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A deep learning-based toolbox for Automated Limb
Motion Analysis (ALMA) in murine models of
neurological disorders
Almir Aljovic1,2,3,5, Shuqing Zhao 1,2,3,5, Maryam Chahin1,2,3, Clara de la Rosa1,2,3,

Valerie Van Steenbergen 1,2, Martin Kerschensteiner 1,2,4 & Florence M. Bareyre 1,2,4✉

In neuroscience research, the refined analysis of rodent locomotion is complex and cum-

bersome, and access to the technique is limited because of the necessity for expensive

equipment. In this study, we implemented a new deep learning-based open-source toolbox

for Automated Limb Motion Analysis (ALMA) that requires only basic behavioral equipment

and an inexpensive camera. The ALMA toolbox enables the consistent and comprehensive

analyses of locomotor kinematics and paw placement and can be applied to neurological

conditions affecting the brain and spinal cord. We demonstrated that the ALMA toolbox can

(1) robustly track the evolution of locomotor deficits after spinal cord injury, (2) sensitively

detect locomotor abnormalities after traumatic brain injury, and (3) correctly predict disease

onset in a multiple sclerosis model. We, therefore, established a broadly applicable auto-

mated and standardized approach that requires minimal financial and time commitments to

facilitate the comprehensive analysis of locomotion in rodent disease models.
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Research into neurological conditions often attempts to
uncover how the structural and functional deficits of
individual neurons and circuits relate to behavioral

outcomes1. Over the years, a number of elaborate tools based on
chemogenetics, optogenics, and connectomics have been designed
to manipulate and record the structure and function of individual
circuits and circuit elements2–6; nevertheless, a full understanding
of the consequences of such interventions can only be achieved
using refined behavioral analysis.

To this extent, a wide range of behavioral tests have been
developed that can detect specific aspects of behavior in a range of
neurological conditions7–9. Although such tests have substantially
improved our ability to selectively monitor deficits, for example in
motor function, the evaluation tools are still hampered by a
number of limitations. These include a lack of automatization,
which makes such tests both highly time-consuming or suscep-
tible to observer bias. For example, the use of the open field10 to
assess locomotor behavior in rodents requires two independent
investigators trained to distinguish between the subtle paw and
tail positions that could be prone to interpretation. Another
limitation is often the high costs of recording and analysis
equipment11, which often restricts access to a few specialized labs.
Such limitations also affect the evaluation of locomotion that
plays a central role in disease-related neuroscientific research, as
many common neurological conditions caused by trauma,
ischemia, or inflammation prominently affect walking abilities.

Unraveling the complexity of locomotion is best approached via
the generation of gait parameters based on the precise position of
the limbs. Since Hildebrand’s early description of the notion of
gait12, several tests have been designed to evaluate limb motion and
paw placement. Early work relied on collecting footprints13–15 from
an animal after inking the paws, but the data that could be retrieved
were often incomplete due to rapid drying of the ink, and analysis
was cumbersome to perform. Later systems, including the use of the
commercial automated Catwalk® system, which uses foot placement
to derive a range of gait parameters that reflect locomotion on a
static ramp, offered important improvements16,17. The Catwalk®

system has proven quite useful in the analysis of gait parameters in
rodents subjected to genetic manipulation or injuries18,19. However,
this system also has some limitations, as the tracking of light-furred
rodents can be difficult, and potential mistakes in the tracking of
footprints need to be manually corrected by the experimenter. In
addition, the system is static and does not allow the locomotion
speed to be controlled. The gait can also be recorded at variable
speeds while the animal is running on a treadmill using three-
dimensional video recordings coupled with a kinematic tracing
system15 or using the well-established motion-capture system
VICON with eight infrared cameras20–22. Both require reflective
markers to be manually and bilaterally attached at key joints (for
example, iliac crest, lateral malleolus, the tip of the toe, etc.), and use
of the latter system is further limited by the cost of the acquisition23.
Therefore, recent new advances have been made to improve and
facilitate locomotion tracking. A key step has been the development
of the DeepLabCut (DLC) method that provides a markerless
approach to labeling and tracking moving joints (DeepLabCut24)
and, thereby, facilitates the kinematic analysis of gait as well as arm
movements in animals and humans25–28. However, even this
approach requires substantial specialized expertise and processing
times to translate the limb coordinates into kinematic profiles and
parameters that quantify the distinct aspects of locomotion.

Here, we describe how we overcame this final challenge by
developing an open-source computational “toolbox”, Automated
Limb Motion Analysis (ALMA), which provides a fully auto-
mated and comprehensive analysis of locomotion and fine paw
placement in mice with minimal costs, time requirements, and
previous expertise. This toolbox which is based upon pose

estimation obtained from deep lab cut (DLC) and includes a
graphical user interface (GUI) with functionalities for automated
kinematic parameter computation and automated footfall detec-
tion, kinematic data analysis with random forest classification and
principal component analysis, and visualization of the gait kine-
matics. To make it amenable to as many users as possible, we
used only inexpensive equipment (custom-made ladders and a
commercial treadmill) and a single standard high-speed action
camera. We applied this toolbox to mouse models of common
traumatic and inflammatory diseases of the brain and spinal cord
to demonstrate its capability to robustly and sensitively monitor
the evolution of locomotor deficits in a broad range of neurolo-
gical conditions. Notably, our results show that such an auto-
mated comprehensive analysis can delineate the specific
parameters of the locomotor function that are best suited to track
injuries of the brain or spinal cord or are sensitive enough to
predict disease onset during the prodromal phase of a multiple
sclerosis model.

Results
Pipeline for automated limb motion analysis: DLC markerless
labeling, model training, and automated kinematic analysis
and footfall detection in mice. In this paper, we present a new
open-source toolbox for the analysis of gait kinematic parameters
of locomotion and fine paw placement in mice. To do so, we
focused on two behavioral tasks that were applied to mice:
walking on a treadmill (Fig. 1a) to determine gait kinematic
parameters and walking along ladders (Fig. 1b) with regularly or
irregularly spaced rungs to analyze fine paw placement. All tasks
were filmed with a GoPro 8 camera positioned parallel to and at a
fixed distance and angle from the treadmill and ladder. We used
DLC to perform markerless limb tracking of six hindlimb joints
(toe, metatarsophalangeal joint (MTP), ankle, knee, hip, and iliac
crest) for treadmill kinematic analysis, and of limb extremities for
the ladder rung paradigm. (Fig. 1a, b). For both analyses, we
focused only on the hindlimb trajectories.

