereby more extreme levels of
methylation were associated with more extreme survival times.

Fig. 2 Methylation patterns of genomic regions. a Unsupervised hierarchical cluster analysis using CGI methylation (R indices = 0.83, 0.92, and 0.80 for
2, 3, and 4 groups, respectively). b Cluster analysis using Open Sea methylation (R index = 0.72 for 2 groups). c Cluster analysis using Enhancer
methylation (R index = 0.80/0.76 for 2 and 3 groups respectively). d–f RFS analysis of the 2, 3, and 4 primary CGI clusters (Log-Rank p= 0.009, 0.015,
and 6.7 × 10−7, respectively). g–i OS analysis of the 2, 3, and 4 primary CGI clusters (Log-Rank p= 0.016, 0.036, and 3.2 × 10−8, respectively). j RFS
analysis of the 2 primary Open Sea clusters (Log-Rank p= 0.074). k OS analysis of the 2 primary Open Sea clusters (Log-Rank p= 0.084). l, m RFS
analysis of the 2 and 3 primary Enhancer clusters (Log-Rank p= 0.008, and 0.015, respectively). n, o OS analysis of the 2 and 3 primary Enhancer clusters
(Log-Rank p= 0.045, and 0.116, respectively). Significant survival differences (log-rank p < 0.05 are marked with an *).
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OSA methylation profiles are different from CRC and glioma
CpG island methylator phenotypes. Methylation profiles, spe-
cifically CpG island methylator phenotypes (CIMPs), have been
described in malignancies including colorectal cancer and glioma.
CIMP positive tumors are defined by their aberrant hyper-
methylation of CGIs, frequently have characteristics mutations
(eg BRAFV600E in CRC and IDH in glioma), and may have
unique clinical characteristics44–46. Thus, we tested if OSA
methylation patterns were associated with the genomic alterations
reported in the TARGET dataset, namely ATRX, CDKN2A,
MDM2, RB1, and TP53. Comparing the two primary Global
profile patient subgroups (Fig. 1b), we found that RB1 alterations
were enriched in the hypomethylated (good prognosis) subgroup
(Fisher’s p= 0.021, OR= 3.18, 95% CI= 1.134–9.547, Supple-
mentary Table 2). RB1 interacts with epigenetic modifiers such as
histone demethylases47 and RB knockout has been associated
with hypomethylation and genomic instability in mouse
embryonic fibroblasts. However, the imperfect clustering of RB1
mutants suggests that factors beyond RB1 are involved in the
prognostic methylation patterns. Additionally, we found that the
small, intermediately methylated subgroup with extremely poor

prognosis was enriched for ATRX alterations (p= 0.003). ATRX
plays a role in epigenetic regulation48, holds prognostic value in
other pediatric tumors49, and there are ongoing efforts to develop
ATRX inhibitors for the treatment of sarcomas, including
osteosarcoma. The imperfect, but relatively tight clustering of
ATRX mutants raises the possibility of tailored therapeutic
application of demethylating agents with ATRX inhibitors. We
did not find genomic alteration enrichment in either the RFS or
CR profile-based cluster groups (Fig. 3c, d), suggesting these
methylation profiles convey predictive/prognostic information
independent of known recurrent genomic alterations in OSA.

We also tested if the OSA methylation patterns resembled CRC
and glioma CIMPs using gene panels reported by Toyota et al.44

(“Toyota panel”), Weisenberger et al.45 (“Weisenberger panel”)
for CRC, and Noushmehr et al.46 (“Noushmehr panel”) by
generating “CIMP Scores” for each sample in the TARGET
dataset based on the average β value of panel gene associated sites
(Supplementary Data 1). Two scores were generated for each
sample with each panel, one using all CGI sites annotated to the
panel and another using the subset of sites in promoter regions.
CIMP scores were compared between the profiles’ main cluster

Fig. 3 Supervised methylation profiles associated with outcome. a, b Volcano plots for the association between methylation and RFS and CR. c, d
Manhattan plots for association between methylation and RFS and CR. RFS and CR profile sites are in green. e, f Semi-supervised hierarchical clustering
using the RFS and CR profiles (2-group cluster R-indices = 0.846 and 0.862, respectively).
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groups. While at least one panel’s CIMP score was significantly
different between each profile’s cluster groups (t-test, p < 0.05,
Supplementary Table 3), absolute differences in methylation were
small (Δβavg < 0.05) and the scores were positively correlated
(Spearman, p= 0.01–<1 × 10−9) with the Global average methy-
lation level, suggesting these associations may be surrogates for
the larger genome-wide differences. CIMP scores were not
prognostic by Cox regression (p > 0.05), even when patients were
stratified for M status, and did not contribute prognostic power to
a Cox model generated using the Global cluster groups (omnibus
test of model coefficients p > 0.05). Clustering using the CIMP
panels did not reveal the striking methylation patterns and clearly
defined groups reported in CRC and glioma (Supplementary
Fig. 4). The Weisenberger panel promoter-associated sites
revealed slight hypermethylation in a small subset of samples,
however, this relationship was not observed with the Toyota
panel, which measures the same CRC CIMP phenotype,
suggesting the OSA methylation patterns may be distinct from
CRC CIMP.

We also tested if the CIMP scores were associated with the
same gene alterations reported in the TARGET dataset
(Supplementary Table 3). The Noushmehr and Weisenberger
panel CIMP Scores were found to be greater in CDKN2A altered
tumors (p= 0.003 and 2 × 10−4). The CDKN2A mutants
clustered imperfectly when using the panels and these associa-
tions are weaker than the very strong correlations between IDH
and BRAFV600E mutations and CIMP status in glioma and CRC,
respectively. The methylation signal in OSA appears to be
different from those in CRC and glioma, especially considering
the OSA profiles are enriched for Open Sea and intergenic sites.
While in our analysis the CGI-based patient cluster groups
(Fig. 2a) were the most significantly associated with RFS of all
genomic regions, there was not a consistent hyper vs hypo-
methylated pattern differentiating the groups, unlike the reported
CIMP phenotypes.

Methylation patterns are predictive of RFS independent of
known prognostic factors. Pathologic necrosis following pre-
operative chemotherapy is the single validated prognostic factor
in OSA used to stratify patients for new therapies. Given the
observation that there was discordance between chemoresponse
and the patient risk groups classified by the RFS profile, we tested
if the methylation markers predicted survival independent of

chemoresponse, with the understanding that this result will need
additional validation when data becomes available given that the
RFS profile was defined in the TARGET dataset, and thus could
be expected to overperform. We observed that 15.2% and 6.7% of
the RFS profile and all CpG sites found associated with RFS,
respectively remained significantly predictive (FDR < 0.1) of RFS
over and above chemoresponse in a multivariate Cox regression,
despite the analysis being performed on the smaller subset of
samples (n= 42) with chemoresponse information (Supplemen-
tary Data 2). We analyzed the representation of genomic regions
in the subset of the RFS profile predictive of RFS independent of
chemoresponse and found that CGI’s were enriched (hypergeo-
metric test, p= 0.003) and Open Sea regions were depleted
(p= 0.005) relative to the complete profile.

