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Data-driven design of targeted gene panels for
estimating immunotherapy biomarkers
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Tumour mutation burden and other exome-wide biomarkers are used to determine which

patients will benefit from immunotherapy. However, the cost of whole exome sequencing

limits the widespread use of such biomarkers. Here, we introduce a data-driven framework

for the design of targeted gene panels for estimating a broad class of biomarkers including

tumour mutation burden and tumour indel burden. Our first goal is to develop a generative

model for the profile of mutation across the exome, which allows for gene- and variant type-

dependent mutation rates. Based on this model, we then propose a procedure for con-

structing biomarker estimators. Our approach allows the practitioner to select a targeted

gene panel of prespecified size and construct an estimator that only depends on the selected

genes. Alternatively, our method may be applied to make predictions based on an existing

gene panel, or to augment a gene panel to a given size. We demonstrate the excellent

performance of our proposal using data from three non small-cell lung cancer studies, as well

as data from six other cancer types.
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It has been understood for a long time that cancer, a disease
occurring in many distinct tissues of the body and giving rise
to a wide range of presentations, is initiated and driven by

the accumulation of mutations in a subset of a person’s cells1.
Since the discovery of immune checkpoint blockade (ICB)2–4,
there has been an explosion of interest in cancer therapies tar-
geting immune response and ICB therapy is now widely used in
clinical practice5. ICB therapy works by targeting natural
mechanisms (or checkpoints) that disengage the immune system,
for example, the proteins cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4) and programmed death ligand 1 (PD-L1)6.
Inhibition of these checkpoints can promote a more aggressive
anti-tumour immune response7, and in some patients, this leads
to long-term remission8. However, ICB therapy is not always
effective9 and may have adverse side-effects, so determining
which patients will benefit in advance of treatment is vital.

Exome-wide prognostic biomarkers for immunotherapy are
now well-established—in particular, tumour mutation burden
(TMB) is used to predict response to immunotherapy10,11. TMB
is defined as the total number of non-synonymous mutations
occurring throughout the tumour exome, and can be thought of
as a proxy for how easily a tumour cell can be recognised as
foreign by immune cells12. However, the cost of measuring TMB
using whole exome sequencing (WES)13 currently prohibits its
widespread use as standard-of-care. Sequencing costs, both
financial and in terms of the time taken for results to be returned,
are especially problematic in situations where high-depth
sequencing is required, such as when utilising blood-based cir-
culating tumour DNA (ctDNA) from liquid biopsy samples14.
The same issues are encountered when measuring more recently
proposed biomarkers such as tumour indel burden (TIB)15,16,
which counts the number of frameshift insertion and deletion
mutations. There is, therefore, demand for cost-effective
approaches to estimate these biomarkers17,18.

In this paper, we propose a data-driven method for biomarker
estimation, based on a generative model of how mutations arise in
the tumour exome. More precisely, we model mutation counts as
independent Poisson variables, where the mean number of muta-
tions depends on the gene of origin and variant type, as well as the
background mutation rate (BMR) of the tumour. Due to the
ultrahigh-dimensional nature of sequencing data and the fact that in
many genes mutations arise purely according to the BMR, we use a
regularisation penalty when estimating the parameters of the model.
In addition, this identifies a subset of genes that are mutated above
or below the background rate. Our model facilitates the construction
of an estimator of TMB, based on a weighted linear combination of
the number of mutations in each gene. The vector of weights is
chosen to be sparse (i.e. have many entries equal to zero), so that our
estimator of TMB may be calculated using only the mutation counts
of a subset of genes. In particular, this allows for accurate estimation
of TMB from a targeted gene panel, where the panel size (and
therefore the cost) may be determined by the user. We also provide
an R package ICBioMark19 which implements the methodology
and reproduces the experimental results in the paper.

We demonstrate the excellent practical performance of our
framework using a non-small cell lung cancer (NSCLC) dataset20,
and include a comparison with existing state-of-the-art approa-
ches for estimating TMB. We further validate these results by
testing the performance on data from two more NSCLC
studies21,22. Moreover, since our model allows variant type-
dependent mutation rates, it can be adapted easily to predict
other biomarkers, such as TIB. Our method may also be used in
combination with an existing targeted gene panel. In particular,
we can estimate a biomarker directly from the panel, or first
augment the panel and then construct an estimator. Finally, in
order to further investigate the utility of our proposal across a

range of mutation profiles, we use it to select targeted gene panels
and estimate TMB in six other cancer types.

Due to its emergence as a biomarker for immunotherapy in
recent years, a variety of groups have considered methods for esti-
mating TMB. A simple and common way to estimate TMB is via the
proportion of mutated codons in a targeted region. Budczies et al.23.
investigate how the accuracy of predictions made in this way
are affected by the size of the targeted region, where mutations are
assumed to occur at a uniform rate throughout the genome.
More recently Yao et al.24 modelled mutations as following a
negative binomial distribution while allowing for gene-dependent
rates, which are inferred by comparing non-synonymous and
synonymous mutation counts. In contrast, our method does not
require data including synonymous mutations. Where they are
included, we do not assume that synonymous mutations occur at a
uniform rate throughout the genome, giving us the flexibility to
account for location-specific effects on synonymous mutation rates
such as chromatin configuration25 and transcription-dependent
repair mechanisms26. Linear regression models have been used for
both panel selection27 and for biomarker prediction28. A review of
some of the issues arising when dealing with targeted panel-based
predictions of TMB biomarkers is given by Wu et al.29. Finally, we
are unaware of any methods for estimating TIB from targeted gene
panels.