We then trained the neural network model for body part
coordinate extraction For each behavioral paradigm, 2D body part
coordinates were obtained using a deep residual network model
(ResNet-50), which was trained and refined using DLC (Fig. 1a, b).
By choosing the most representative frames through k-means
clustering, we were able to obtain a finetuned deep residual network
model that can reliably detect body part coordinates using only up
to 450 manually labeled frames, as described in the methods. We
then performed automated kinematic analysis on the coordinate
data obtained from the treadmill task and extracted a selection of 44
kinematic parameters that best reflected the locomotion of the
hindlimbs according to the literature20,29, which could also easily be
expanded depending on the study goal. We grouped those
parameters into five main categories: joint angles, spatial variability,
the temporal feature of gait, limb endpoint trajectories, and
dragging (Fig. 1a and Supplementary Table 1). These parameters
could then be classified and compared using random forest and
principal component analyses (PCA) to extract the most important
parameters (Fig. 1a). Our toolbox also allows via a scree plot the
visualization of the percentage of explained variance for all
components of the PCA. For the ladder rung analysis, we
performed automated detection of hindlimb footfalls (Fig. 1b),
which were manually validated. Three parameters were then
extracted, the number, depth, and duration of footfalls (Fig. 1b).

Tracking locomotion after spinal cord injury with the ALMA
toolbox. We first tested the applicability of our toolbox for
analyzing overground locomotion following spinal cord injury
(SCI) (Fig. 2a). To do so, mice walking on a treadmill were
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recorded with a GoPro 8 camera (Fig. 2b), and we used DLC to
perform markerless labeling of the six hindlimb joints as descri-
bed above (Fig. 2c and Supplementary Video 1). The ALMA
toolbox then automatically detected the treadmill speed and
adjusted the body part coordinates accordingly. The adjusted
body part coordinate data were then used to extract stride onsets
and offsets, as well as to distinguish the stance and swing phases
(Fig. 2d and Supplementary Fig. 1). This procedure enabled

automated kinematic parameter extraction for each stride
(Fig. 2d). We validated the reliability of the extracted data with
baseline recordings to check the reproducibility of the 44 para-
meters measured. To do so, we tested and re-tested mice on
consecutive days on the treadmill task at baseline (e.g., before
injury), and we found that reliability was excellent for all para-
meters measured (Fig. 2e; r= 0.9985, P < 0.0001, Pearson’s cor-
relation) between the initial test and the re-test conditions.

Fig. 1 Automated behavioral analysis using ALMA toolbox. a Schematic of ALMA toolbox application to treadmill recordings for the generation of gait
kinematic parameters. First, treadmill videos were recorded with a GoPro 8 camera placed parallel to the treadmill. Then, markerless limb labeling and
modeling was trained and refined using ResNet-50 and DeepLabCut (DLC) and coordinates were extracted. Coordinates were tracked for six hindlimb
joints (toe, metatarsophalangeal (MTP) joint, ankle, knee, hip, and iliac crest) in the treadmill kinematic paradigm, and the coordinates were processed
using the toolbox to generate hindlimb trajectories. This allowed the generation of 44 kinematic parameters that represented joint angles, spatial variability,
limb endpoint trajectories, temporal features of gait, and dragging. Data processing was conducted in ALMA to obtain principal component analysis and
random forest classification of the parameters. b Schematic of ALMA toolbox application to the ladder rung recordings for the generation of footfall
parameters. First, ladder rung videos were recorded with a GoPro 8 camera placed parallel to the ladder. Then, markerless limb labeling and modeling was
trained and refined using ResNet-50 and DLC, and coordinates were extracted. Coordinates could be tracked for all four paws. The toolbox used the
automated footfall detector to extract limb tracing and footfall detection. The on- and off-set of locomotor errors (footfalls) were estimated using signal
processing methods and subjected to manual validation. Three parameters, the number, depth, and duration of the footfalls, were extracted. Px pixels.
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For the SCI experiment, we used mice that were first tested in the
Basso Mouse Scale (BMS)10 and showed at least one point of
recovery over time (BMS score baseline 9 ± 0; BMS score 3 days
post-injury (dpi) 3.86 ± 1.08 and BMS score 21 dpi 6.29 ± 0.81).
We then analyzed the treadmill recordings collected before spinal
cord injury and at 3 and 21 days following SCI in these mice and
generated the adjusted hindlimb trajectories (Fig. 2f). Those tra-
jectories were profoundly altered in SCI mice at 3 days post-
injury (dpi) but had partially recovered by 21 dpi (Fig. 2f). We
applied random forest classification to the data for the animals
based on the 44 extracted parameters, and we could predict the
injury status to a 98% accuracy when we compared baseline to
animals at 3 dpi, and the recovery status to a 94% accuracy when
we compared 3 dpi to 21 dpi animals. The step height, knee joint
flexion, and knee joint extension showed the highest Gini

impurity-based feature importance (Fig. 2g). We then compared
the gait of the mice before and after spinal cord injury using
principal component analysis of our 44 kinematic parameters and
determined that the data for injured mice at 3 dpi clustered
separately from those of the mice at baseline, while mice at 21 dpi
were clustered in between, again indicating incomplete recovery
of locomotor function (Fig. 2h). PC1 and PC2 together repre-
sented 58% of the variance, with PC2 better reflecting the
between-group differences (Fig. 2h). After calculating the factor
loadings, we identified three parameters that best-represented
PC2 and were, thus, most likely to track SCI-related differences
(Fig. 2h). Step height, knee joint extension, and dynamic time
warping (DTW) demonstrated significant alterations at 3 dpi,
and recovered over time until they were no longer significantly
different from baseline (Fig. 2h and Supplementary Table 2).
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Our analysis thus suggests that these kinematic parameters are
best suited to monitor locomotor deficits resulting from an
incomplete spinal cord injury. In addition, we validated a subset
of kinematic parameters by manually labeling the different joints
and the onset of step cycle detection, and found no significant
differences with the parameters obtained through the automatic
method (Supplementary Fig. 2). Importantly, those changes are
specific of SCI as our toolbox could not pick up any gait kine-
matic changes following sham injury (Supplementary Fig. 3).

Tracking skilled paw placement after spinal cord injury with
the ALMA toolbox. While overground locomotion strongly
depends on the function of intraspinal circuits, skilled paw pla-
cement requires supraspinal input and is, thus, commonly used to
assess the regeneration and remodeling of descending motor
tracks, including corticospinal projections. We, therefore, asses-
sed whether the ALMA toolbox could also be used to monitor
skilled paw placement following spinal cord injury (Fig. 3a). To
this end, we recorded mice walking on a horizontal ladder with
regularly or irregularly spaced rungs. Similar to the overground
locomotion experiment, all videos were recorded using a single
GoPro 8 camera, and we used DLC to perform markerless
labeling of the hind paws (Fig. 3b and Supplementary Video 2).
We then applied ALMA to determine footfall characteristics with
a peak detection algorithm (Fig. 3c, d and Supplementary Fig. 4).
The parameters extracted from ALMA showed that spinal cord
injury caused an increase in the mean number and depth of
footfalls at 3 dpi, while the mean duration of the footfalls was
only slightly increased, for the ladder with regularly spaced rungs
(Fig. 3e). Those parameters remained altered over a prolonged
period so that they remained different from baseline at 21 dpi
(Fig. 3e). Similarly, in the ladder with irregular rungs experiment,
the mean number of footfalls and duration of footfalls were found
to increase at 3 dpi and remained elevated till 21 dpi. However,
the mean number of footfalls significantly recovered from 3 to 21
dpi. The mean depth of footfalls was, in this case, unchanged
throughout the study period (Fig. 3f). We also calculated the total
duration and total depth of the footfalls on the ladders with
regularly and irregularly spaced rungs and observed a significant
increase in the total depth and total duration at 3 dpi and 21 dpi
(Fig. 3g). Finally, we compared the ALMA automated detection of
the number of footfalls using a deviation algorithm with (i) the
semi-automatic detection (that includes a manual correction
provided by the GUI) and (ii) a fully manual count of the