Our group, and others, have also proposed that miRNA
transcriptional profiles could be a useful prognostic marker for
this disease24,25,27. Therefore, we used the microRNA assays that
were reported for the same specimens in the TARGET dataset to
perform another multivariate analysis which demonstrated 100%
of both the RFS profile and all CpG sites found associated with
RFS were predictive of RFS over and above miRNA transcrip-
tional risk scores (Supplementary Data 2).

Methylation profiles are reproducible in independent datasets.
We next examined the AECM dataset36, currently the only other
publicly available OSA methylation dataset with patient survival
information. Overall, 8.1, 8.6, and 11.5% of the sites in the Global,
RFS, and CR profiles defined using TARGET 450k array data
mapped to the HELP-tagging assay50. Additionally, 8.9 and 8.7%
of all sites associated with RFS and CR were mapped. Despite the
small sample size (N= 15), the very different methylation assay
used, and a high degree of mapping attrition, we still sought to
validate our main findings from the TARGET dataset. Given the
difference in assay technology, supervised models could not be
used for outcome prediction, so we performed hierarchical clus-
tering using the profiles and tested the resulting sample groups
for association with clinical outcomes.

Unsupervised hierarchical clustering using the Global profile
revealed three groups, one of which was largely hypomethylated
(blue) relative to the other two groups (red), similar to the
findings in the TARGET dataset (Fig. 4a). The hypomethylated
group had significantly better Event Free Survival (EFS, binarized
at 5 years) than the hypermethylated groups (Fisher’s p= 0.003),

Fig. 4 Methylation profiles in the AECM validation dataset. a Hierarchical clustering using the Global profile. b Supervised heatmap of the Global profile.
Samples are ordered from low to high average methylation value. c Hierarchical clustering using sites associated with RFS in the TARGET dataset. d
Hierarchical clustering using the CR profile.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03117-1 ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:213 | https://doi.org/10.1038/s42003-022-03117-1 | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


contained all five patients that did not experience an event before
5 years, and five of the six samples from patients alive after 5
years. Additionally, the hypermethylated groups contained four
of the five samples that did not respond to chemotherapy.
Considering three groups individually, we noticed that in
addition to the hypomethylated group with good outcomes the
leftmost cluster group with a balance of hyper and hypomethyla-
tion (orange) had an extremely poor prognosis, with none of the
four patients alive after five years (p= 0.015).

We then supervised rank-ordered samples by average Global
profile methylation level (Fig. 4b). The quartile with the lowest
methylation all had an optimal response to chemotherapy and did
not have a recurrence or death before 5 years (p= 0.003).
Conversely, of the quartile with the highest methylation three
died before 5 years, and all had a recurrence before 5 years. By
median split, the highly methylated samples had an Odds Ratio of
9.3 for an event at 5 years (p= 0.119) and included four of five
samples with suboptimal chemoresponse.

Hierarchical clustering using the sites that were associated with
RFS in the NCI TARGET dataset, revealed two sample groups,
one largely hypermethylated relative to the other (Fig. 4c). The
pattern of relative hyper/hypomethylation of these sites was more
balanced than in the TARGET dataset. Like the TARGET dataset,
one of the two main methylation site cluster groups was mostly
composed of Open Sea sites, and these sites were hypomethylated
in patients with a trend for good prognosis (five-year EFS
p= 0.091, five-year OS p= 0.138). Additionally, when the more
specific RFS signature (with only 32 of 374 CpG sites (8.6%)
mapped in the dataset), was used to cluster samples, the two
primary groups had significantly different event rates at five years
(p= 0.022), though with an imbalanced sample grouping
(Supplementary Fig. 5).

Hierarchical clustering using the CR profile revealed two main
groups of samples, one largely hypermethylated relative to the
other, and four of the five samples with suboptimal chemor-
esponse clustered in the hypermethylated subgroup (Fig. 4d).

We also analyzed two additional independent publicly available
datasets (JNCCRI30 and NY35) generated using the Illumina 450k
array to further test if we could reproduce the methylation
patterns discovered in the TARGET dataset. Chemoresponse and
survival data were not available in these public cohorts, so we
could not directly test the prognostic and predictive value of our
signatures. We instead investigated if the profiles classify samples
similarly and displayed similar methylation patterns to those
observed in the TARGET dataset. We first observed the
distribution of the signatures’ average β values across samples
(Fig. 5a) and found them to be similar by broad inspection, albeit
with a trend towards hypermethylation in the NY dataset. We
performed semi-supervised hierarchical clustering using the
profiles in the independent datasets and analyzed the methylation
patterns of the two primary cluster groups in each analysis
(Fig. 5b–g). In both independent datasets, the Global and CR
profiles were almost entirely hypomethylated in one group
relative to the other, and the RFS profile displayed hypo and
hypermethylation in each risk group, as was observed in the
TARGET dataset. Sample subgroups generated with each of the
profiles in each dataset were not different with respect to age
(Fisher’s exact test p > 0.05), except for those generated using the
RFS profile in the JNCCRI dataset (p= 0.009).

We performed differential methylation analysis between the
two primary cluster subgroups in each dataset and calculated the
fraction of CpG sites which had concordant fold change
directions between the datasets using all of the profile sites, and
those differentially methylated (FDR < 0.1) between the cluster
groups being compared (Fig. 5b–g and Supplementary Table 4).
The methylation patterns in the JNCCRI and NY datasets were

remarkably similar to those observed in the TARGET dataset.
This was especially true for the RFS and CR profiles.

The JNCCRI dataset contained unique information for two
normal bone, one lung, and six metastatic samples, which,
although of limited sample size and heterogeneous sources,
offered some additional insights. We observed that the average
methylation level of CGIs was elevated, and the average
methylation level of Open Sea regions was depressed in tumor
compared to normal tissue, a relationship commonly observed in
other cancers (Fig. 6a)51. We also found Shore patterns mirrored
those of CGIs, and Shelf patterns mirrored those of the Open Sea
regions. While most CGI’s are hypomethylated in normal
tissue52, the CGIs in the CR profile were found to be relatively
hypermethylated in normal tissue. Furthermore, the CR profile, in
general, was relatively hypermethylated in normal tissue,
suggesting that tumors with more normal-like methylation
patterns are less likely to respond to therapy. The RFS profile
was largely hypermethylated in tumors, the CR signature was
hypomethylated in tumors, indicating the profiles may be
tracking distinct elements of biology. We also performed semi-
supervised hierarchical clustering using the outcome signatures
with normal, primary, and metastatic samples (Fig. 6b–d).
Normal tissue samples always clustered together, and the tumors
predicted to be more aggressive/less response to therapy.
Metastatic samples did not cluster together, however primary-
metastatic tissue pairs were always grouped as more similar to
each other than any other sample. This raises the possibility that
the profiles may not substantially change with metastatic tumor
progression, though this should be validated in future larger
dedicated cohorts.