Results and discussion
In this section, we demonstrate in detail the practical perfor-
mance of our proposal using the dataset from Campbell et al.20.
Our main focus is the prediction of TMB, and we show that our
method outperforms state-of-the-art approaches. We also analyse
the suitability of our generative model, include a panel augmen-
tation case study with the TST-170 gene panel, and consider the
task of predicting the recently proposed biomarker TIB. Finally,
in this section, we test our method’s generality and robustness by
applying it to data from two further NSCLC datasets and then six
further cancer types.

Data and terminology. Our methodology can be applied to any
annotated mutation dataset obtained by WES. To demonstrate
our proposal we make use of the NSCLC dataset produced by
Campbell et al.20, which contains data from 1144 patient-derived
tumours. For each sample in this dataset, we have the genomic
locations and variant types of all mutations identified. At the time
of the study, the patients had a variety of prognoses and smoking
histories, were aged between 39 and 90, 41% were female and 59%
were male; see Fig. 1a, b. In Fig. 1c we see that mutations counts
are distributed over a very wide range, as is the case in many
cancer types30. For simplicity, we only consider seven non-
synonymous variant types: missense mutations (which are the
most abundant), nonsense mutations, frameshift insertions/
deletions, splice site mutations, in-frame insertions/deletions,
nonstop mutations and translation start site mutations. We pre-
sent the frequencies of these mutation types in Fig. 1d. Frameshift
insertion/deletion (also known as indel) mutations are of parti-
cular interest when predicting TIB, but contribute only a small
proportion (<4%) of non-synonymous mutations.

It is useful at this point to introduce the notation used
throughout the paper. The set G denotes the collection of genes
that make up the exome. For a gene g∈G, let ℓg be the length of g
in nucleotide bases, defined by maximum coding sequence as
collected from the Ensembl database31. A gene panel is a subset
P⊆G, and we write ℓP≔∑g∈Pℓg for its total length. We let S
denote the set of variant types in our data (e.g. in the dataset
mentioned above, S contains the seven possible non-synonymous
variants). Now, for i= 0, 1, …, n, let Migs denote the count of
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mutations in gene g∈G of type s∈ S in the ith sample. Here the
index i= 0 is used to refer to an unseen test sample for which we
would like to make a prediction, while the indices i= 1, …, n
enumerate the samples in our training dataset. In order to define
the exome-wide biomarker of particular interest, we specify a
subset of mutation types �S � S, and let

Ti�S :¼ ∑
g2G

∑
s2�S

Migs; ð1Þ

for i= 0, …, n. For example, including all non-synonymous
mutation types in �S specifies Ti�S as the TMB of sample i, whereas
letting �S contain only indel mutations gives TIB.

Our main goal is to predict T0�S based on {M0gs: g∈ P, s∈ S},
where the panel P⊆G has length ℓP satisfying some upper bound.
When it is clear from context that we are referring to the test
sample and a specific choice of biomarker (i.e. �S is fixed), we will
simply write T in place of T0�S.

Since we are only looking to produce estimators for TMB and TIB,
we group mutations into two categories—indel mutations and all
other non-synonymous mutations—so that ∣S∣= 2. This simplifies
the presentation of our results and reduces the computational cost of
fitting the generative model. In order to assess the performance of
each of the methods in this section, we randomly split the dataset
into training, validation and test sets, which contain ntrain= n= 800,

nval= 171 and ntest= 173 samples, respectively. Mutations are
observed in ∣G∣= 17,358 genes. Our training set comprises samples
with an average TMB of 252 and TIB of 9.25.

Generative model fit. The first step in our analysis is to fit our
generative model using only the training dataset. In particular, we
obtain estimates of the model parameters using equation (4),
where the tuning parameter κ1 is determined using tenfold cross-
validation as described in the Methodology section. Diagnostics
and model validation statistics are presented in Supplementary
Fig. 1 and Supplementary Table 1. The best choice of κ1 produces
estimates of λ and η with 44.4 and 77.8% sparsity respectively, i.e.
that proportion of their components are estimated to be exactly
zero. We plot λ̂ and η̂ for this value of κ1 in Fig. 2a, b. Genes with
λ̂g ¼ 0 are interpreted to be mutating according to the back-
ground mutation rate, and genes with η̂g;indel ¼ 0 are interpreted
as having no specific selection pressure for or against indel
mutations. In Fig. 2a, b we highlight genes with large (in absolute
value) parameter estimates, some of which have known biological
relevance in oncology; see our Conclusion for further discussion.
Finally, note that the average fitted value of μi among current
smokers is 5.40 (with a standard deviation of 0.76), amongst
reformed smokers is 5.26 (0.84), and among lifelong non-smokers

Fig. 1 Population data for the clinical cohort in Campbell et al. NSCLC dataset20. a Violin plots of age for patients, stratified by sex. b Stacked bar chart of
patients' smoking histories, shaded according to cancer stage diagnosis. c Violin plot of the distribution of TMB and TIB across training samples. d The
relative frequency of different non-synonymous mutation types.
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is 4.04 (1.12). This suggests that smokers may have higher BMRs,
as would be expected.

Predicting tumour mutation burden. We now demonstrate the
practical performance of our procedure for estimating TMB. First,
it is shown that our method can indeed select gene panels of the
size specified by the practitioner and those good predictions can
be made even with small panel sizes (i.e. ≤1Mb). We then com-
pare the performance of our proposal with state-of-the-art esti-
mation procedures based on a number of widely used gene panels.