mistakes. In both cases, we found a highly significant correlation
(Fig. 3h) confirming that the ALMA toolbox can provide precise
quantification of skilled paw placement. While there is a slight
overestimation through the fully automated detection (see
“Methods”), the fully manual quantification and the semi-
automated quantifications with ALMA are similar (Fig. 3h).

The ALMA toolbox can reveal behavioral consequences of
traumatic brain injury. Next, we wanted to determine whether
our toolbox, which was initially designed to reveal motor
abnormalities related to spinal cord pathology, was also capable
of detecting the locomotor changes induced by neurological
conditions primarily affecting the brain. This is of particular
importance for traumatic brain injuries, as it has often been
challenging to detect and reliably quantify motor deficits arising
from such insults, in particular in the acute injury phase30,31.
We, therefore, induced moderate brain injury in mice using a
traumatic brain injury (TBI) impactor and recorded the loco-
motion and paw placements of mice walking on the treadmill
and ladders, respectively, before and 1 day and 10 days after
traumatic brain injury (Fig. 4a). We applied the ALMA toolbox
as described above and initially analyzed the treadmill record-
ings (Fig. 4b, c). The findings showed that the limb trajectories
were strongly affected at 1 dpi and had partially recovered by 10
dpi (Fig. 4d). We applied random forest classification to all
animals at baseline and 1 dpi based on the 44 extracted para-
meters, and we were able to demonstrate the parameters with
the highest Gini impurity-based feature importance (step
height, hip joint, hip joint amplitude, and hip joint flexion) and
predict the injury status with 83% accuracy. This indicates that
our toolbox makes it possible to robustly detect even the subtle
locomotor changes induced by a moderate TBI (Fig. 4e). We
then used principal component analysis to reduce the dimen-
sionality of our data and determine the individual movement
parameters that best identified differences between the groups.
We found that data for mice at baseline clustered closer to the
data for the mice at 10 dpi than to those at 1 dpi, indicating that
the injury and recovery effects can be ascertained based on the
kinematic parameters (Fig. 4f). As PC1 represented almost 40%
of the variance, we plotted the principal component analysis
scores and demonstrated the above-mentioned effects at 1 dpi
(Fig. 4f). Based on PC1, we identified the top three parameters
that contributed to the differences: step height, stride length,
and DTW distance. These parameters showed significant

Fig. 2 ALMA analysis of gait changes in spinal cord injured mice tested on the treadmill. a Timeline of the traumatic spinal cord injury (SCI) experiment.
b Schematic of the treadmill system used to record the behavior of mice during the SCI experiment. c Schematic of DeepLabCut (DLC) markerless joint
labeling. Six joints were labeled: iliac crest, hip, knee, ankle, metatarsophalangeal joint (MTP), and toe. d Representation of hindlimb trajectories (left panel)
before the adjustment in ALMA (top; green, swing; gray, stance) and after adjustment with ALMA (bottom; green, swing; gray, stance). Note, that after
adjustment, swing and stance were efficiently separated. Representation of automatic stride extraction from the toe coordinates and frame number (right
panel). e Quantification of parameter reliability; baseline data were tested and re-tested and demonstrated a high correlation coefficient (r= 0.9985,
P < 0.0001; Pearson’s correlation coefficient). f Photographic images (top) of mice running on the treadmill showing the markerless labeling of hindlimb
joints using DLC at baseline, 3 dpi, and 21 dpi, and hindlimb trajectories for baseline (cyan), 3 dpi (fuchsia), and 21 dpi (orange). g Random forest
classification (RFC) of 44 parameters extracted from the ALMA toolbox for the analysis of gait following spinal cord injury and accuracy injury status
prediction based on the 44 parameters using confusion matrices for 3 dpi vs. 21 dpi (Gini impurity-based feature importance for RFC: knee joint extension,
0.125; knee joint flexion, 0.112; step height, 0.097. RFC prediction accuracy: baseline vs. 3 dpi 98% and 3 dpi vs. 21 dpi 94%, tested in n= 84–92 step
cycles). h Principal component analysis of data obtained on the treadmill and processed with the ALMA toolbox for spinal cord injury, and plot of scores of
PC2 that represent 22.3% of the variability (principal component analysis, PC1 36.1%, PC2 22.3%, repeated-measures one-way ANOVA followed by
Tukey’s test; baseline vs. 3 dpi [P= 0.022]; baseline vs. 21 dpi [P= 0.920], 3 dpi vs. 21 dpi [P= 0.044]; n= 7). i Quantitative evaluation of parameters
associated with PC2, such as step height, knee joint extension, or dynamic time warping (DTW) y plane, at baseline, 3 dpi, and 21 dpi. Repeated-measures
one-way ANOVA followed by Tukey’s test was used to analyze knee joint extension (baseline vs. 3 dpi, P= 0.005; baseline vs. 21 dpi, P > 0.999; 3 dpi vs.
21 dpi, P= 0.005; n= 7), Friedman and Dunn tests were used for DTW y plane (baseline vs. 3 dpi, P= 0.004; baseline vs. 21 dpi, P > 0.999; 3 dpi vs. 21 dpi,
P= 0.049; n= 7), Repeated-measures one-way ANOVA followed by Tukey’s test was used to analyze step height (baseline vs. 3 dpi, P= 0.063; baseline
vs. 21 dpi, P= 0.012; 3 dpi vs. 21 dpi, P > 0.999; n= 6). In all panels, data are presented as mean ± SEM; *P < 0.05; **P < 0.01; ***P < 0.001. Px pixels.
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changes at 1 dpi and later recovery at 10 dpi, indicating that our
toolbox can also detect changes in locomotion following brain
lesions (Fig. 4g and Supplementary Table 3).