Methylation offers insight into potential targeted application
of immune checkpoint inhibitors. CpG sites from a previously
reported epigenetic signature (EPIMMUNE)53 generated using
another Illumina methylation platform (EPIC array) for response
to the immune checkpoint inhibitors nivolumab and pem-
brolizumab in non-small cell lung cancer were enriched in the
TARGET dataset’s most variant sites (hypergeometric test,
p= 1.94 × 10−14). The EPIMMUNE signature contains 301 CpG
sites, 128 of which were interrogated by the lower resolution 450k
array and passed the pre-processing criteria in the TARGET
dataset. These sites were not enriched in the outcome signatures,
but we did find through differential methylation analysis that 34
of them were univariately associated with response to che-
motherapy (FDR < 0.1). Additionally, hierarchical clustering of
the TARGET samples using the EPIMMUNE signature revealed
that a subset of OSA samples had methylation patterns similar to
the lung cancer samples that responded to immunotherapy
(Supplementary Fig. 6). Notably, these samples belong to the
hypermethylated, poor chemoresponse Global profile group
(Fig. 1b, red).

We then examined if the observed methylation profiles were
associated with immune infiltration. Percent cellular tumor
content reported by the TARGET investigators was not
significantly different between the main cluster groups derived
by the Global, RFS, or CR profiles, but was significantly lower in
the EPIMMUNE derived cluster group containing the samples
with methylation patterns associated with good response to PDL1
based immunotherapy (p= 0.005, Supplementary Table 5).
ESTIMATE54 and CIBERSORTx55,56 were used to evaluate
specific immune cell infiltration using the TARGET RNAseq
data. We first used ESTIMATE to predict percent tumor purity
and found predicted purity was generally high across all samples
(interquartile range = 0.72–0.85) and anticorrelated with
predicted overall immune infiltration of 22 immune cell types
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Fig. 5 Methylation profiles in two independent 450k array OSA datasets. a Average β value distributions of Global, RFS, and CR profiles and region-
specific subsets. Semi-supervised hierarchical clustering of the Global profile (b, c), RFS profile (d, e), and CR profile (f, g) in the JNNCRI (left) and NY
(right) datasets. CpG sites displaying concordant hypo/hyper-methylation patterns between the independent 450k array datasets are annotated in the first
two row annotation tracks of each heatmap. Detailed concordance and differentia methylation results between the cluster groups are presented in
Supplementary Table 4.
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by CIBERSORTx (ρ=−0.510, p= 1.4 × 10−6). CIBERSORTx
predicted M2 followed by M0 macrophages to be the most
abundant immune cell types across tumors based on median
predicted values. Overall, variation in immune cell composition was
low, as CIBERSORTx predicted immune infiltrate was not
significantly different between tumors in the main cluster groups
defined by the Global, RFS, or CR profiles (min. p= 0.534,
Supplementary Table 5, Supplementary Fig. 7). However, predicted
immune infiltrate was significantly greater in the EPIMMUNE
derived cluster group with lower tumor purity (p= 0.035),
potentially due to increased CD4 memory resting T cells
(p= 0.049) or resting mast cells (p= 0.002). Taken together, Global
and outcome profile methylation appear to offer information
independent of immune cell infiltration, but DNA methylation
could still be useful for the precision application of immunotherapy.

Biologic and functional annotation of the methylation profiles.
In order to gain insight into the methylation profile content we
used the missMethyl gometh gene-set analysis function57,58. We
first tested if Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) terms were enriched in the Global
profile. The most enriched terms were related to developmental
pathways, e.g. “multicellular organism development,” “system
development,” and “anatomical structure development” (Fig. 7).
Bone Morphogenic Protein (BMP) related terms such as
“Response to BMP,” “cellular response to BMP stimulus” and

“Cytokine-cytokine receptor interaction” were also identified.
Other enriched pathways include “plasma membrane parts,” and
“Cell adhesion molecules” notable because these play a role in
therapy resistance and metastasis59,60.

While no terms were enriched in the RFS and CR signature
when correcting for multiple testing (FDR < 0.1), this was likely
due to the refined nature of the signatures with too few CpG sites
in the analysis (Supplementary Data 4). In a more inclusive
analysis of all associated CpG sites, we found that the CR profile
was enriched with membrane components and channels, similar to
the Global profile. While the number of RFS associated sites was
still small, analysis using a relaxed statistical cutoff (uncorrected
p < 0.05) identified a list of terms highly non-overlapping with CR
profile (hypergeometric p < 1 × 10−9), including pathways com-
monly dysregulated in cancer, suggesting the profiles capture
unique biological features. Finally, we tested the sites differentially
methylated between the Global profile cluster groups (Fig. 1b). The
most enriched terms were again largely related to the plasma
membrane and membrane receptor/channel signal transduction.
Twelve of the 61 GO terms were non-overlapping with those
enriched in the Global profile, and among them, four are related to
epidermal cell differentiation. Notably, sarcomas have been
postulated to exist in a metastable state, able to switch between
mesenchymal or epithelial-like states, and OSAs sometimes even
stain positive for cytokeratin, factors related to tumor
behavior61–63. “Micro-ribonucleoprotein complex” (the RISC

Fig. 6 Methylation profiles in the JNCCRI dataset including primary as well as metastatic tumor and normal tissue. a Average β value distributions of
Global, RFS, and CR profiles and region-specific subsets. Semi-supervised hierarchical clustering of normal, primary, and metastatic samples using the
Global (b), RFS (c), and CR (d) profiles.
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complex) was also among the 12 unique terms, notable because we
have previously reported miRNA expression defines prognostic
groups in OSA, and miRNAs are known developmental regulators
related to mesenchymal differentiation27,64.

