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Tract-specific statistics based on diffusion-
weighted probabilistic tractography
Andrew T. Reid 1✉, Julia A. Camilleri2,3, Felix Hoffstaedter 2,3 & Simon B. Eickhoff2,3

Diffusion-weighted neuroimaging approaches provide rich evidence for estimating the

structural integrity of white matter in vivo, but typically do not assess white matter integrity

for connections between two specific regions of the brain. Here, we present a method for

deriving tract-specific diffusion statistics, based upon predefined regions of interest. Our

approach derives a population distribution using probabilistic tractography, based on the

Nathan Kline Institute (NKI) Enhanced Rockland sample. We determine the most likely

geometry of a path between two regions and express this as a spatial distribution. We then

estimate the average orientation of streamlines traversing this path, at discrete distances

along its trajectory, and the fraction of diffusion directed along this orientation for each

participant. The resulting participant-wise metrics (tract-specific anisotropy; TSA) can then

be used for statistical analysis on any comparable population. Based on this method, we

report both negative and positive associations between age and TSA for two networks

derived from published meta-analytic studies (the “default mode” and “what-where” net-

works), along with more moderate sex differences and age-by-sex interactions. The proposed

method can be applied to any arbitrary set of brain regions, to estimate both the spatial

trajectory and DWI-based anisotropy specific to those regions.
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D iffusion-weighted imaging (DWI) is a promising non-
invasive in vivo technique for evaluating the integrity of
myelinated axonal projections in the brain. DWI is based

on the attenuation of the T2-weighted MRI signal in the presence
of a field gradient, which indicates the degree to which diffusion is
unrestricted in brain tissue in the direction of that gradient.
Methods that reconstruct DWI maps across multiple gradient
orientations can be used to model the (apparent) diffusion of
water molecules in discrete compartments (or voxels) of brain
tissue, and the anisotropy of this diffusion can be used to estimate
the orientation(s) along which diffusion is biased in that voxel.
Because myelin is highly lipid-based, and forms a strong hydro-
phobic barrier, the degree of directed anisotropy in a white matter
voxel is presumed to indicate the degree to which it is comprised
of coherently oriented myelinated axons1. Moreover, variability in
this anisotropy can be used to estimate the relative integrity of
myelinated fibres that run through a voxel – with the assumption
being that decreased anisotropy indicates a decrease in myelina-
tion or myelinated axons. Supporting this, evidence from studies
of induced degeneration in rat and frog axons resulted in sub-
stantial (approximately two-fold) decreases in anisotropy2,3.

The simplest model of diffusion used for DWI analysis is the
diffusion tensor, which assumes a Gaussian distribution with one
principal and two secondary axes, corresponding to the first three
eigenvectors of observed diffusion across gradient orientations4,5.
From this model, we can obtain a summary measure of aniso-
tropy (fractional anisotropy; FA), based on the relative magni-
tudes of the eigenvalues associated with each axis of the tensor.
FA ranges from 0 to 1, where 0 indicates perfect isotropy (as
would be expected of a uniform substance such as water or cer-
ebrospinal fluid), and 1 indicates diffusion exclusively in the
principal direction. The diffusion tensor can also be used to
perform deterministic tractography, in which streamlines are
generated by starting at a pre-specified set of “seed” voxels, and
propagated through a series of neighbouring voxels by reorienting
at each according to its principal orientation of diffusion. Trac-
tography can also be set in a probabilistic framework, by gen-
erating many streamlines and sampling at each voxel from a
posterior probability distribution of orientations based on the
tensor model6.