We then analyzed the ladder task recordings using the ALMA
toolbox (Fig. 4h). We extracted the three footfall parameters
described previously and demonstrated that mice with brain

injuries displayed an increased number of footfalls in the regular-
rung ladder task, which returned to baseline at 10 dpi (Fig. 4i). In
contrast, the irregular-rung ladder performance was unaffected by
moderate traumatic brain injury. Taken together, these results
indicate that the ALMA toolbox can be applied to assess
neurological conditions of the brain and is capable of sensitively
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tracking both alterations in locomotor kinematics and foot
placement after TBI.

The ALMA toolbox can monitor disease symptoms and predict
disease onset in a multiple sclerosis model. Finally, we sought to
investigate the applicability of our toolbox for assessing neuro-
logical conditions with a less predictable disease course, such as
those caused by CNS inflammation. Therefore, we induced a
commonly used mouse model of multiple sclerosis, experimental
autoimmune encephalomyelitis (EAE), by immunizing mice with
the myelin oligodendrocyte glycoprotein (MOG). We then
recorded the locomotion of the mice on the treadmill at baseline,
disease onset (defined as the first day with clinical symptoms),
disease peak (3 or 4 days after onset), and recovery (10 or 11 days
after onset; Fig. 5a, b). As expected, as the disease progressed, the
mice developed ascending paresis and paralysis that strongly
altered their hindlimb trajectories at the peak of the disease (and
precluded the use of the ladder tests). While the hindlimb tra-
jectories recovered slightly over the next few days, they remained
clearly distinct from the baseline pattern (Fig. 5c). The principal
component analysis confirmed that the data formed distinct
clusters at the onset, peak, and recovery of disease compared to
baseline (Fig. 5d). As PC1 represented 76.1% of the variability, we
plotted the scores in PC1 to recapitulate the evolution of motor
systems (Fig. 5e) and extracted the key parameters clustering with
PC1. Those parameters (stride length, stride height, toe–crest
distance, and dragging percentage) all showed significant changes
at the peak of the disease and tended towards a later recovery,
indicating that our toolbox is well suited to monitoring the
locomotor alterations resulting from the formation and resolution
of inflammatory lesions (Fig. 5f and Supplementary Table 4).

We next examined whether this refined analysis of locomotion
kinematics is sufficiently sensitive to pick up the prodromal stages
of the disease, which are not apparent in classical EAE scoring
(based on simple observations of mouse mobility). In this context,
we were particularly interested in whether we could detect the
more subtle locomotor alterations associated with the initial
formation of the lesions, which can predict the subsequent onset
of overt disease symptoms (defined as the first day of detectable
symptoms in the EAE score; often seen as tail paralysis). This
would be useful, as it is often important to precisely initiate
interventions, e.g., pharmacological treatment, when CNS lesions

first start to form, as, once initiated, the CNS inflammatory
process can self-perpetuate. Therefore, we used the ALMA
toolbox to analyze the treadmill recordings starting 3 days prior
to disease onset (defined by the EAE score). Using random forest
classification, we found we could predict whether and when the
mice would subsequently show EAE symptoms with 75%
accuracy 3 days before onset, with 78% accuracy 2 days before
onset, and with 86% accuracy 1 day before onset (Fig. 5g). This
illustrated the ability of our toolbox to accurately predict whether
an immunized mouse will develop overt disease symptoms in the
prodromal disease phase and even predict the day of onset. This
renders the initial formation phase of CNS lesions amenable
to study.

Discussion
The quantitative assessment of locomotor performance is critical
in the analysis of physiological gait patterns and their perturba-
tions in neurological diseases. Conventional evaluation strategies
often rely on resource-intensive and time-demanding observation
and analysis setups. Together with the specialized expertise
required to operate these setups, these demands currently prevent
the broad application of refined locomotor analyses in basic and
clinical neuroscience. In this study, we used deep-learning stra-
tegies to implement ALMA, an open-source toolbox that facil-
itates refined analysis of overground locomotion and skilled paw
placement at a fraction of the cost of specialized behavioral set-
ups. ALMA is fully automated, saving time and preventing
observer bias, and it can be used without previous expertise
through its user-friendly interface. Therefore, ALMA makes a
comprehensive analysis of locomotion accessible to every research
group interested in revealing the behavioral consequences of
nervous system dysfunction and disease.

The use of machine-learning approaches to the study of behavior
in both rodents and humans has dramatically increased in the last 5
years24–27,32. An important step in this process was the develop-
ment, by Mathis and colleagues, of a markerless method (DLC24) to
label the joints and follow their motion reliably over time. Here, we
made use of this method to mark important joints in mice and
import the DLC coordinates to track locomotion and fine paw
placements. Alternatively, our toolbox can also be efficiently used
with coordinates generated through other techniques, such as
VICON, the newly published DANNCE28 methods or any other

Fig. 3 ALMA analysis of fine paw placement in spinal cord injured mice in the ladder rung test. a Timeline of the traumatic spinal cord injury experiment.
b Schematic of the ladder rung system used to record the fine paw placement of mice during the spinal cord injury experiment indicating the DeepLabCut
(DLC) markerless paw labeling (yellow, red, dark blue and light blue dots). c Photographic image of a mouse running on the treadmill showing the
automatic detection of footfall, as predicted in time and space by the toolbox. d Automated detection algorithm used to predict footfalls in space and time.
e Quantitative parameters extracted from ALMA for the regular walk showing the mean number, mean depth, and mean duration of footfalls for all time
points (cyan, baseline; purple, 3 dpi; and orange, 21 dpi). Repeated one-way ANOVA followed by Tukey’s test was used to the analyze the regular ladder
rung results (mean no. footfalls, baseline vs. 3 dpi [P= 0.0002], baseline vs. 21 dpi [P= 0.021], 3 dpi vs. 21 dpi [P= 0.223]; mean depth, baseline vs. 3 dpi
[P= 0.003], baseline vs. 21 dpi [P= 0.013], 3 dpi vs. 21 dpi [P= 0.612]; and mean duration, baseline vs. 3 dpi [p= 0.053], baseline vs. 21 dpi [P= 0.131], 3
dpi vs. 21 dpi [P= 0.838]; n= 6). f Quantitative parameters extracted from ALMA for the regular walk showing the mean number, mean depth, and mean
duration of footfalls for all time points (cyan, baseline; purple, 3 dpi; and orange, 21 dpi). Repeated one-way ANOVA followed by Tukey’s test was used to
the analyze the irregular ladder rung results (mean no. footfalls, baseline vs. 3 dpi: [P < 0.0001], baseline vs. 21 dpi [P < 0.0001], 3 dpi vs. 21 dpi
[P= 0.002]; mean depth, baseline vs. 3 dpi [P= 0.745], baseline vs. 21 dpi [P > 0.999], 3 dpi vs. 21 dpi [P > 0.999]; and mean duration, baseline vs. 3 dpi,
P= [0.028], baseline vs. 21 dpi [P= 0.028], 3 dpi vs. 21 dpi [P > 0.999]; n= 6). g Quantitative evaluation of the total depth and total duration of footfalls
for all time points (cyan, baseline; purple, 3 dpi; and orange, 21 dpi). Repeated one-way ANOVA followed by Tukey’s test was used to analyze total footfall
depth on regular ladder rungs (baseline vs. 3 dpi, P= 0.0047; baseline vs. 21 dpi, P= 0.043; and 3 dpi vs. 21 dpi, P= 0.175; n= 6), total depth on irregular
ladder rungs (baseline vs. 3 dpi, P < 0.0001; baseline vs. 21 dpi, P < 0.0001; 3 dpi vs. 21 dpi, P= 0.0039; n= 6), total duration on regular ladder rungs
(baseline vs. 3 dpi, P= 0.0042; baseline vs. 21 dpi, P= 0.173; 3 dpi vs. 21 dpi, P= 0.101; n= 6), and total duration on irregular ladder rungs (baseline vs. 3
dpi, P < 0.0001; baseline vs. 21 dpi, P= 0.004; 3 dpi vs. 21 dpi, P= 0.041; n= 6). h Correlation between the ALMA automatic detection of the number of
footfalls using the deviation algorithm and a fully manual detection (left panel; r= 0.9845, P < 0.0001; Pearson’s correlation coefficient) and between the
ALMA semi-automatic detection of the number of footfalls using the deviation algorithm and a fully manual detection (left panel; r= 0.9989, P < 0.0001;
Pearson’s correlation coefficient). In all panels, data are presented as mean ± SEM; *P < 0.05; **P < 0.01; ***P < 0.001. Px pixels, dpi days post-injury.
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excellent pose estimation platforms such as SLEAP (sleap.ai33),
MARS34, and DeepPoseKit35.