The RFS methylation markers may regulate a transcriptional
program also prognostic of survival. We studied the potential
downstream consequences of methylation using RNA sequencing
data available for the same TARGET samples. Of the methylation

Fig. 7 MissMethyl gometh pathway enrichment analysis of the methylation profiles. Terms with FDR < 0.1 were considered enriched. a GO terms
enriched in the Global profile. The top 25 most significantly enriched terms are shown. b GO terms uniquely enriched in the sites differentially methylated
between the Global profile cluster groups compared to the full profile (a). c GO terms enriched in the sites associated with chemoresponse.
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markers, 71.7 and 54.0% of the RFS and CR profiles, respectively,
were annotated to specific genes, and 39.8% of the profile sites
correlated with their annotated genes (Spearman correlation,
FDR < 0.1, Supplementary Data 5). Additionally, correlations
were stronger where the CpG site was annotated to the gene
(expected cis-level interaction) compared to where the CpG site
was not annotated to the gene (average |ρexpected |= 0.221,
average |ρother |= 0.138, p= 1.1 × 10−60, Supplementary Fig. 8).
The significant correlations for the RFS and CR profiles were 60.7
and 8.22% negative, respectively. The prevalence of positive
correlations could be partly explained by the large number of
gene-body methylation sites in our profiles, containing 75.2% and
82.2% gene-body sites in the RFS and CR profiles, respectively.
Contrary to promoter methylation, gene-body methylation can be
a mark of active transcription65. Additionally, the small fraction
of 3′ UTR site in the signature were all positively correlated with
transcription, an observation reported in multiple adult cancer
types66. We tested if the genes correlating with methylation were
differentially expressed between the methylation-based cluster
groups. More genes were significantly correlated with methylation
and differentially expressed (FDR < 0.1) between the methylation-
based cluster groups for the RFS profile than the CR profile (53 of
219 and 7 of 142 genes, respectively). These results suggest that
many of the RFS methylation markers likely regulate transcrip-
tion, but a much smaller subset of the CR profile is directly
connected to downstream gene expression, thus the CR profile
potentially represents a wider “cell state” rather than acting
through a few key specific mechanisms. We also tested for dif-
ferential expression between the Global profile cluster groups
(Supplementary Data 5). Of the 149 genes differentially expres-
sed, 18 were cancer-testis antigens encoded on the X chromo-
some (including MAGE, CSAG, PAGE, SSX, and XAGE gene
family members), all upregulated in the good prognosis group in
Fig. 1b.

We also examined whether transcription at the methylation
profile loci was associated with clinical outcomes. We found
that the sets of genes annotated to the methylation profiles were
significantly associated with the same clinical outcome
predicted by the respective methylation profile using geneset
enrichment analysis (GSA, LS permutation p < 0.05, Supple-
mentary Data 6)67. Of note, a large fraction of the CR profile
sites were not annotated to a known gene and were located in
so-called gene deserts which are enriched in the Open Sea
genomic region68, potentially explaining why transcription
from CR profile loci was not as strongly associated with clinical
outcome. As above, this suggests that a broad cell state may be
influencing response to chemotherapy. We also found that
transcription of genes annotated to the RFS profile group
samples similar to the profile’s methylation patterns by
hierarchical clustering (Fig. 8a, Cramer’s V= 0.443,
p= 1 × 10−4). Finally, a significant survival difference was
observed between the two main RFS profile transcriptionally
defined hierarchical clustering subgroups (Fig. 8b), strengthen-
ing the connection between the RFS methylation markers and
downstream transcriptional regulation. We did not find this
concordance for the CR signature (Fisher’s p= 0.31) further
underscoring that chemotherapy response is correlated with
very broad methylation patterns rather than regulation of a few
specific genes.

We then tested GO and KEGG terms also using GSA analysis
and found transcription of many terms associated with the
RFS (Supplementary Data 6). We found many fewer transcrip-
tional pathway associations with the CR than RFS profile in
the GSA analysis, further evidence that methylation may be
predicting chemotherapy response independent of known
regulatory pathways.

In vitro correlates of the clinical methylation profiles. We used
public in vitro multi-omic and pharmacologic dataset (Genomics
of Drug Sensitivity in Cancer (GDSC))69–71 including 11 OSA cell
lines (all from cases <20 years old) to assess in vitro correlates of
the clinically derived methylation patterns as a prelude for future
experimentation and therapeutic discovery. We compared the
average β values of the Global and outcome profiles of the GDSC
and TARGET datasets (Fig. 9a) and found that the methylation
levels of the cell lines were similar to those of the clinical samples,
albeit with a trend for CGI hypermethylation in the cell lines, as
observed in other cancer types72,73. We also assessed the simi-
larity of in vitro methylation patterns using semi-supervised
hierarchical clustering (Fig. 9b–d) and compared differential
methylation between the two primary cluster groups using the
same methodology used to compare the clinical datasets. The
Global and outcome profiles’ methylation patterns were similar
between the in vitro and clinical datasets (Fig. 9 and Supple-
mentary Table 6). The RFS profile displayed a balance of hyper
and hypomethylation, and the Global and CR profiles were lar-
gely hyper or hypomethylated, similar to what was seen in the
clinical datasets (Figs. 1, 3–5).

Cell line aggressiveness metrics, including proliferation, inva-
sion, migration, colony-forming ability, and tumorigenicity, were
previously reported for seven of these OSA cell lines74. We tested
the methylation profiles in relation to these cell line metrics.
Given the very small number of cell lines, proper correction for
multiple testing was challenging. While we found that a relatively
small fraction of individual CpG sites in our RFS and CR profiles
correlated with in vitro aggressiveness (Spearman, p < 0.05),
testing 1000 randomly selected CpG site sets of equal size to the
outcome profiles indicated that RFS profile is enriched (permuta-
tion p < 0.1) for sites correlated with migration, and proliferation,
and the CR signature is enriched for sites associated with colony
formation (Supplementary Table 7).

The same GDSC datasets also provided in vitro drug response
testing for standard chemotherapeutic agents used in OSA
(MAP)). The three components of MAP were not tested in
combination in vitro, (as they are always used clinically). Thus,
we created a surrogate MAP score variable by scaling each cell
line’s response to each drug to a value between 0 and 1, where 0
and 1 were assigned to the cell lines least and most resistant to the
drug, respectively, and then averaged the values to generate the
scores. We found a small number of individual CpG sites
associated with the surrogate MAP score in vitro (Supplementary
Table 8). Permutation testing indicated the RFS profile but not
the CR profile was enriched for sites correlated with doxorubicin
and methotrexate and the MAP score. Given the known
association between chemotherapy response and patient survival,
it was not surprising the RFS profile was associated with in vitro
drug response. The lack of clear associations with the CR profile
may suggest the profile predicts an interaction between all three
drugs, (which were tested in isolation in the GDSC dataset), and/
or that the RFS profile may be a better candidate for future drug
development efforts.

Large-scale integrative pharmacogenomic analysis identifies
drugs with potential activity in OSA. We tested if the RFS
profile can be used to predict response to drugs and for drug
repurposing. There is currently no analytical pipeline optimized
for methylomic patterns for pharmacogenomic analysis. There-
fore, we used transcription from the profile loci as a surrogate.
We did not use the CR profile as there was no clear transcrip-
tional correlate for the broad profiles of chemoresponse and we
did not see a robust signal for in vitro association with standard
therapies. We used the comprehensive pharmacogenomic
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Fig. 8 Transcription of genes annotated to the RFS profile. a Hierarchical clustering using transcriptional of genes annotated to the RFS profile (2-group
R-index = 0.78). Classification is similar to the respective RFS methylation cluster groups (Fig. 3c, Cramer’s V= 0.443, p= 1 × 10−4). b RFS analysis using
the two main transcription-based cluster groups (Log Rank p value = 0.024, median RFS: NYR (Group 1, purple) vs. 26.7 mo. (Group 2, orange)).