In order to evaluate the predictive performance of an
estimator we calculate the R2 score on the validation data as
follows: given predictions of TMB, t̂1; ¼ ; t̂nval , for the
observations in the validation set with true TMB values
t1; ¼ ; tnval . Let

�t :¼ 1
nval

∑nval
i¼1 ti, and define

R2 :¼ 1�∑nval
i¼1 ðti � t̂iÞ2

∑nval
i¼1 ðti ��tÞ2 :

Other works have aimed to classify tumours into two groups
(high TMB, low TMB); see, for example, Buttner et al.32 and Wu
et al.29. Here we also report the estimated area under the
precision-recall curve (AUPRC) for a classifier based on our
estimator. We define the classifier as follows: first, in line with
major clinical studies33,34 the true class membership of a tumour
is defined according to whether it has t*≔ 300 or more exome
mutations (~10 Mut/Mb). In the validation set, this gives
47(27.5%) tumours with high TMB and 124(72.5%) with low
TMB. Now, for a cutoff t ≥ 0, we can define a classifier by
assigning a tumour to the high TMB class if its estimated TMB
value is greater than or equal to t. For such a classifier, we have
precision and recall (estimated over the validation set) given by

pðtÞ :¼ ∑nval
i¼1 1f̂ti ≥ t;ti ≥ t�g
∑nval

i¼1 1f̂ti ≥ tg
and rðtÞ :¼ ∑nval

i¼1 1f̂ti ≥ t;ti ≥ t�g
∑nval

i¼1 1fti ≥ t�g
;

respectively. The precision-recall curve then is {(r(t), p(t)): t∈
[0, ∞)}. Note that a perfect classifier achieves a AUPRC of 1,

Fig. 2 Manhattan plots of generative model parameters. aManhattan plot of fitted parameters λ̂g and their associated genes' chromosomal locations. The
genes with the five largest positive parameter estimates are labelled. b Manhattan plot of fitted parameters η̂g;indel and their associated genes'
chromosomal locations. The five largest positive and negative genes are labelled.
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whereas a random guess, in this case, would have an average
AUPRC of 0.275 (the prevalence of the high TMB class).

Now recall that TMB is given by equation (1) with �S being the
set of all non-synonymous mutation types. Thus to estimate TMB
we apply our proposed estimator with �S ¼ S, where the model
parameters are estimated as described in our generative model
section. In Supplementary Fig. 2, we present the R2 and AUPRC
for the first-fit and refitted estimators (see (6) and (8)) as the
selected panel size varies from 0Mb to 2 Mb in length. We see that
we obtain a more accurate prediction of TMB, both in terms of
regression and classification, as the panel size increases, and that
good estimation is possible even with very small panels (as low as
0.2 Mb). As expected, the refitted estimator slightly outperforms
the first-fit estimator. We show good robustness of these results to
permutations of the training set in Supplementary Fig. 3.

We now compare our method with state-of-the-art estimators
applied to commonly used gene panels, as well as a panel selected
by the proposal of Lyu et al.27. The three next-generation
sequencing panels that we consider are chosen for their relevance
to TMB. These are TST-17035, Foundation One36 and MSK-
IMPACT37. Further, the panel selected by the approach in Lyu
et al.27 consists of the genes that are mutated more than 10% of
the time, that are less than 0.015Mb in length and for which the
presence of a mutation in the gene is significantly associated with
higher TMB values. For each panel P⊆G, we use four different
methods to predict TMB:

(i) Our refitted estimator applied to the panel P: we estimate
TMB using TðŵPÞ, where ŵP 2 argminw2WP

ff ðwÞg, and WP

is defined in (7).
(ii) Estimation and classification of tumour mutation burden

(ecTMB): the procedure proposed by Yao et al.24.
(iii) A count estimator: TMB is estimated by ‘G

‘P
∑g2P∑s2�SM0gs,

i.e. rescaling the mutation burden in the genes of P.
(iv) A linear model: we estimate TMB via ordinary least-squares

linear regression of TMB against
�
∑s2SM0gs : g 2 P

�
.

The latter three comprise existing methods for estimating TMB
available to practitioners. The second (ecTMB), which is based on

a negative binomial model, is state-of-the-art. The third is a
standard practical procedure for the estimation of TMB from
targeted gene panels. The fourth is the approach proposed by Lyu
et al.27. The refitted estimator applied to panel P is also included
here, in order to demonstrate the utility of our approach even
with a prespecified panel.

We present the results of these comparisons in Fig. 3. First, for
each of the four panels considered here, we see that our refitted
estimator applied to the panel outperforms all existing
approaches in terms of regression performance and that for
smaller panels we are able to improve regression accuracy even
further by selecting a panel (perhaps even of smaller size) based
on the training data. For instance, in comparison to predictions
based on the TST-170 panel, our procedure can achieve higher R2

with a selected panel of half the size (with 0.2 Mb we obtain an R2

of 0.78). The best available existing method based on the TST-170
panel, in this case, the linear estimator, has an R2 of 0.74.
Moreover, data-driven selection of panels considerably increases
the classification performance for the whole range of panel sizes
considered. In particular, even for the smallest panel size shown
in Fig. 3 (~0.2 Mb), the classification performance of our method
outperforms the best existing methodology applied to the MSK-
IMPACT panel, despite being almost a factor of six times smaller.
The full proposal of Lyu et al.27, which involves applying the
linear regression estimate to the panel selected as described above,
also performs well here.