To translate these limb and joint coordinates into locomotor
patterns on a treadmill or horizontal ladder and to subsequently
extract the parameters of gait and footfall, we used model train-
ing. In healthy mice, this allowed us to define a list of 44 hindlimb
parameters— validated with almost perfect re-test reliability
(r= 0.9985)—that best represent gait features but can also be
increased or made more comprehensive to meet one’s needs. It is
remarkable that this highly robust kinematic analysis can not
only be achieved with a fully automated analysis pipeline but also
that it can be achieved with the use of an affordable single-action
camera. Particularly as, to date, scientists have had to rely on the
use of high-end cameras and software modules to manually
extract gait cycles and parameters in the analysis of kinematic
behavior. Previous techniques came with several pitfalls, includ-
ing high software costs, limited troubleshooting support, and
cumbersome and time-consuming post-experimental processing.
In contrast, the ALMA toolbox simply requires the import of
DLC output using a GUI and allows the extraction of the final
gait kinematic parameters. Another important aspect of our

approach is that the ALMA toolbox allows the tracking of loco-
motor patterns based on side-view camera recordings, which,
while harder to model, provide much more gait parameters
compared with the bottom-view recordings used in the catwalk
approach or in recent automated approaches19,27. As demon-
strated here, 2D side-view tracking and analysis provides
important information on each joint angle, step height, and body
support, which is missing in top- or bottom-view recordings of
gait analysis.

In addition to kinematic analysis, the ALMA toolbox offers the
first automated analysis of the number, duration, and depth of
footfalls on regularly and irregularly spaced ladder rungs. This is
an important improvement for those investigating skilled paw
placement, as it replaces a cumbersome analysis protocol that had
to be performed frame by frame36,37. The analysis of skilled paw
placement is complementary to the obtention of kinematic
parameters, as it provides a readout of the damage and recovery
of supraspinal circuits18,38. Finally, it should be noted that while
we focused our analysis on both the gait and footfall aspects of
mouse hindlimb movements, the ALMA toolbox should (with
minor modifications) be equally suitable for the analysis of
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forelimb function, forelimb–hindlimb coordination, or the
tracking of locomotor function in larger rodents such as rats.

We further showed that the ALMA toolbox can be applied to a
range of neurological conditions and enables the automated
tracking of locomotor deficits in mice with traumatic and
inflammatory injuries of the brain and spinal cord. Using spinal
cord injury models, we confirmed that tracking of locomotor
deficits is robust, as demonstrated by the high reproducibility and
the correct prediction of injury status. As spinal cord injuries lead
to pronounced locomotor deficits, a large number of studies have
used behavioral testing strategies to assess the functional out-
comes of genetic or therapeutic modulations20,21,39–45. Impor-
tantly, using ALMA, we find profound disturbances in gait and
fine paw placement at acute time points following incomplete
spinal cord injury and demonstrate a recovery at more chronic
time points. This is similar to previous reports that use similar
spinal cord injury models18,20,29,38,46,47. The application of the
ALMA toolbox in such models should both improve the relia-
bility of the analysis (as observer and selection biases are
removed) and provide a more refined view of locomotor dis-
turbance and recovery, as it allows the operator to precisely
determine which component or components of locomotor func-
tion are regulated by a specific circuit modulation or therapeutic
intervention.

The locomotor deficits observed after spinal cord injury are
pronounced compared with the less obvious deficits resulting
from mild-to-moderate brain injuries. It has often been challen-
ging to detect and reliably monitor locomotor deficits following
such brain injuries in mice, particularly in the early phase when
the effects are subtle30,31. Our findings showed that the kinematic
tracking of gait parameters, in particular, step height, stride
length, and DTW (which measures the similarity between two
step sequences), allowed us to sensitively reveal both the emer-
gence of locomotor deficits (1 day after injury) and their recovery
(by 10 days after injury). Interestingly, while pronounced
abnormalities of locomotion were observed at the initial record-
ing after injury, the animals later recovered a movement pattern
almost identical to the pattern observed at baseline. This is clearly
distinct from the comparably incomplete recovery process
observed after spinal cord injury and may indicate that the per-
sistence of intraspinal circuits is critical for re-establishing the

“original” physiological movement pattern, while the reorgani-
zation of intraspinal (but not supraspinal) circuits results in a
compensatory adaption of the movement pattern.