While the basic diffusion tensor is an adequate model for
voxels through which fibres are essentially oriented in a single
direction (e.g., fibres traversing the corpus callosum), it fails to
model more complex situations, such as the case where two or
more fibres are crossing, diverging, or converging. This presents a
strong bias in favour of finding certain pathways over others. One
way of addressing this issue is to explicitly model multiple fibre
directions, for example by using Bayesian model estimation to
determine whether multiple fibre orientations are present, and if
so how strongly they contribute to the observed diffusion signal7.
Such an approach greatly improves the ability of probabilistic
tractography to discover tracts which traverse areas of uncer-
tainty. As an example from Behrens et al.7: while seeding in the
internal capsule led only to a prominent primary motor projec-
tion in the single-fibre approach, numerous other cortical targets
were reached when crossing fibres were explicitly modelled.

It is often desirable to relate voxel-wise DWI-based metrics
such as FA to other phenotypical observations, such as beha-
vioural or cognitive measures, or clinical status. Voxel-wise
analyses can be highly confounded by the individual geometry of
white matter tracts, and one way to address this issue is tract-
based spatial statistics (TBSS), in which FA measures are pro-
jected onto a population-based FA “skeleton” with a high prob-
ability of being white matter in all participants8,9. The presence of
crossing fibres, however, also has implications for the inter-
pretation of FA10. As a hypothetical example: for two otherwise

anatomically identical white matter fibres, the introduction of
perpendicularly oriented axons to one will reduce its FA pro-
portionally. Interpreting FA in terms of the underlying micro-
structure of white matter in a voxel is thus inherently ambiguous.
This ambiguity can be improved if crossing fibres are explicitly
modelled, for example using the Bayesian approach described
above. Such a crossing fibre model has been proposed as an
extension to the TBSS approach10.

Additional fibre-specific DWI approaches have also been
proposed, including q-space and q-ball imaging, spherical
deconvolution, and CHARMED11–13. In particular, spherical
deconvolution uses a spherical harmonic decomposition to esti-
mate an orientation distribution function (ODF) from the
observed diffusion signal12. This approach allows both the dif-
fusion model and the number of distinct fibre populations within
a voxel to be estimated from the observed data, and is the basis
for voxel-wise estimation of apparent fibre density (AFD) for
these distinct populations14. Differences in oriented clusters of
AFD (also referred to as fixels;15) have been shown for patients
with motor neurone disease14 and Alzheimer’s disease16. A
related spherical deconvolution-based approach, called hindrance
modulated orientational anisotropy (HMOA), uses the amplitude
of specific lobes of the ODF as an estimate of white matter
integrity for a specific fibre population17. HMOA of the post-
commissural fornix has been shown to predict verbal memory
performance in a healthy aging cohort18.

Although TBSS and fixel-based approaches provide a means of
assessing the spatial distribution of statistical effects on white
matter integrity, it is often difficult to apply this distribution to
specific axonal connections (i.e., between two arbitrary regions of
grey matter) in the brain. Suppose, for instance, that we are
interested in whether the white matter comprising the physical
connection between brain regions Ra and Rb is altered in condi-
tion C. Using one the aforementioned approaches, we observe
that the C+ group has decreased FA/AFD/HMOA in an area of
white matter that could be intermediary to Ra and Rb. However, as
most major white matter tracts host a mixture of numerous
projection, association, and commissural fibres, we can only really
speculate about the possibility of a compromised RaRb tract. To
improve interpretability, we require an explicit approximation of
the geometry of tract RaRb, and an estimate of the diffusion
specifically oriented along this tract.

In this study, we introduce a novel methodology to address
both of these issues. We first perform probabilistic tractography
on a representative sample of participants (N= 130, aged 18–80),
using high angular resolution DWI data from the Nathan Klein
Institute Enhanced Rockland sample19, and two sets of regions-
of-interest (ROIs) obtained from published meta-analytic neu-
roimaging studies. For each pair of ROIs Ra and Rb, we then
compute the probability of a tract passing through a given voxel,
and use a heuristic approach to determine whether a tract likely
exists between Ra and Rb, and what its most probable trajectory is.
Finally, we use an approach similar to Behrens et al.7 to deter-
mine for each participant, and each voxel, the degree of diffusion
in the direction of the tract at that voxel. This yields a tract-
specific anistropy (TSA) metric that can be regressed against
variables of interest. Here, we report the tract-wise and 3D dis-
tributions of TSA regressed against age, sex, and their interaction.