Fig. 9 Methylation profiles in OSA cell lines. a Violin plots of the average β value distributions of the Global, RFS, and CR profiles and region-specific
subsets in the GDSC cell lines and TARGET (for comparison) datasets. Boxplots depict the median, interquartile range (IQR), and 1.5 * IQR. b–d Semi-
supervised hierarchical clustering of the 11 OSA cell lines in the GDSC dataset using the Global (b), RFS (c), and CR (d) profiles. CpG sites displaying
concordant hypo/hyper-methylation patterns in the cell line GDSC dataset relative to the TARGET clinical dataset are annotated in the first row annotation
track of each heatmap. Detailed concordance results are presented in Supplementary Table 6.
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analytical platform PharmacoGx, via its PharmacoDB
interface75,76, which we have previously used for drug
screening27,77.

Among the genes annotated to the RFS profile, we selected the
47 most highly correlated with their methylation markers
(p < 0.001) reasoning expression of these genes would be the
best surrogate for the methylation profile. We tested the 47 genes
for drug response association in a pan-cancer analysis using the
1691 cancer cell lines and 759 compounds included in the
database. Initial drug selection based on a regression analysis
identified 61 drugs. Then, we focused our analysis on the subset
of 11 OSA cell lines to increase specificity and eliminated drugs
with the least variant IC50. We further selected drugs with largely
concordant direction of the drug response/gene expression
association between the pan-cancer and OSA-specific analysis.
For increased potential clinical impact, we considered drugs more
potent than cisplatin in at least two of 11 OSA cell lines. The
resulting list of 18 drugs is presented in Table 1. We then used the
in vitro GDSC methylomic dataset to search for more direct
evidence of relationships between drug response and methylation,
and we found that for six of these drugs the RFS profile had more
significant correlations with response than 90% of 1000 random
CpG site sets of equivalent size (permutation p < 0.1). A variety of
pharmacologic mechanisms characterize the drugs included in
Table 1 and the drug/combination with the most significantly
correlated sites includes a methyltransferase inhibitor, UNC0638,
which has epigenetic modifying effects.

Given the recent interest in cabozantinib and pazopanib in
OSA, we also performed a targeted test for association between
the RFS profile and response to these drugs78–83. In a
prespecified hypothesis-based analysis, we found that transcrip-
tion of one and two of the RFS profile genes were associated
with cabozantinib and pazopanib response, respectfully. When
we evaluated the response associations, specifically in the OSA
cell lines, we found that the direction of the gene-response
association for cabozantinib, but not those for pazopanib, was
concordant with the pan-cancer analysis. Finally, in the GDSC
methylomic data, we found more RFS profile sites significantly
correlated with response to cabozantinib than all 1000 randomly
generated CpG sets.

Discussion
Despite ongoing efforts, there has been no meaningful advance-
ment in OSA therapies or biomarkers for the last three decades.
Conventional genetic studies have not uncovered actionable drug
targets, and the only accepted prognostic factor is pathologically
assessed tumor necrosis following standard neoadjuvant therapy.
This did not lead to improvement in survival when used to
stratify patients in a recent large randomized international trial
(EURAMOS)6,22,23 and recent consensus has emerged that there
is a pressing need for robust biomarkers that better align with
biologic and clinical heterogeneity in this tumor84,85. The state of
DNA methylation is often disrupted in cancer86. Furthermore,
DNA methylation carries prognostic information and defines
disease subtypes with different treatment response in other
cancers44,87,88. In OSA, prior reports have described single gene
or locus methylation affecting progression or treatment
response30,31. A pilot clinical study of 15 patients suggested that
the genome-wide DNA methylation state of pre-treatment OSA
tumors is potentially associated with outcome though the small
sample number did not allow full statistical assessment of these
patterns36.

We analyzed the multi-omic NCI TARGET OSA dataset
(recently made fully publicly available), representing the largest
(N= 83 with survival annotations) methylation profiling study
thus far in this relatively rare, mainly pediatric disease. Genome-
wide analysis revealed that primary tumor methylation patterns
were strongly associated with patient outcomes. Most striking was
the large genome-wide difference in methylation state between
tumors which did and did not respond to standard therapy, with
the relatively hypomethylated tumors responding better to che-
motherapy than the hypermethylated tumors. This was found by
both unsupervised clustering, and a supervised approach whereby
the methylation level of genome-wide CpG sites was simply
averaged for each sample, suggesting that the clinically relevant
DNA methylation patterns are present across a large fraction of
the genome, and not limited to a few genomic loci. Notably,
broad genomic hypomethylation is known to cause genomic
instability and increase tumor immunogenicity. This is especially
interesting in light of recent immunogenomic findings suggesting
that OSA tumors with optimal chemoresponse have less stable

Table 1 Pharmaceuticals for which PharmacoDB analysis reveals a predictive drug response association with the transcription
from the RFS profile loci.

Drug Median IC50 (μM) Median regression coefficient Mechanism of action

GMX-1778 0.021 0.190 NAMPTi
tanespimycin+ gemcitabine 1.189 0.175 HSP90i+ nucleoside analog
CUDC-101 1.634 0.196 HDACi+ EDGFR/HER2i
alistertib + navitoclax 1.692 0.194 AURKAi/BCLi
mirdametinib 2.863 0.248 MEKi
vorinostat+ navitoclax 3.116 0.162 HDACi/BCLi
ceranib-2 4.434 0.188 ceramidase i
BRD-K34222889 4.464 0.195 GSTP1i
navitoclax+ piperlongumine 4.976 0.178 BCLi/GSTP1i
necrosulfonamide 6.260 0.194 MLKLi
Genetech Cpd 10 7.190 0.190 AURKA/Bi
UNC0638+ navitoclax 9.552 0.230 G9ai/GLPi+ BCLi
navitoclax+ sorafenib 10.182 0.186 BCLi+ c-RASi
alisertib 10.196 0.184 AURKAi
BX-912 11.335 0.182 PDK1i
CL-1040 12.805 0.188 MEKi
carboplatin+ etoposide 19.099 0.207 DNA crosslinking+ TOPIIi
tretinoin+ navitoclax 27.382 0.188 RAR/TERTi+ BCLi

Median IC50 values are obtained across all OSA cell lines in the GDSC dataset though PharmacoDB. The median regression coefficient is calculated from the significant gene–drug interactions used to
identify the drugs. Bolded drugs act through epigenetic mechanisms. Underlined drugs have more significant response correlations (p < 0.05) with the RFS methylation profile than at least 90% of 1000
randomly generated CpG site sets in OSA cell lines.
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genomes and higher activation of immune response than those
with suboptimal response89. In light of this, we nevertheless
found that the methylation profiles were not driven by differences
in immune cell infiltration.