In comparison to studies of the injured brain and spinal cord,
only a few attempts have been made to apply refined behavioral
testing to models of inflammatory CNS damage, such as the EAE
model48–50. One limitation has been, that, due to the dis-
seminated nature of inflammatory infiltration, which results in
variable neuronal tracking systems being affected in different
mice, inter-individual differences in the pattern of locomotor
changes are to be expected. For this purpose, targeted EAE
models have been developed that allow inflammatory lesions to
be directed to a predetermined anatomical location in the brain or
spinal cord51–53. However, the stereotactic injection procedure
required for the induction of such models limits their application,
e.g., for studying disease initiation. Here we were able to show
that the comprehensive kinematic analysis generated by the
ALMA toolbox allows for the refined monitoring of locomotor
deficits, even in classical disseminated EAE models. While such
locomotor symptoms can also be tracked by the classical EAE
scoring scale, which is based on visual inspection of the walking
abilities of mice, kinematic analysis provides a number of
advantages. First, the ALMA toolbox allows for fully automated
and standardized analyses, removing observer bias and, thereby,
making behavioral assessments more comparable between dif-
ferent observers and labs. Second, it stands to reason that the
quantitative assessment of 44 distinct gait parameters should be
more sensitive to differences in locomotor function compared
with visual inspection. This is particularly important when eval-
uating the behavioral consequences of therapeutic manipulations
targeting neuronal protection and repair54 that are expected to
lead to more subtle changes in locomotor function. Third, and
related to the latter, our current analysis showed that the ALMA
toolbox is able to accurately predict the onset of overt motor
symptoms up to 3 days before the onset of disease can be detected
by conventional EAE scoring. This indicates that even subtle
motor symptoms that arise during this stage55, which are pre-
sumably related to the formation of the first CNS lesions, can be
detected by the ALMA toolbox. Our toolbox thus facilitates stu-
dies of the prodromal stage of the disease and its targeted mod-
ulation by therapeutic interventions.

Fig. 4 ALMA monitoring of gait changes and differences in fine paw placement in brain-injured mice. a Timeline of the traumatic brain injury
experiment. b Schematic of the treadmill system used to record the behavior of the mice during the traumatic brain injury experiment. c Photographic
images of the mice running on the treadmill showing markerless labeling of hindlimb joints using DeepLabCut (DLC) at baseline. d Hindlimb trajectories for
baseline (top, cyan), 1 dpi (middle, purple), and 10 dpi (bottom, orange). e Random forest classification (left) of the 44 parameters extracted from the
ALMA toolbox for the analysis of gait following traumatic brain injury, and confusion matrix (right) for determining prediction accuracy of the injury status
based on the 44 parameters (Gini impurity-based feature importance for RFC: hip joint, 0.061; step height, 0.059; hip joint amplitude, 0.056; hip joint
flexion, 0.047: RFC prediction accuracy: baseline vs. 1 dpi 83%; tested in n= 282–481 step cycles). f Principal component analysis of data obtained from
the treadmill task and processed with the ALMA toolbox, and plot of PC1 scores that represent 37.8% of the variability and associated factor loadings
(principal component analysis, PC1 37.8%, PC2 14.7%; repeated one-way ANOVA followed by Tukey’s test, baseline vs. 1 dpi [P= 0.012], baseline vs. 10
dpi [P= 0.665], 1 dpi vs. 10 dpi [P= 0.014]; n= 6). g Quantitative evaluation of factors associated with PC1, i.e., step height, stride length, and dynamic
time warping (DTW) distance, at baseline, 1 dpi, and 10 dpi. Repeated one-way ANOVA followed by Tukey’s test was used to analyze step height (baseline
vs. 1 dpi, P= 0.0095; baseline vs. 10 dpi, P= 0.730; 1 dpi vs. 10 dpi, P= 0.033; n= 6), stride length (baseline vs. 1 dpi, P= 0.0214; baseline vs. 10 dpi,
P= 0.855; 1 dpi vs. 10 dpi, P= 0.0517; n= 6), and DTW distance (baseline vs. 1 dpi, P= 0.001; baseline vs. 10 dpi, P= 0.9943; 1 dpi vs. 10 dpi, P= 0.0012;
n= 6). h Schematic of the ladder rung system used to record the behavior of mice during the traumatic brain injury experiment, and photographic images
of a mouse running on the treadmill showing markerless labeling of hindlimb paws using DLC at baseline and showing the algorithm detection of footfall.
i Quantitative evaluation of three parameters extracted from ALMA for footfalls at baseline, 1 dpi, and 10 dpi. Friedman followed by Dunn’s test was used to
analyze the regular ladder rung mean no. footfalls (baseline vs. 1 dpi, P= 0.0315, baseline vs. 10 dpi, P= 0.2557; 1 dpi vs. 10 dpi, P= 0.1583), mean depth
(baseline vs. 1 dpi, P= 0.1299; baseline vs. 10 dpi, P= 0.0628; 1 dpi vs. 10 dpi, P > 9999), and mean duration (baseline vs. 1 dpi, P > 0.9999; baseline vs. 10
dpi, P > 0.9999; 1 dpi vs. 10 dpi, P > 9999; n= 6) and the irregular ladder rung mean no. footfalls (baseline vs. 1 dpi, P= 0.3371; baseline vs. 10 dpi,
P= 0.9370; 1 dpi vs. 10 dpi, P > 0.9999; n= 6), mean depth (baseline vs. 1 dpi, P= 0.0534, baseline vs. 10 dpi, P > 0.9999; 1 dpi vs. 10 dpi, P= 0.0534;
n= 6) and mean duration (baseline vs. 1 dpi, P > 0.9999; baseline vs. 10 dpi, P= 0.9370; 1 dpi vs. 10 dpi, P= 0.3371; n= 6). In all panels, data are
presented as mean ± SEM; *P < 0.05; **P < 0.01; ***P < 0.001. Px pixels, dpi days post-injury.
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While we have outlined the real advantages of using ALMA to
analyze gait and fine paw placements in the context of CNS
damage, ALMA also comes with inherent limitations. For
example, gait analysis was, in this paper, performed only on
hindlimbs. This can be easily circumvented by further using pose
estimation to label the forelimb joints which would allow the
generation of gait parameters for the forelimb and the generation

of coupling data between forelimbs and hindlimbs. Likewise,
ALMA currently provides the investigators with the two main
components of the PCA following analysis. Using a scree plot
(also provided in the toolbox), more components can be visua-
lized and studied. For the determination of mistakes in the ladder
rung test, we used a “deviation peak detection” algorithm that
slightly overestimates the raw number of mistakes. This can be