Results and discussion
Tract determination. We used a heuristic approach (see Fig. 1) to
determine the most probable trajectory of a white matter pro-
jection between two regions of interest (ROIs). For a given pair of
ROIs Ra and Rb, we performed probabilistic tractography twice,
seeding in one of these regions and terminating in the other. The
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resulting directed probability distributions were averaged to
obtain a bidirectional probability average, which was then thre-
sholded in order to identify a set of contiguous voxels connecting
the two regions. If this step did not result in such a pathway, a
connection between Ra and Rb was rejected; otherwise, we iden-
tified the “core” of the pathway and used this to obtain a final
bidirectional tract trajectory estimate. Tract determination was
carried out on two sets of ROIs, derived from previously pub-
lished meta-analytic studies: the default mode network (DMN),
and the what-where network (WWN).

Figure 2a illustrates the tract trajectory estimation process for
example tracts PFCm(R) - LOC(R) and dPMC(L)-vPMC(R). The
horizontal and coronal slice renderings show the initial minimal
bidirectional averages (top row) and final tract trajectory
estimates (bottom row). Figure 2b shows three-dimensional
renderings of these steps, including the failure to estimate a core
trajectory for SPL(L)-dPMC(R). For the vast majority of tracts,
this method was able to isolate a single, core trajectory from a
variety of alternatives.

For the DMN, 33 of 36 ROI pairs (92%) produced core tract
estimates (Fig. 3). Two of the failed tracts involved the left PFCm,
with the more posterior LOC(R) and PCm(L) regions. Tracts
connecting PCm and PCG to PFC and ACC traversed the more
superior cingulum bundle, while those connecting LOC to PFC
and ACC traversed the more inferior fronto-occipital fasciculus.
Contralateral DMN connections traversed the splenium of the
corpus callosum (CC; Fig. 3d) for posterior ROIs, and the genu of
the CC for anterior ROIs and anteriorly projecting LOC
connections.

For the WWN, 43 of 45 tracts were estimated (96%), with only
2 tracts failing because no core tract could be identified (Fig. 3).
The failed tracts were the two contralateral connections between
SPL and dPMC (Fig. 3c). Successfully estimated tracts consisted
of anteroposterior projections traversing the superior longitudinal
fasciculus, and contralateral connections traversing the splenium
of the CC and the inferior part of the body of the CC (Fig. 3d).

ROI pairs failed to generate tract trajectory estimates when the
thresholding applied to the bidirectional population average
distribution broke the contiguous path between them. Notably,
this is not evidence that the tract does not exist, but rather that
there is ambiguity about the location of its trajectory, based on
the diffusion evidence. It is important to note that the threshold
applied here was determined somewhat arbitrarily, i.e., by
observing what value reduced the number of alternative pathways
to a single, core one. In cases where this failed, there were
typically two or more alternatives that could not be disambig-
uated (see Fig. 2b for an illustration of failed tract SPL(L)-
dPMC(R)). Further investigation into these ROI pairs, e.g., by
comparing them to known connectivity evidence from tract
tracing studies (in non-human primates) or different modalities
(in humans), may be useful for determining whether a tract
indeed exists between them.

Previous studies have also evaluated white matter tract
geometry using DWI. In a now-classic study, Catani et al.20 used
deterministic tractography to identify and “dissect” individual
tracts based on seed ROIs. This was extended by Jones et al.21 in
order to map diffusion metrics onto the trajectories of specific
tracts. More recently, Colby et al.22 used B-spline resampling to
map FA to specific tracts in individual participants, allowing
effects to be mapped to points along its trajectory. The present
approach extends the work of these previous studies, in that it
facilitates the investigation of white matter pathways connecting
specific ROI pairs, rather than coarse-scale fasciculi, in terms of
tract geometry and anisotropy estimation. Another important
advantage is its use of a probabilistic tractography framework to
describe the “core” trajectories of specific tracts across a
population of interest.