Finally, in this subsection, we demonstrate the practical
performance of our method using the test set, which until this
point has been held out. Based on the validation results above, we
take the panel of size 0.6 Mb selected by our procedure and use
our refitted estimator on that panel to predict TMB for the
173 samples in the test set. For comparison, we also present
predictions from ecTMB, the count-based estimator and the
linear regression estimator applied to the same panel. In Fig. 4 we
see that our procedure performs well; we obtain an R2 value (on
the test data) of 0.85. The other methods have R2 values of 0.67
(ecTMB), −36 (count) and 0.64 (linear regression). The count-
based estimator here gives predictions which are reasonably well

Fig. 3 Comparison with existing estimators. The performance of our TMB estimator in comparison to existing approaches. Left: R2, Right: AUPRC.
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correlated to the true values of TMB but are positively biased.
This is because our selection procedure tends to favour genes with
higher overall mutation rates and thus a count estimator based on
the highly mutated genes will overestimate the total number of
mutations. We also include a red shaded region comprising all
points for which heuristic 90% prediction intervals (as described
in our Practical considerations section) include the true TMB
value. We find in this case that 93.6% of the observations in the
test set fall within this region, giving valid empirical coverage.

A panel-augmentation case study. We may wish to include
genes from a given panel, but use our methodology to augment
the panel to include additional genes with the goal of obtaining
more accurate predictions of TMB (or other biomarkers). In this
section we demonstrate how this can be done starting with the
TST-170 panel (~0.4 Mb) and augmenting to 0.6 Mb in length,
demonstrating impressive gains in predictive performance.

We apply the augmentation method described in the Panel
augmentation methods section, with P0 taken to be the set of
TST-170 genes and Q0 to be empty. The genes added to the panel
are determined by the first-fit estimator in equation (9). To
evaluate the performance, we then apply the refitted estimator on

the test dataset, after selecting the augmented panel of size
0.6 Mb. For comparison, we apply our refitted estimator to the
TST-170 panel directly. We also present the results obtained by
the other estimators described above, both before and after the
panel augmentation, in Table 1. We find that by augmenting the
panel we improve predictive performance with our refitted T̂
estimator, both in terms of regression and classification. The

Fig. 4 Prediction of TMB on the test dataset. Dashed blue (diagonal) line represents perfect prediction and the black dashed lines indicate true and
predicted TMB values of 300.

Table 1 Predictive performance of models on TST-170
(0.4Mb) versus augmented TST-170 (0.6Mb) panels on
the test set.

Model Regression (R2) Classification (AUPRC)

TST-170 Aug. TST-170 TST-170 Aug. TST-170

Refitted T̂ 0.58 0.84 0.84 0.94
ecTMB 0.37 0.51 0.80 0.88
Count 0.18 0.18 0.83 0.94
Linear 0.47 0.74 0.78 0.89

Highest values for each column are in bold.
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refitted estimator provides better estimates than any other model
on the augmented panel by both metrics.

Predicting tumour indel burden. In this section, we demonstrate
how our method can be used to estimate TIB. This is more
challenging than estimating TMB due to the low abundance of
indel mutations relative to other variant types (see Fig. 1d), as
well as issues involved in sequencing genomic loci of repetitive
nucleotide constitution38. Indeed, in contrast to the previous
section, we are not aware of any existing methods designed to
estimate TIB from targeted gene panels. We, therefore, investigate
the performance of our method across a much wider range
(0–30Mb) of panel sizes and find that we are able to accurately
predict TIB with larger panels. Our results also demonstrate that
accurate classification of TIB status is possible even with small
gene panels.

We let Sindel be the set of all frameshift insertion and deletion
mutations, and apply our method introduced in the methods
section with �S ¼ Sindel. As in the previous section, we assess
regression and classification performance via R2 and AUPRC,
respectively, where in this case tumours are separated into two
classes: high TIB (ten or more indel mutations) and low TIB
(otherwise). In the validation dataset, this gives 57(33.3%)
tumours in the high TIB class.

The results are presented in Fig. 5. We comment first on the
regression performance: as expected, we see that the R2 values for
our first-fit and refitted estimators are much lower than what we
achieved in estimating TMB. The refitted approach improves for
larger panel sizes, while the first-fit estimator continues to
perform relatively poorly. On the other hand, we see that the
classification performance is impressive, with AUPRC values of
above 0.8 for panels of less than 1Mb in size.

We now assess the performance on the test set of our refitted
estimator of TIB applied to a selected panel of size 0.6 Mb, and we
compare with a count-based estimator and linear regression
estimator. We do not compare with ecTMB here, since it is
designed to estimate TMB as opposed to TIB. The count-based
estimator, in this case, scales the total number of non-
synonymous mutations across the panel by the ratio of the
length of the panel to that of the entire exome, and also by the

relative frequency of indel mutations versus all non-synonymous
mutations in the training dataset:

‘G
‘P

∑n
i¼1 ∑g2G∑s2SindelMigs

∑n
i¼1 ∑g2G∑s2SMigs

∑
g2P

∑
s2S

M0gs:

In Fig. 6 we present the predictions on the test set of our refitted
estimator (R2= 0.35); the count estimator (R2=−44); and the
linear regression estimator (R2=−0.15). We also include (shaded
in red) the set of points for which 90% prediction intervals
contain the true value. In this case, we find that 97.7% of test set
points fall within this region.