Fig. 5 ALMA monitoring of locomotor changes in mice that developed experimental autoimmune encephalomyelitis and accurate prediction of disease
development during the prodromal phase. a Timeline of the EAE experiment. b Schematic of treadmill system used to record the behavior of the mice
during the EAE experiment. c Photographic images of mice running on the treadmill (left) showing markerless labeling of hindlimb joints using DeepLabCut
(DLC) at baseline (top), onset of disease (middle), and disease recovery (bottom), and hindlimb trajectories (right) for baseline (top), onset of disease
(middle), and disease recovery (bottom). d Principal component analysis of data obtained on the treadmill and processed with the ALMA toolbox. e Plot of
the PC1 scores that represent 76.1% of the variability and associated factor loadings (Kruskal–Wallis followed by Dunn’s test; baseline vs. peak, P= 0.0104;
onset vs. peak, P= 0.0418; baseline vs. recovery, P= 0.9806; peak vs. recovery, P > 0.9999). f Quantitative evaluation of factors associated with PC1, i.e.,
stride length, step height, toe–crest distance, and dragging, at baseline and different stages of EAE (Kruskal–Wallis followed by Dunn’s test; stride length,
baseline vs. peak [P < 0.0001], onset vs. peak [P= 0.0231], baseline vs. recovery [P= 0.0019], peak vs. recovery [P > 0.9999]; n= 6; step height, baseline
vs. peak [P= 0.0002], onset vs. peak [P= 0.0020], baseline vs. recovery, [P= 0.0382], peak vs. recovery [P > 0.9999]; toe–crest distance, baseline vs.
peak [P= 0.0737], onset vs. peak [P= 0.0036], baseline vs. recovery [P= 0.0382], peak vs. recovery [P= 0.7374]; and dragging (%), baseline vs. peak
[P < 0.0001], onset vs. peak [P= 0.0082], baseline vs. recovery [P= 0.0039], peak vs. recovery [P > 0.9999]; n= 6). g EAE clinical score and prediction
of the disease onset based on random forest classification in the prodromal phase (3, 2, and 1 days before onset) using ALMA. In all panels, data are
presented as mean ± SEM; *P < 0.05; **P < 0.01; ***P < 0.001. Px pixels, dpi days post-injury.
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circumvented, as we describe in the paper, by manual validation
of the number of mistakes within the GUI in our semi-automatic
detection. Alternatively, other algorithms (also implemented in
the toolbox) could be used such as the “threshold” or “baseline
correction” algorithms but pose additional constraints on
recording set-ups.

Taken together, we provide a user-friendly open-source tool-
box that requires minimal time and resource commitments; is
applicable to a wide range of neurological conditions affecting the
brain and spinal cord; and provides an unbiased, robust, and
comprehensive assessment of locomotion.

Methods
ALMA toolbox. This research aimed to provide a toolbox for the analysis of gait
and footfall in mouse models of neurological disorders. This toolbox includes a
graphical user interface (GUI) with functionalities for (i) automated kinematic
parameter computation, (ii) automated footfall detection, (iii) data analysis of the
computed kinematic parameters with random forest classification and principal
component analysis, and (iv) visualization of gait kinematics. The ALMA toolbox is
an open-source Python repository for the automatic processing of DLC coordi-
nates, gait cycle detection, and kinematic parameter extraction. Parameters
extracted from ALMA include joint angles, limb endpoint trajectories, drag, tem-
poral features of gait, and spatial variability. This last category represents a range of
pairwise dynamic time warping (DTW) parameters that measure similarity
between limb endpoint trajectories despite different duration and speede32. Fol-
lowing kinematic parameter extraction, the ALMA toolbox enables the use of
machine-learning algorithms, such as random forest classification and principal
component analysis, to reduce dimensionality and identify the most relevant
kinematic parameters in the scope of health and disease. In addition to automated
kinematic analysis, the toolbox GUI provides a code for the accurate detection of
footfalls during fine motor tasks (e.g., traversing ladder rungs) for manual vali-
dation of each footfall. Details and the open-source toolbox can be found at https://
github.com/sollan/alma.

Feature labeling and model training. To train the DLC model, we used ~450
image frames from different disease models (spinal cord injury, traumatic brain
injury, and EAE) and time points. To predict hindlimb kinematic positions, we
manually labeled six different body parts (toe, MTP joint, ankle, knee, hip, and iliac
crest) in all ~450 image frames. The model was trained for up to 650,000 iterations
using a deep residual network structure (ResNet-50), based on the pretrained
model weights from DLC. To detect footfalls in the ladder rung test, we manually
labeled all four paws on ~200 image frames for different mouse models (see above)
and time points. The ResNet-50 model was trained for 400,000 iterations, based on
the pretrained model weights from DLC. To train our models, we used a computer
with 64 GB RAM, AMD Ryzen 9 3900 × 12-Core Processor x 24, and GeForce RTX
2080 Ti 11 GB graphics card. Our trained models for kinematic and footfall
analyses are publicly available.

To perform random forest (RF) classification following gait analysis, we used
scikit-learn56. To build the classifiers, ALMA provides several built-in functions
such as outlier removal, assignment of group labels to the single gait cycle
kinematic data, and concatenation of the kinematic data from different groups into
a single data frame. For the random forest hyperparameters, we followed the
default from the random forest classifier function in sklearn, which was sufficient
for learning the mapping57. Specifically, we used 100 decision trees in each RF
classifier, with Gini impurity as the splitting criterion. We did not set a maximum
depth for the trees and allowed an unlimited number of leaf nodes. The individual
trees were built with samples from the entire training dataset. Importantly, we
created new classifiers for each assay (i.e., one RF classifier for healthy vs. 3 dpi,
another for healthy vs. 21 dpi, and so on). We used a 75%/25% split of training and
testing data. As there was roughly an equal amount of data from the healthy/
disease conditions, we based the splitting on random selection. The accuracy results
presented in this paper were based on test data not included in the training set to
demonstrate the generalizability of the models.

Animals. We used C57bl6 female mice of 2–4 months of age. The mice were kept
in our animal facility under a regular day/night cycle (12 h/12 h). Animals had
constant access to food and water. All animal experiments were carried out in
accordance with the German animal welfare guidelines and previously authorized
by the local regulatory committees (Regierung von Oberbayern).

Spinal cord injury. Mice were anesthetized with MMF (medetomidin 0.5 mg/kg,
Orion Pharma; midazolam 5.0 mg/kg, Ratiopharm; fentanyl 0.05 mg/kg, B. Braun).
Once the mice presented no reflex reaction from paw pinching, their backs were
shaved and a laminectomy was performed at T8 levels. The dura was exposed, and
a dorsal hemisection was performed using irridectomy scissors38,58 (Bradley
et al.58; Loy et al.59). After the hemisection, the wound was closed, and the skin was

sutured. An antagonist mix was given (atipamezole 2.5 mg/kg, flumazenil 0.5 mg/
kg, and naloxon 1.2 mg/kg), and mice were kept on a heating pad until completely
awake. Mice received meloxicam (Metacam, 1.5 mg/ml oral suspension) at 12, 24,
and 48 h following the injury.

EAE. Active EAE was induced in female mice by subcutaneous injection of 400 μg
of purified recombinant MOG (N1-125) in complete Freund’s adjuvant (freshly
made by adding 10 mg/mL Mycobacterium tuberculosis H37 Ra, Sigma-Aldrich).
Then, 400 ng of pertussis toxin (Sigma-Aldrich) were administered intraper-
itoneally (i.p.) on days 0 and 2 after immunization60. The mice were weighed daily
and scored for neurological deficits according to the following EAE scores: 0, no
clinical signs; 0.5, partial tail weakness; 1, tail paralysis; 1.5, gait instability or
impaired righting ability; 2, hindlimb paresis; 2.5, hindlimb paresis with dragging
of one foot; 3, total hindlimb paralysis; 3.5, hindlimb paralysis and forelimb paresis;
4, hindlimb and forelimb paralysis; 5, death.