Tract-specific anisotropy. Given a tract trajectory estimate, as
described above, we next wanted to determine how strongly
diffusion profiles of individual participants were oriented along
that tract. For a given voxel, we determined the average stream-
line orientation derived from the previous probabilistic tracto-
graphy step, and then computed, for each participant, a “tract-
specific anisotropy” (TSA) estimate, indicating the degree to
which this average orientation loaded onto the DWI intensities
along each gradient direction (TSA values are the β parameters
estimated from Eq. (3)).

Kernel density estimates for TSA, for both networks, are shown
in Fig. 4a. These show the distribution of scores for tracts
thresholded at Pab−tract > 0.5. While most distributions were
roughly Gaussian, with a heavy positive tail, this varied across
tracts in terms of both kurtosis and skewness, and some shorter
tracts (e.g., PCG(L)-PCm(R)) had very little variance. For a

Fig. 1 Schematic of the procedure. Probabilistic tractography: ROIs were
obtained from previous meta-analytic studies and used as seed/target
regions for diffusion tensor modelling with bedpostx and probabilistic
tract tracing performed with probtrackx, across all participants. The
resulting probability distributions were averaged across directions for each
ROI pair (Pab). Tract trajectory estimation: For each ROI pair, a “core”
trajectory was estimated from these bidirectional averages, and represented
as a 3-dimensional polyline. An uncertainty field (Φab) was then generated
from this polyline using an anisotropic Gaussian kernel. Finally, a “core” tract
estimate (Pab−tract) was generated as the element-wise product of Pab and
Φab. Tract-specific anisotropy: Average tract orientations were computed for
each voxel in a given tract, and these orientations were then regressed
against the diffusion evidence for each individual participant. This produced
a tract-specific anisotropy (TSA) distribution for each participant, that can
be regressed against variables of interest.
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number of tracts (e.g., SPL(R)-IPS(L)), a bimodal distribution was
evident. The overall distribution for each network is shown in the
insets; WWN showed a broader, flattened distribution relative to
DMN.

Figure 4b shows the two-dimensional spatial distributions of
TSA scores for two exemplar participants, along with the average
TSA across all 130 participants. These distributions demonstrate
variability between participants, but in general the highest TSA
scores were observed in the centre of estimated tract trajectories -
reflecting the strongest loading of diffusion profiles - which
tapered off towards the edges.

It is common to use streamline counts from probabilistic
tractography as an estimate of connection strength between two
ROIs (e.g.,23–25). This approach, however, suffers from a number
of seemingly intractable biases, including: the nature of the
diffusion profile through which a given tract traverses (anisotropy
bias); the length of the tract (distance bias); and the position of
seed and target ROIs relative to gyri or sulci26,27. It is thus
uncertain how to interpret a relative streamline count, or change
in this quantity in association with some covariate of interest,
with respect to biophysical properties such as white matter
integrity or connectivity strength. The present approach is
arguably less susceptible to these biases, because it only models
the geometry of streamlines that do connect two ROIs. However,
future research efforts should be directed at validating (1) the
interpretability of TSA with respect to axonal white matter

integrity, and (2) the spatial specificity of trajectory estimates.
This could be done, for example, through the use of
phantoms28–30 or histological approaches31,32.