External testing and classification of response to immu-
notherapy. The aim of this section is to further test our proposed
estimator of TMB by making use of two external NSCLC datasets
for which the response to immunotherapy is available: Hellmann
et al.21, which contains 75 samples with an average TMB of 261;
and Rizvi et al.22, which contains 34 samples with an average
TMB of 258.

We first use our refitted estimator trained on the same data as
in the section above on predicting TMB to predict TMB for the
samples in the new datasets using the selected panel of size
0.6 Mb. The predictions are given in Fig. 7a; the corresponding
regression performance is R2= 0.70 across the two datasets, with
a joint AUPRC for classifying tumours to high or low TMB
classes of 0.91.

These datasets also allow us to assess the practical utility of
using our estimated TMB values to predict response to
immunotherapy. Of the 75 samples in the Hellman et al.21 study,
37 were identified as having a Durable Clinical Benefit (Class 1) in
response to immunotherapy (PD-L1+CTLA-4 blockade), and the
remaining 38 were deemed to have No Benefit (Class 0). Of the
34 samples in the Rizvi et al.22 studies, 14 were identified as
having a Durable clinical benefit beyond 6 months (Class 1) in
response to immunotherapy (Pembrolizumab), while the remain-
ing 20 were deemed not to have such benefit (Class 0). Since the
treatment and outcome definitions differ between studies, we
separate them for analysis of response. We construct two simple
classifiers for comparison, the first assigning a sample to Class 1 if

Fig. 5 Estimating TIB on the validation dataset. Performance of our first-fit and refitted estimators of TIB as the selected panel size varies. Left: R2,
Right: AUPRC.
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Fig. 6 Estimation of TIB on the test dataset. Dashed blue (diagonal) line represents perfect prediction and the grey dashed lines indicate true and
predicted TIB values of 10.

Fig. 7 External test set regression and classification performance. a Performance of our model trained on the Campbell et al.20 dataset used to predict
TMB based on the panel of size 0.6Mb selected by our method on the external test datasets of Hellman et al.21 and Rizvi et al.22. b ROC curves for
classifying the response to immunotherapy in the Hellman et al.21 (black) and Rizvi et al.22 (red) datasets using the true TMB values (solid) and estimated
TMB values (dashed) based on the panel of size 0.6Mb selected by our method.
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the true TMB value is greater than some threshold t, and the
second using our estimated value of TMB in the same way. In
Fig. 7b, we plot the receiver operating characteristic (ROC) curve
(that is the false positive rate against the true positive rate as the
classification threshold t varies). The area under the ROC curve is
0.68 for the Hellman et al.21 dataset when using the true TMB
value and is 0.64 when using the estimated TMB value. Rizvi
et al.22 have an area under the ROC curve of 0.79 using true TMB
values and 0.76 using estimated TMB values. We see that, in both
cases, very little is lost in terms of predicting response to
immunotherapy when using our estimated value of TMB.

Further testing in other cancer types. The aim of this section is
to further demonstrate the performance of our proposed frame-
work in a number of other cancer types. We apply our method for
estimating TMB in six more cancer types, namely bladder cancer,
breast cancer, colorectal cancer, melanoma, prostate cancer and
renal cell cancer. For each cancer, data from two studies are used.
Data from the first study is (randomly) split into a training and
validation set; the training data is used to construct our estimator
for a range of panel sizes, we then evaluate the predictive per-
formance on the validation set (note that in contrast to our
analysis above, we do not require a separate test set since the
panel size is not selected based on the data). Further, in order to
test the robustness of our approach to study effects, for each
cancer type, we will also apply our fitted estimator (trained using
data from the first study) to predict TMB values for tumours from
the second study.

The twelve datasets39–47 used are detailed in Supplementary
Table 2. These datasets have a range of mutation rates, specifically
the average TMB values in the training datasets are 247 (bladder
cancer), 91 (breast cancer), 339 (colorectal cancer), 568
(melanoma), 63 (prostate cancer) and 77 (renal cell cancer).

In Fig. 8, the black lines plot the R2 values obtained on the
internal validation set from the first study for the six cancer types
as the panel size varies from 0.25Mb to 1.25 Mb. The blue lines
show the R2 values obtained when predicting TMB for tumours in

the external test set from the second study. We see that the
performance on the internal validation set is very good and
broadly in line with the performance we obtained for the NSCLC
dataset (with the exception of renal cell cancer). The main factor
affecting the performance appears to be the overall mutation rate;
our method performs very well in cancer types with large
mutation rates (colorectal cancer and melanoma), but less well in
the cancers with lower overall mutation rates (prostate and renal
cell). The performance on the renal cell dataset is particularly
poor due to the combination of low sample size and the low
average mutation rate.

The results on the external test datasets are more mixed; there
is a drop-off in performance in comparison with the internal
validation results for breast cancer and melanoma, but apparent
improvement for prostate cancer. This highlights that study
effects, such as differences in patient demographics and clinical
profiles, as well as variations in sequencing technologies need to
be considered carefully. In practice, one should ensure that the
patients in the training data used to fit the model have similar
characteristics to the intended test cohort.

Conclusions
We have introduced a data-driven framework for designing tar-
geted gene panels which allows for cost-effective estimation of
exome-wide biomarkers. Using the non-small cell lung cancer
datasets from Campbell et al.20, Hellman et al.21 and Rizvi et al.22,
we have demonstrated the excellent predictive performance of
our proposal for estimating tumour mutation burden and tumour
indel burden, and shown that it outperforms the state-of-the-art
procedures. We further tested the applicability and robustness of
our method, by applying it to datasets on several other cancer
types. Our framework can be applied to any tumour dataset
containing annotated mutations, and we provide an R package19,
which implements the methodology.