Methylation patterns were also found to predict long-term
survival. Unsupervised clustering of sample groups revealed that
the same genome-wide methylation patterns were also prognostic
of RFS and OS when stratified for the presence of metastasis at
the time of diagnosis. When we focused on specific regions of the
genome based on CpG density, we found that methylation of
CGIs was most strongly prognostic of long-term outcome,
although distinct from the well-known CRC and glioma CIMPs.
We found that CGI methylation patterns within a given risk
group were heterogenous, unlike the CpG sparse genomic regions
(Open Sea) which were more uniformly hyper or hypomethylated
in a given methylation subgroup. It is, thus, conceivable that CGI
methylation contributes to locus-specific regulation mediating
gene transcriptional programs, whereas Open Sea regions repre-
sent a biologically meaningful broader genomic state.

In addition, a supervised RFS prognostic profile was discovered
with strong FDR corrected statistical significance and validated in
an (albeit small) independent dataset, although a fully defined
model based on this profile could not be tested in this indepen-
dent dataset given the very different methylation assay used.
Analysis of this RFS profile revealed a subpopulation of CpG sites
where the CGIs were primarily hypomethylated, and Open Sea
sites were primarily hypermethylated, in a poor prognosis sub-
group. Further support for the notion that different regions offer
non-overlapping prognostic information was obtained through
multivariate analysis of the RFS profile while controlling for
response to chemotherapy. CGI sites were depleted in the RFS
profile but enriched when only considering the subset of sites
predictive of outcome independent of chemoresponse, and even
suggested an inverse methylation-outcome relationship (with
hypermethylation associating with better outcome) compared to
the genome-wide pattern. This contrasted with the chemor-
esponse (CR) profile, which showed nearly ubiquitous hyper-
methylation in the poor response group, except for a very small
subset of CGI and Shore sites. The cancer genome is generally
known to gain methylation at CGIs and lose methylation in Open
Sea regions51, thus it is interesting to observe that our signatures
predict that tumors with methylation patterns more reminiscent
of normal tissue may be more aggressive and less responsive to
standard chemotherapy.

While have previously reported that miRNA patterns are
prognostic of survival, we have found limited evidence to date for
a robust and reproducible miRNA signature associated with
chemotherapy response. Our results suggest that the methylation
profiles are offering independent, and more powerful chemor-
esponse prediction than miRNA transcription. In this respect,
multivariate analysis also demonstrated that the prognostic power
of the RFS profile was independent of our previously published
miRNA survival signature. Thus, these different omics patterns
can be potentially used in a complementary manner to identify
clinically relevant tumor subtypes in OSA.

Analysis of three additional independent publicly available but
relatively small clinical datasets allowed us to demonstrate the
reproducibility of the methylation profiles. Independent valida-
tion of the clinical predictive and prognostic value of the profiles
was performed in the AECM HELP-tagging dataset, despite the
small number of samples and the completely different profiling
platform that was used in that dataset. The incorporation of two
additional OSA 450k array datasets demonstrated that the
molecular information carried in each dataset could be used to
group samples with similar methylation patterns as observed in
the large TARGET cohort, suggesting the methylation profiles

may indeed define reproducible molecular subtypes. Further-
more, our results extend upon those from the previous study of
outcome relevance of DNA methylation, which profiled 15 sam-
ples using a HELP-tagging assay, and found increased genome-
wide DNA methylation in primary tumors of patients that
eventually relapsed compared to those that remained in remission
(though the relatively small sample size had limited definitive
statistical conclusions)36. This is now proven by the finding from
our adequately powered genome-wide clustering analysis where
the hypermethylated subgroup displayed worse RFS. In addition,
we show a striking prediction of chemoresponse by DNA
methylation.

When analyzing the relationship between the profile CpG sites
and known genes, we found many sites were intra- as well as
intergenic. Gene expression analysis of the same samples profiled
in the TARGET methylation cohort revealed a possible connec-
tion between the methylation profiles and transcription from
their genomic loci. This connection was quite robust for the RFS
profile, where methylation and downstream transcription profiles
were found to carry similar prognostic information, suggesting
methylation may be activating or repressing key genes. The
connection between the CR profile and transcription was weaker,
suggesting that the larger epigenomic cellular state may be a
better marker for response to standard therapy than a methyla-
tion effect on a few specific molecular pathways.

We used transcription from the RFS profile loci to perform
pharmacogenomic drug discovery analysis using a integrative
bioinformatic pipeline75,76 and identified a set of drugs for
which methylation patterns might serve as response biomarkers.
These drugs were almost entirely non-overlapping with a set of
candidate drugs from a similar analysis we previously reported
which used the gene targets of prognostic miRNA profiles,
suggesting again that methylation and miRNA patterns offer
non-redundant clinical applicability27. Several of these drugs act
through epigenomic mechanisms, especially modulation of post-
translational histone modifications. Histone modifications
influence and can be influenced by the DNA methylation state of
the underlying locus and provide modifiable regulation of gene
expression, an active area of research in other solid and hema-
tological malignancies90. Notably, the HDAC4 gene (the protein
product of which deacetylates core histones) and the gene of its
binding partner MEF2C91, were found in the RFS profile, which
also included five replication-dependent core histones (H2A,
H2B, H3, and H4) from the H1 histone cluster on chromosome
692. Three of the histone genes identified in the signature
(HIST1, H2BK, HIST1H3J, and HIST1H4I) have been shown to
have dysregulated transcription in other tumors93. The HIS-
T1H4I gene has been shown to be differentially methylated in
parathyroid tumors compared to normal tissue94. Mutations of
H3 histones are highly prevalent in other bone tumors such as
giant cell tumors of bone, chondroblastomas, and chon-
drosarcomas and are also found in pediatric brain tumors and
were recently also identified in a small subset of OSAs95–100.
These H3 mutant tumors displayed different methylation pat-
terns compared to H3 wildtype OSAs, and one of the two most
differentially methylated sites was in the histone micro-cluster
included in the RFS signature97. Our finding that imprinted
genes and those monoallelically expressed are among the most
differentially methylated between the Global cluster groups
suggests that these regions may play a critical role in not only
tumorigenesis, as has already been reported in OSA and other
cancers, but also tumor behavior and patient outcome. Addi-
tionally, the large methylation differences at the chromosome 6
HLA locus potentially indicates immunological mechanisms
may play a role in patient survival, even if immune infiltrate is
relatively invariant across tumors.
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Demethylating drugs have shown pre-clinical efficacy in
OSA30,31. Furthermore, standard chemotherapy includes cisplatin
and doxorubicin, both of which induce direct DNA damage.
Hypermethylation may protect against these insults or even
physically disrupt their mechanisms by limiting chromatin
accessibility or stabilizing the genome. Moreover, epigenetic tar-
geting has been shown to potentiate chemotherapy effect, and a
recent study reported that a DNA methyltransferase inhibitor
synergized with both doxorubicin and cisplatin in OSA cell
lines101,102. Furthermore, HDAC inhibitors synergize with dox-
orubicin in short-term cultures derived from orthotopic patient-
derived xenograft models103. Finally, our finding that the
EPIMMUNE signature, recently reported predicting immu-
notherapy response in lung cancer, is detectable in a subset of
osteosarcoma samples merits further dedicated investigation. In
conclusion, our study implies that epigenetic therapies hold
promise for synergistic combination with standard chemotherapy
and be especially useful in the subset of hypermethylated tumors
expected to respond poorly to chemotherapy