Stages of the disease were defined as follows: disease onset was defined as the
first day with clinical symptoms in the EAE score, disease peak occurred 3 or 4 days
after onset, and recovery occurred 10 or 11 days after onset).

Traumatic brain injury. Mice were anesthetized by intraperitoneal MMF injection.
Once the mice presented no reflex reaction from paw pinching, they were put on a
stereotaxic frame (Precision Systems & Instrumentation, LLC). A skin incision was
made followed by the drilling of a window on the right skull hemisphere, which
was positioned rostrocaudal, between the bregma and lambda and under the
sagittal suture. Mice were then placed on the TBI-0310 impactor (Precision Sys-
tems & Instrumentation, LLC) to undergo traumatic brain injury (TBI). The tip of
a 3-mm diameter steel rod was used to induce injury to the somatosensory cortex
according to the following settings: 6 m/s, 150 ms dwell time, 0.5 mm depth61. Mice
were removed from the impactor, the skull window was repositioned and sealed
with Vetbond glue (3 M Vetbond, 3 M United States), and the skin was stitched.
Mice were placed on a heating pad and injected with the antagonist mix before
receiving a subcutaneous glucose injection (glucose 5% B. Braun Infusionslösung).

Behavior setup for kinematics. Mice were recorded using a GoPro 8 camera at
120 frames per second while running on a treadmill (Harvard Apparatus; speed
varying from 2 cm/s to 25 cm/s depending on the disease model; Supplementary
Fig. 1). The distance between the treadmill and camera was 14.5 cm, and the
camera was placed equidistant from the two ends of the treadmill. We chose this
camera position to obtain comprehensive information on joint angles, spatial
variability, and limb endpoint trajectories, which are missing from bottom
recordings of gait analysis. Each mouse was recorded for at least 1 min to sample
enough step cycles. Every incomplete step cycle was automatically excluded by the
toolbox. To extract meaningful datasets, a minimum number of 1200 frames were
captured, i.e., 10 s of recording. One prerequisite to accurate data extraction was
the blind selection of frames with representative step cycles (no pause in animal
locomotion, no grooming, no back turns etc.). When the animal’s limbs are
completely dragging, our algorithm will only compute parameters that are inde-
pendent to the step cycles. All preprocessing and processing steps undertaken by
the ALMA toolbox can be found in Supplementary Fig. 1. We tested the validity of
the automated kinematic analysis methods of ALMA by computing a selection of
temporal and spatial kinematic parameters through manual labeling and quanti-
fication, based on a subset of the video data recorded at baseline (Supplementary
Fig. 2). The manual validation was done using a custom-written Python script
using OpenCV (openCV.org). An experienced observer labeled the body parts used
for markerless pose estimation (toe, MTP, ankle, knee, hip, iliac crest) in more than
200 frames from a video recording at baseline (120 fps, treadmill speed 30 cm/s).
We then calculated the Euclidean distance between the body part coordinates
generated by manual labeling and markerless tracking from DLC. We then com-
puted a number of kinematic parameters for up to seven-step cycles based on
manually determined step onsets, using both manually labeled coordinates and
automatically detected coordinates.

Behavior setup for a ladder rung. Mice were recorded using a GoPro 8 camera at
120 frames per second while making four consecutive runs on our custom-made
ladders. In this test, the animals had to cross 1-m horizontal ladders, and footfalls
were recorded. We evaluated the rhythmic locomotion in the regular walking task
on a ladder with evenly spaced rungs and the animal’s fine coordination paw
placement ability using irregularly spaced rungs (irregular walking task). The
camera was placed 17.5 cm distant from the ladder equidistant from the two ends.
Animals were habituated on a ladder with regularly spaced rungs before any
experiment was performed (2/3 habituations each for a total max. time of 3 min).
We used DLC to perform markerless labeling of the hind paws and then applied
ALMA to determine footfall characteristics with a peak detection algorithm. In the
toolbox, we included three preprocessing algorithms that accommodate a range of
different recording conditions and can be chosen by the experimenter. Here we
chose to use a preprocessing procedure based on the deviation algorithm that
shows a great correlation with manual counting. In particular, we used the
“deviation” algorithm in automated ladder rung analysis, based on peak detection
applied to the raw y-coordinate signal output from markerless pose estimation
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methods, to determine mistakes. In order to avoid missed footfalls, we set a low
prominence (footfall depth) threshold in the peak detection step, leading to a
slightly higher number of false positives due to the signal-noise ratio. To reduce the
number of false positives while using the “deviation” algorithm, we then adjusted
the prominence threshold in the peak detection function. The data generated by
ALMA in this paper include a manual validation step using the graphic interface
provided in ALMA. We also validated fully manually all datasets obtained using
ALMA by manually counting all mistakes made by the animals. To do so, we only
analyzed consecutive steps of the hindlimbs. Therefore, the last step before or after
any interruptions were not scored. Placements were considered a mistake when
mice either totally missed a rung or if they slipped from a rung (deep or slight slip).
Placements were considered as correct when the mice correctly placed all the feet
or only a portion of the foot on the rungs. Then the number of mistakes over a
standard distance was calculated quantitatively. All data preprocessing and analysis
steps undertaken by the ALMA toolbox can be found in Supplementary Fig. 3.

Basso mouse scale. All mice with SCI were evaluated preoperatively and at 7 and
21 dpi. The scores regarding the locomotor ability of mice were given according to
the original paper10 by fully trained observers.

Statistics and reproducibility. All results are given as mean ± standard error of
the mean (SEM) in the figures. In the expanded tables, data are given as mean ±
standard deviation (SD). Statistical analysis and the construction of the graphs for
data illustration were carried out on GraphPad Prism 8.4.3 for Windows
(GraphPad Software). All datasets were tested for normality using the
Shapiro–Wilk test. Parametric data from the SCI and TBI experiments were ana-
lyzed using repeated-measures ANOVA and Tukey’s post hoc test. Nonparametric
datasets from the SCI and TBI experiments were analyzed using the Friedman test
followed by the Dunn post hoc test. Datasets from the EAE experiments were
analyzed with the Kruskal–Wallis test followed by the Dunn post hoc test, as they
were distributed non-normally. To determine correlation, we used Pearson’s cor-
relation coefficient. In order to classify animals we used random forest classifica-
tion, based on individual step cycles. Feature importance in the Random Forest
Classification was determined by Gini impurity-based feature importance which
ranged between 0 and 1. Statistical significance levels are indicated as follows:
*P < 0.05; **P < 0.01; ***P < 0.001.

Reproducibility. All experiments in this study include at least five biological
replicates. The number of replicates (ns) is mentioned in the text or figure legend.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated and analyzed in this study are included in this published article or are
publicly available on Figshare repository62.

Code availability
We have provided the code for the ALMA toolbox at https://github.com/sollan/alma and
Zenodo63.
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