The main use of TMB is often to help identify patients that are
more likely to respond to immunotherapy. While TMB is a good
single predictor of response10,11, it is of course desirable to

Fig. 8 Predictive performance on six further cancer types. The performance of our refitted TMB estimator in the six further cancer types.
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improve the predictive performance by including other factors.
For instance, these may include cancer type (and subtype), spe-
cific mutational signatures, aneuploidy and tumor histology, as
well as other variables, such as gender, age and exogenous factors.
Indeed, Litchfield et al.48 show that, by including markers of
T-cell infiltration and other factors, a multivariate predictor of
response to immunotherapy significantly improves the classifi-
cation performance in comparison to using TMB alone. Never-
theless, one would certainly like to include TMB (or a closely
related measure) as a factor in any classifier of response.

Our work also has the scope to help understand mutational
processes. For example, the parameters of our fitted model have
interesting interpretations: of the five genes highlighted in Fig. 2a
as having the highest mutation rates relative to the BMR, two
(TP53, CDKN2A) are known tumour suppressors49,50 and KRAS
is an oncogene51. Furthermore, indel mutations in KRAS are
known to be deleterious for tumour cells52—in our work, the
KRAS gene has a large negative indel-specific parameter (see
Fig. 2b). Our methodology identifies a number of other genes
with large parameter estimates. Of course, any such associations
need to be carefully investigated in follow-up studies.

Finally, we believe there are many ways in which our general
framework can be extended. For example, it may be adapted to
incorporate alternate data types (e.g. transcriptomics); we may
seek to predict other features (e.g. outcomes such as survival); or
we may wish to extend the method to incorporate multiple
potentially incomplete data sources.

Methods
Generative model. We now describe the main statistical model that underpins our
methodology. In order to account for selective pressures and other factors within
the tumour, we allow the rate at which mutations occur to depend on the gene and
type of mutation. Our model also includes a sample-dependent parameter to
account for the differing levels of mutagenic exposure of tumours, which may
occur due to exogenous (e.g. UV light, cigarette smoke) or endogenous (e.g.
inflammatory, free radical) factors.

We model the mutation counts Migs as independent Poisson random variables
with mutation rates ϕigs > 0. More precisely, for i= 0, 1, …, n, g∈ G and s∈ S, we
have

Migs � PoissonðϕigsÞ; ð2Þ
where Migs and Mi0g 0s0 are independent for ði; g; sÞ≠ ði0; g 0; s0Þ. Further, to model the
dependence of the mutation rate on the sample, gene and mutation type, we use a
log link function and let

logðϕigsÞ ¼ μi þ logð‘g Þ þ λg þ νs þ ηgs; ð3Þ
for μi; λg ; νs; ηgs 2 R, where for identifiability we set ηgs1 ¼ 0, for some s1∈ S and
all g ∈G.

The terms in our model can be interpreted as follows. First, the parameter μi
corresponds to the BMR of the ith sample. The offset logð‘g Þ accounts for a
mutation rate that is proportional to the length of a gene, so that a non-zero value
of λg corresponds to an increased or decreased mutation rate relative to the BMR.
The parameters νs and ηgs account for differences in frequency between mutation
types for each gene.

The model in (2) and (3) (discounting the unseen test sample i= 0) has
n+ ∣S∣+ ∣G∣∣S∣ free parameters and we have n∣G∣∣S∣ independent observations in
the training dataset. In principle, we could attempt to fit our model directly using
maximum likelihood estimation. However, we wish to exploit the fact that most
genes do not play an active role in the development of a tumour, and will be
mutated approximately according to the BMR. This corresponds to the parameters
λg and ηgs being zero for many g∈G. We, therefore, include an ℓ1-penalisation
term applied to the parameters λg and ηgs when fitting our model. We do not
penalise the parameters νs or μi since we expect that different mutation types occur
at different rates and that the BMR is different in each sample.

Writing μ≔ (μ1, …, μn), λ≔ (λg: g∈G), ν≔ (νs: s∈ S) and
η≔ (ηgs: g∈G, s∈ S), and given training observations Migs=migs, we let

Lðμ; λ; ν; ηÞ ¼ ∑
n

i¼1
∑
g2G

∑
s2S

ϕigs �migs log ϕigs

� �

be the negative log-likelihood of the model specified by (2) and (3). We then define

ðμ̂; λ̂; ν̂; η̂Þ ¼ argmin
μ;λ;ν;η

Lðμ; λ; ν; ηÞ þ κ1 ∑
g2G

jλg j þ ∑
g2G

∑
s2S

jηgsj
� �� 	

; ð4Þ

where κ1 ≥ 0 is a tuning parameter that controls the number of non-zero
components in λ̂ and η̂, which we choose using cross-validation.

Proposed estimator. We now attend to our main goal of estimating a given
exome-wide biomarker for the unseen test sample. Fix �S � S and recall that we
write T ¼ T0�S . We wish to construct an estimator of T that only depends on the
mutation counts in a gene panel P⊂G, subject to a constraint on ℓP. To that end,
we consider estimators of the form

TðwÞ :¼ ∑
g2G

∑
s2S

wgsM0gs;

for w 2 RjGj ´ jSj . Note that our estimator may use the full set S of variant types,
rather than just those in �S. In other words, our estimator may utilise information
from every mutation type, not just those that directly constitute the biomarker of
interest. This is important when estimating mutation types in �S that are relatively
scarce (e.g. for TIB). In the remainder of this subsection, we explain how the
weights w are chosen to minimise the expected squared error of T(w) based on the
generative model described in the previous section.