Limitations of our study include the limited sample size and
different methylation assay used for the validation dataset with
available patient survival data, and the lack of survival data in the
other two independent validation datasets. Additionally, we could
not evaluate a possible association with histologic subtypes given
the lack of such information in any of the public datasets that
were available. Further validation, optimization and refinement,
and final assay selection will be needed prior to the clinical
application of the methylation profiles described in this report.
These questions will require larger study cohorts and we antici-
pate our report will facilitate the planning of such collaborative
and costly new studies.

Standard clinicopathologic variables alone have thus far not
been adequate as markers for improved or properly tailored
therapies for OSA, highlighted by the failure of the recent
EURAMOS trial6,23, which used pathologically assessed tumor
necrosis to stratify patients for alternate or intensified therapy.
DNA methylation profiles herein, may ultimately offer a powerful
and biologically informed method to complement clinical prog-
nostic factors for therapeutic stratification. Additionally, recent
work has shown that tumor DNA methylation patterns are pre-
served in formalin fixed paraffin embedded (FFPE) tissue facil-
itating the study and application of methylation markers in rare
tumors like OSA104,105, as well as in the blood stream106,107, such
that minimally invasive methylation assays assisting clinical
management of OSA may ultimately become feasible.

Methods
Public data acquisition. We used the following publicly available published or
reported datasets (TARGET, AECM, JNCCRI, NY, and GDSC)30,35,36,108. All data
analyzed was publicly available and experiments were approved by the presiding
Institutional Review Board where each dataset was generated and informed consent
was obtained where required. Ethics statements can be found in the source pub-
lications. All experiments were performed in accordance with relevant guidelines
and regulations. Sample selection criteria are available in the source publications
and at the TARGET initiative website (https://ocg.cancer.gov/programs/target/
projects/OSA). The TARGET dataset was downloaded from the TARGET data
matrix (https://ocg.cancer.gov/programs/target/data-matrix). The AECM
(GSE59200), JNCCRI (GSE125645) and NY dataset (GSE97529) were downloaded
from the Gene Expression Omnibus.

Illumina Infinium HumanMethylation450 BeadChip data processing. The
TARGET, JNCCRI, NY, and GDSC datasets assessed genome-wide methylation
with the Illumina Infinium HumanMethylation450 BeadChip platform. Array CpG
annotations were obtained from the HumanMethylation450 v1.2 manifest file
available at https://support.illumina.com/downloads/infinium_humanmethylation
450_product_files.html. We downloaded preprocessed β values (methylated signal/
(methylated signal + unmethylated signal)) for each clinical dataset. We also used
minfi40 with functional normalization109 to process the raw signal intensity (idat)
files for the TARGET dataset to ensure the results obtained were not dependent on

the specific preprocessing method used (Supplementary Note 1). Technical details
of β value generation are available in the source publications and at the TARGET
initiative website (https://ocg.cancer.gov/programs/target/target-methods). Stan-
dard pre-processing including out-of-band signal intensity correction, Lumi dye
bias color correction, and beta mixture quantile dilation probe bias normalization
was already applied to the preprocessed TARGET dataset. Analysis of the TARGET
dataset was performed using the 83 samples for which survival information was
available. Data generated by probes containing frequent SNPs and those targeting
the sex chromosomes were omitted from the preprocessed TARGET dataset110,
and we did not consider them in our analysis of the other datasets. Data was
additionally processed by converting β values to M values. M values were used for
all analyses except where explicitly stated. M values have been shown to better meet
assumptions for various parametric statistical tests than β values111. A filter
selecting the 5% most variant CpG sites across the TARGET dataset was used for
discovery analysis to reduce statistical noise. The other datasets were analyzed
using sites identified in the TARGET dataset. We downloaded idat files for OSA
cell lines available in the GDSC dataset. Detailed methodology is available in the
source publication. β and M values were then generated via the minfi R package
using Functional Normalization (an Illumina 450k array adapted quantile nor-
malization) with default settings.

Gene transcriptional analysis. RNA sequencing data was available for the
TARGET dataset. The detailed methodology can be found on the TARGET
initiative website (above). In summary, RNA was poly-A purified, gene libraries
were prepared and multiplexed following standard Illumina protocol, and
sequenced using the Illumina HiSeq 2000 platform. Transcript abundance was
quantified with kallisto112. Count-level data was downloaded then normalized and
log base 2 transformed via the DESeq2 R package113.

Affymetrix Human Genome U219 transcription array data was available for the
GDSC cell line dataset. Robust Multi-array Average (RMA) normalized
transcription array data for the GDSC cell line dataset was downloaded from the
project website (above)114. The detailed methodology can be found in the source
publication.

The TARGET dataset assayed miRNA abundance using the ABI TaqMan
Megaplex human miRNA qRT-PCR platform. Technical details are available on the
TARGET initiative website (above). We transformed and normalized raw miRNA
qRT-PCR data using standard 2−ΔCt transformation as previously described115.

Unsupervised and Supervised Survival analysis and prediction. Hierarchical
clustering analysis was performed with the centered correlation and average linkage
method for 450k array datasets and Euclidean distance and complete linkage for
the HELP-tagging dataset. The resulting subgroups were then analyzed for survival
differences116. Cluster reproducibility was assessed with the R-index117. Heatmaps
display mean centered and standard deviation scaled methylation patterns for M
value and transcriptional data, or raw methylation values where noted.
Methylation-based supervised analysis was performed using an average β approach
whereby the average β value for each sample was calculated, and then samples were
classified into two groups based on the median average β value. Survival differences
between cluster or average β defined groups were tested with Kaplan-Meier analysis
and the log-rank test for significance. The sample cluster groups in the independent
datasets were determined to be either more similar to cluster group 1 or group 2
from the TARGET dataset by maximizing the fraction of sites with a concordant
direction of fold change which were significantly differentially methylated in both
datasets. The cluster groups in the independent datasets were then compared using
the group assignments based on comparison with the TARGET dataset. MiRNA
based supervised analysis was performed using the signed average approach as
previously described25,27. Multivariate analysis for confounding prognostic factors
was performed using a Cox regression model, with the methylation signature and
relevant factors entered as independent co-variates.