Previous studies have investigated DWI metrics in a tract-
specific manner. Notably, Hua et al.33 produced probabilistic
maps of 11 gross WM tracts by seeding in WM voxels and
averaging deterministic tractography streamlines across partici-
pants, generating tract-specific metrics by averaging FA across all
voxels in a tract. The well-known TBSS approach9, in which
statistics are projected onto a pre-established population-based
white matter “skeleton”, similarly allows DWI metrics to be
mapped to specific WM tracts. Both of these approaches are
similar to the current method in that they utilise population
averaged images (streamline counts or FA values) in order to
generate probabilistic maps of WM tract geometry (see34, for a
review of such approaches). These maps serve a similar function
to population-based anatomical grey matter templates, such as
the linear and nonlinear ICBM-152 templates35,36. There are two
major advantages of the present method over the Hua et al.33

method and TBSS: (1) it allows a population-based tract estimate
to be derived specifically for the white matter tract connecting any
two arbitrarily-defined GM ROIs, if that tract is likely to exist; and
(2) it allows participant- and tract-specific anisotropy to be
estimated, based on the orientation of streamlines defining that
tract in each voxel along its trajectory.

Tract-specific age and sex effects. Having obtained TSA scores
for each individual participant, we were next interested in

Fig. 2 Tract trajectory estimation. a Core tract trajectory estimation steps,
shown for two exemplar tracts. The top row shows the streamline
probability determined across all participants (n= 130), averaged in both
directions, Pab. The bottom row shows the estimated core trajectory for
each ROI pair, Pab−tract. b Three-dimensional distributions of Pab (top) and
Pab−tract (bottom), for four exemplar tracts. Axis labels: ML medial-lateral,
AP anterior-posterior, IS inferior-superior.

Fig. 3 Tract trajectories for DMN and WWN. a All accepted tracts shown
for the DMN (blue) and WWN (green) networks, rendered as isosurfaces
thresholded at 0.5 (top, right, and oblique perspectives). b Core polylines
representing the trajectories of accepted tracts in the DMN (top) and
WWN (bottom) networks. Images are rendered with oblique perspectives
next to planar sections of the ICBM nonlinear T1 template image, for
reference. See Materials and Methods for names of the ROIs. c Graph
representations of the DMN (blue) and WWN (green) networks, with
failed edges shown in grey. Graph vertices represent the centre points of
each ROI, projected onto the transverse plane. d Sagittal section at midline,
showing where contralateral tracts (thresholded at 0.5) for each network
traverse the corpus callosum. Coordinates are ICBM152. Axis labels: ML
medial-lateral, AP anterior-posterior, IS inferior-superior.
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whether these scores were associated with age, sex, and their
interaction. We performed voxel-wise regressions of the form
TSA= β0+ β1 ⋅Age+ β2 ⋅ Sex+ β3 ⋅Age × Sex+ ε. T-statistics
for each coefficient were obtained, and summarised at each dis-
tance along the tract. For each tract, we then used one-
dimensional random field theory to identify significant clusters

of t-statistics (p < 0.05). To control for family-wise error, we
limited the false discovery rate (FDR) over all tracts to 0.05.

For the DMN, there were significant associations of TSA with
age and sex, as well as a (weak, R2= 0.03) interaction between
these two factors (Fig. 5, top row; and Supplementary Table 1).
Age effects were fairly diffuse, and ranged in effect size (R2) from

Fig. 4 Tract-specific anisotropy (TSA). a Distributions of TSA across voxels and participants, for each estimated tract (ROI pair), shown as kernel density
estimates for DMN (blue) and WWN (green). Insets show the distribution of TSA values over all tracts; x-axis scales are the same for all plots. Red crosses
indicate that no tract was generated. b Spatial distributions of TSA values for two exemplar participants and averaged over all participants, and three
examplar tracts, shown in horizontal and coronal section. Anatomical images are the ICBM152 nonlinear template.
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0.07 to 0.13. Negative effects of age were strongest, and were
found in 15/32 (47%) of DMN tracts, including ipsi- and
contralateral connections between PFC and LOC (traversing the
fronto-occipital fasciculus), and PCm(L)-PFCm(R). Modest
positive effects of age were also found for 6/32 (19%) of tracts.
Figure 6 shows scatter and violin plots for selected tracts. Notably,
tract PCm(L)-PCG(L) showed effects for age, sex, and their
interaction; and tract ACC(L)-LOC(L) and PFCm(R)-LOC(R)
showed both positive and negative age effects.