Of course, setting wgs= 1 for g∈ G and s 2 �S (and wgs= 0 otherwise) will give
T(w)= T. However, our aim is to make predictions based on a concise gene panel.
If, for a given g∈ G, we have wgs= 0 for all s∈ S, then T(w) does not depend on the
mutations in g and therefore the gene does not need to be included in the panel. In
order to produce a suitable gene panel (i.e. with many wgs= 0), we penalise non-
zero components of w when minimising the expected squared error. We define our
final estimator via a refitting procedure, which improves the predictive
performance by reducing the bias, and is also helpful when applying our procedure
to panels with predetermined genes.

To construct our estimator, note that under our model in (2) we have
EM0gs ¼ VarðM0gsÞ ¼ ϕ0gs , and it follows that the expected squared error of T(w)
is

E fTðwÞ � Tg2
 � ¼ VarðTðwÞÞ þ VarðTÞ � 2CovðTðwÞ;TÞ þ EfTðwÞ � Tg½ �2
¼ ∑

g2G
∑
s2�S

ð1� wgsÞ2ϕ0gs þ ∑
g2G

∑
s2Sn�S

w2
gsϕ0gs

þ ∑
g2G

∑
s2S

wgsϕ0gs � ∑
g2G

∑
s2�S

ϕ0gs

� �2

:

ð5Þ
This depends on the unknown parameters μ0, λg, νs and ηgs, the latter three of
which are replaced by their estimates given in (4). It is also helpful to then rescale
(5) as follows: write ϕ̂0gs ¼ ‘g expðλ̂g þ ν̂s þ η̂gsÞ, and define

pgs :¼
ϕ̂0gs

∑g 02G∑s02�Sϕ̂0g 0s0
¼

‘g expðλ̂g þ ν̂s þ η̂gsÞ
∑g 02G∑s02�S‘g 0 expðλ̂g 0 þ ν̂s0 þ η̂g 0s0 Þ

:

Then let

f ðwÞ :¼ ∑
g2G

∑
s2�S

pgsð1� wgsÞ2 þ ∑
g2G

∑
s2Sn�S

pgsw
2
gs þ Kðμ0Þ 1� ∑

g2G
∑
s2S

pgswgs

� �2

;

where Kðμ0Þ ¼ expðμ0Þ∑g2G∑s2�S‘g expðλ̂g þ ν̂s þ η̂gsÞ. Since f is a rescaled version
of the error in (5) (with the true parameters λ, ν, η replaced by the estimates
λ̂; ν̂; η̂), we will choose w to minimise f(w).

Note that f only depends on μ0 via the K(μ0) term, which can be interpreted as a
penalty factor controlling the bias of our estimator. For example, we may insist that
the squared bias term ð1�∑g2G∑s2SpgswgsÞ2 is zero by setting K(μ0)=∞. In
practice, we propose to choose the penalty K based on the training data.

At this point f(w) is minimised by choosing w to be such that wgs= 1 for all
g 2 G; s 2 �S, and wgs= 0 otherwise. As mentioned above, in order to form a
concise panel while optimising predictive performance, we impose a constraint on
the cost of sequencing the genes used in the estimation. More precisely, for a given
w, an appropriate cost is

k wkG;0 :¼ ∑
g2G

‘g1fwgs ≠ 0 for some s 2 Sg:

This choice acknowledges that the cost of a panel is roughly proportional to the
length of the region of genomic space sequenced, and that once a gene has been
sequenced for one mutation type there is no need to sequence again for other
mutation types.

Now, given a cost restriction L, our goal is to minimise f(w) such that
∥w∥G,0 ≤ L. In practice, this problem is non-convex and so computationally
infeasible. As is common in high-dimensional optimisation problems, we consider
a convex relaxation as follows: let ∥w∥G,1≔∑g∈Gℓg∥wg∥2, where
wg ¼ ðwgs : s 2 SÞ 2 RjSj, for g∈G, and ∥ ⋅ ∥2 is the Euclidean norm. Define

ŵfirst�fit 2 argmin
w

f ðwÞ þ κ2 k wkG;1
n o

; ð6Þ

where κ2 ≥ 0 is chosen to determine the size of the panel selected.
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The final form of our estimator is obtained by a refitting procedure. First, for
P⊆G, let

WP :¼ fw 2 RjGj ´ jSj : wg ¼ ð0; ¼ ; 0Þ for g 2 G n Pg: ð7Þ
Let P̂ :¼ fg 2 G : k ŵ first�fit

g k2>0g be the panel selected by the first-fit estimator in
(6), and define

ŵrefit 2 argmin
w2WP̂

ff ðwÞg: ð8Þ

We then estimate T using T̂ :¼ TðŵrefitÞ, which only depends on mutations in
genes contained in the selected panel P̂.

Panel augmentation. In practice, when designing gene panels a variety of factors
contribute to the choice of genes included. For example, a gene may be included
due to its relevance to immune response or its known association with a particular
cancer type. If this is the case, measurements for these genes will be made
regardless of their utility for predicting exome-wide biomarkers. When imple-
menting our methodology, therefore, there is no additional cost to incorporate
observations from these genes into our prediction if they will be helpful. Con-
versely, researchers may wish to exclude genes from a panel, or at least from
actively contributing to the estimation of a biomarker, for instance, due to technical
difficulties in sequencing a particular gene.