Statistics and reproducibility. Two groups continuous variable differential ana-
lysis was performed by a t-test with p values adjusted to control the false discovery
rate using the Benjamini-Hochberg step-up procedure for multiple testing37. CpG
sites specific differential methylation testing used M values. Region-based differ-
ential methylation analysis was performed using minfi40 and bumphunter41 with a
beta value difference cutoff of 0.1, a maximum gap between sites to define clusters
of 500 bp, loess smoothing by cluster, and 1000 permutations. Gene set analysis for
association with outcome was performed with the functional class scoring method,
applying the LS test with permutation-based p values, and only considering terms
with at least five genes in the gene set being tested67. Associations between two
categorical variables were evaluated with two-tailed chi square/Fisher’s exact test
and Odds ratio. Cramer’s V test was used to assess the strength of the classification
concordance between different profiles. Spearman’s rho statistic was used to
evaluate continuous variable correlations, except for gene selection for the drug
discovery analysis, which used Pearson correlations. The hypergeometric test was
used to test enrichment or depletion. To assess specific associations between the
methylation profiles and cell line aggressiveness and response to therapy in vitro we
performed a simulation test using 1,000 sets of 374 CpG sites (the number of sites
in the outcome profiles) randomly selected from the 5% most variant sites in the
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TARGET dataset. We then correlated methylation of the random CpG sites with
cell line aggressiveness metrics and response to therapy and quantified the number
of significant interactions (p < 0.05). Sample size information is available in the text
and Supplementary Data 1. No technical replicates were analyzed. Individual
tumor samples or cell lines sharing a common phenotype or characteristic were
analyzed as biological replicates.

CpG island methylator phenotype score calculation. Panels of genes used to
define CIMP in CRC and glioma were obtained from prior reports44–46. The CIMP
panels reported by Toyota et al. (“Toyota panel”), consisting of the CDKN2A,
MINT1/APBA1, MINT2/APBA2, MINT31/CACNA1G, and MLH1 genes, and
Weisenberger et al., (“Weisenberger panel”), consisting of the CACNA1G, IGF2,
NEUROG1, RUNX3, and SOCS1 genes were used to test for CRC CIMP like
methylation. The eight gene panel reported by Noushmehr et al. (“Noushmehr
panel”), comprised of the genes ANKRD43/SOWAHA, HFE, MAL, LGALS3, FAS-
1/FAS, FAS-2, RHO-F, and DOCK5, was used to test for glioma CIMP like
methylation. DOCK5 was reported by Noushmehr et al. to display opposite
methylation patterns of the other genes in the glioma panel (hypomethylated in
CIMP+ tumors), so we used 1- β values for DOCK5 sites when calculating the
CIMP score.

The CIMP panels were measured in the TARGET dataset by calculating the
average β of CGI sites in the panel genes for each patient (CIMP scores). 73, 140,
and 44 sites were used for the Toyota, Weisenberger, and Noushmehr panels,
respectively. Separate scores were also calculated for the panel using only
promoter-associated sites.

Immunogenomics. CIBERSORTx55,56, was used to predict the abundance of 22
types of potentially infiltrating immune cells in primary OS tumors. Count-level
RNA-seq data filtered for Ensembl genes with HGNC symbols (n= 24,865) from
tumors with methylation profiling in the TARGET dataset (n= 82) was used as the
mixture file for the CIBERSORTx Cell Fractions Analysis module. LM22 was used
as the signature matrix, and the LM22 Source gene expression profile was used as
the source gene expression profile file to predict the abundance of 22 immune cell
types. Quantile normalization was disabled, and the analysis was run in absolute
mode with 100 permutations. Tumor samples for which CIBERSORTx predicted
immune cell infiltration above what would be expected due to chance (all 82
analyzed samples, permutation p < 0.05) were used for statistical analysis.

ESTIMATE54 was used to estimate sample tumor purity for each of the
82 samples in the TARGET dataset with both methylation and RNAseq data using
the same 24,865 genes used for CIBERSORTx analysis.

Methylation profile pathway enrichment analysis. Enrichment of Gene Ontol-
ogy (GO) and KEGG terms in the outcome profiles was tested using the missMethyl
R package gometh function57,58. GO and KEGG terms with an FDR < 0.1 were
considered enriched.

Integrative pharmacogenomic analysis. We used transcription of the genes
annotated to and most highly correlated with the RFS profile (CpG methylation-
gene transcription p < 0.001, N= 47) for drug discovery using the PharmacoDB
interface, which performs data analysis via the PharmacoGx R package75,76. The 47
genes were entered in the PharmacoDB pipeline analyzing gene–drug predictive
interactions from seven large-scale datasets including a total of 650,894 individual
drug sensitivity experiments, 1691 cell lines, and 19,933 gene markers via a mul-
tivariate regression model adjusting for tissue source and experimental batch. We
chose drug candidates at a stringent 0.001 regression p-value for predictive asso-
ciation with gene markers, and a regression coefficient > |0.15 | (coefficient > |0.1|
for hypothesis driven analysis) for effect size in a pan-cancer analysis, which used
all cell lines in the database for increased sensitivity compared to the few OSA cell
lines. To increase the specificity of the resulting drug list, only drugs passing the
p-value and effect size filters for at least three of the tested genes were retained for
further analysis. The in vitro experimental data of the filtered drug list was then
evaluated specifically in the 11 OSA cell lines contained in the GDSC dataset69

through the PharmacoDB Batch Query to obtain sensitivity measures (IC50 dose
response metric) for response to candidate drugs. We assessed gene–drug corre-
lations in the small subset of OSA cell lines and required at least two-thirds of the
interactions to have the same correlation sign as those observed in the pan-cancer
(1691 cell line) analysis. We finally selected drugs with the most variant IC50
response (top two tertiles) across OSA cell lines, and those more potent than
cisplatin in at least two OSA cell lines.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets analyzed in this study are available at the TARGET data matrix (https://
ocg.cancer.gov/programs/target/data-matrix), the Gene Expression Omnibus repository
(GSE125645, GSE97529, GSE59200 and GSE68379), ArrayExpress (E-MTAB-3610), and
the PharmacoDB database (https://pharmacodb.pmgenomics.ca/). Source data for

sample group memberships and average methylation values are included in
Supplementary Data 1. All are other data are available from the corresponding author
upon reasonable request.

Code availability
All code used has been previously reported and is publicly available. The NCI BRB-
ArrayTools v4.6.0, SPSS (version 24), CIBERSORTx55,56, R (version 3.5.1 and 4.1.0)118 with
packages ggplot2119, minfi40, amap120, bumphunter41, dendsort121, EnhancedVolcano122,
ESTIMATE54, hmisc123, missMethyl57,58, pheatmap124, qqman125, RColorBrewer126, and
survminer127 were used for analysis.
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