We can accommodate these restrictions by altering the structure of our
regularisation penalty in (6). Suppose we are given (disjoint sets of genes) P0,
Q0⊆G to be included and excluded from our panel, respectively. In this case, we
replace ŵfirst�fit in (6) with

ŵ first�fit
P0 ;Q0

2 argmin
w2WGnQ0

f ðwÞ þ κ2 ∑
g2GnP0

lg k wgk2
� 	

: ð9Þ

Excluding the elements of P0 from the penalty term means that ŵ first�fit
P0 ;Q0

≠ 0 for the
genes in P0, while restricting our optimisation to WGnQ0

excludes the genes in Q0

by definition. This has the effect of augmenting the predetermined panel P0 with
additional genes selected to improve predictive performance. We then perform
refitting as described above. We demonstrate this procedure by augmenting the
TST-170 gene panel.

Practical considerations. In this section, we discuss some practical aspects of our
proposal. Our first consideration concerns the choice of the tuning parameter κ1 in
(4). As is common for the Least Absolute Shrinkage and Selection Operator
(LASSO) estimator in generalised linear regression (see, for example, Michoel53

and Friedman et al.54), we will use tenfold cross-validation. To highlight one
important aspect of our cross-validation procedure, recall that we consider the
observations Migs as independent across the sample index i∈ {1, …, n}, the gene
g∈G and the mutation type s∈ S. Our approach, therefore, involves splitting the
entire set {(i, g, s): i= 1, …, n, g∈G, s∈ S} of size n∣G∣∣S∣ (as opposed to the sample
set {1, …, n}) into tenfolds uniformly at random. We then apply the estimation
method in (4) to each of the tenfolds separately on a grid of values (on the log
scale) of κ1, and select the value that results in the smallest average deviance across
the folds. The model is then refitted using all the data for this value of κ1.

The estimated coefficients in (6) depend on the choice of K(μ0) and κ2. As
mentioned above, we could set K(μ0)=∞ to give an unbiased estimator, however,
in practice, we found that a finite choice of K(μ0) leads to improved predictive
performance. Our recommendation is to use Kðμ0Þ ¼ Kðmaxi¼1;¼ ;nfμ̂igÞ, where
μ̂i ¼ logðTi=∑g;s‘g expðλ̂g þ ν̂s þ η̂gsÞÞ is a pseudo-MLE (in the sense of Gong and
Samaniego55) for μi, so that the penalisation is broadly in proportion with the
largest values of μi in the training dataset. The tuning parameter κ2 controls the size
of the gene panel selected in (6): given a panel length L, we set κ2ðLÞ ¼ maxfκ2 :
‘P̂ ≤ Lg in order to produce a suitable panel.

We now comment briefly on some computational aspects of our method. The
generative model fit in (4) can be solved via coordinate descent (see, for example,
Friedman et al.56), which has a computational complexity of O(N∣G∣2∣S∣2) per iteration.
We fit the model ten times, one for each fold in our cross-validation procedure. This is
the most computationally demanding part of our proposal—in our experiments below,
it takes approximately an hour to solve on a laptop—but it only needs to be carried out
once for a given dataset. The convex optimisation problem in (6) can be solved by any
method designed for the group LASSO; see, for example, Yang and Zou57. In our
experiments, we use the gglasso R package58, which takes around 10 min to
reproduce the plot in Supplementary Fig. 2. Note also that the solutions to (6) and (8)
are unique; see, for example, Theorem 1 of Roth and Fischer59. The last step of our
proposal, namely making predictions for new test observations based on a selected
panel, carries a negligible computational cost.

Finally, we describe a heuristic procedure for producing prediction intervals
around our point estimates. In particular, for a given confidence level α∈ (0, 1), we
aim to find an interval ½T̂L; T̂U� such that PðT̂L ≤T ≤ T̂UÞ≥ 1� α: To that end, let

tα :¼ EfðT̂ � TÞ2g=α, then by Markov’s inequality we have that PðjT̂ � Tj2 ≥
tαÞ≤ α. It follows that ½T̂ � t1=2α ; T̂ þ t1=2α � is a (1− α)-prediction interval for T. Of

course, the mean squared error EfðT̂ � TÞ2g defined in (5) depends on the

parameters λ, η, ν and μ0, which are unknown. Our approach is to utilise the
estimates λ̂; η̂; ν̂ (see (4)) and replace μ0 with logðT̂=∑g;s‘g expðλ̂g þ ν̂s þ η̂gsÞÞ.
While this is not an exact (1− α)-prediction interval for T, we see in our
experimental results that in practice this approach provides intervals with valid
empirical coverage.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used in this manuscript are publicly available. The NSCLC dataset of Campbell
et al.20 and the Ensembl gene length dataset are available as part of our R package
ICBioMark19 - see below for more detail. The BED files for the gene panels can be
downloaded from https://github.com/cobrbra/TargetedPanelEstimation_Paper60, while
data citations for the six further cancer types are given in Supplementary Table 2.

Code availability
All figures and tables in this manuscript may be reproduced using the code available at the
DOI-minted repository https://github.com/cobrbra/TargetedPanelEstimation_Paper60.
We also provide an open-access R package ICBioMark19, which is available on CRAN
https://cran.r-project.org. Alternatively, the package may be accessed and downloaded at
https://github.com/cobrbra/ICBioMark.
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