The WWN also showed significant associations for age, sex,
and their interaction (Fig. 5, bottom row; and Supplementary
Table 2). Surprisingly, there were strong positive and negative age
effects for this network, with 16/32 (50%) showing negative
effects and 14/32 tracts (44%) showing positive effects. Effect sizes
for age ranged from 0.05 to 0.11 Compared to DMN, the age
effects for WWN were more focal. Negative age effects were
found proximal to dPMC(L), and in collosal fibres traversing the
body of the corpus callosum (see Fig. 3d), involving contralateral

Fig. 5 Age and sex effects for DMN and WWN. Regression results are shown for both networks, for linear models of the form
TSA= Age+ Sex+Age × Sex+ ϵ. 3D renderings show the maximal t-values (thresholded using cluster-wise inference, with p < 0.05 and FDR < 0.05) at
each distance along the core trajectories of each tract in the network. Circular graph representations show the sum of significant positive (red) and
negative (blue) t-values for each tract. The thickness of an edge is proportional to its sum, and the absence of an edge indicates that no significant clusters
were found for that tract. In all cases, N= 130. Axis labels: ML medial-lateral, AP anterior-posterior, IS inferior-superior.
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tracts between dPMC and vPMC. There were also negative
associations found in contralateral tracts between IPS, dPMC, and
vPMC. The largest positive age effects occurred along
anteroposterior-oriented tracts in the longitudinal fasciculus,
particularly those involving left and right dPMC. All sex
differences were negative (male > female) for this network, on
were found on contralateral tracts. Figure 6 shows scatter and
violin plots for selected tracts. Notably, the homotopic dPMC(L)-
dPMC(R) tract showed both a sex difference and an Age × Sex
interaction.

Scatter and violin plots for all significant effects, and line plots
and tables showing raw and cluster-thresholded t-values for all
tracts, are provided in Supplementary Figs. 3, 4, and 5.

There is an abundance of evidence for age-related decreases in
DMN connectivity, including a decrease in fMRI-based resting-
state functional covariance37–39, and age-related decreases in FA
in white matter tracts proximal to DMN regions38. Marstaller and
colleagues found a reduction in the extent to which posterior
cingulate and precuneus activity covaried with wider brain
networks, along with reduced FA in numerous tracts, including
the fronto-occipital fasciculus, where the current negative age
association is most prominent. Sambataro et al. reported
decreased covariance between PCC and PFC, which predicted
working memory performance. Decreases in DMN functional
covariance also appear to be accelerated in Alzheimer’s disease
(also reviewed in40,41).

For the WWN, age-related decreases in TSA occurred mainly
in the body, but not the splenium, of the corpus callosum. This
pattern is in agreement with several DWI-based studies of age-
related connectivity changes. Burzynska et al.42 used TBSS to

show an age-related reduction in FA (and increase in radial and
mean diffusivity) in the genu and body of the corpus callosum,
but not the splenium. Using a DTI approach, Bennett et al.43

found decreased FA in older versus younger participants for both
the genu and splenium, but with a more pronounced effect in the
former. The same authors report an anterior-to-posterior
gradient in age-related FA changes, with these being more
pronounced in frontal white matter, consistent with the pattern
found in the current study44. An even more pronounced pattern
was reported by Michielse et al.45, who found an age-related
decrease of FA in the genu, no relationship in the body, and a late
(age 70–85) increase in the splenium. Bastin et al.46, also using
tract shape modelling, found a significant decrease in FA for the
genu, but not the splenium, in an elderly cohort (age 65–87),
while in a cohort ranging from 30 to 80 years, Hsu and
colleagues47 reported a similar age-related decrease in FA (and
increase in MD) for the anterior, but not posterior corpus
callosum. Interestingly, evidence from Hasan et al.48 suggests FA
in the corpus callosum changes in a quadratic manner across the
lifespan: increasing between age 7 and 20 years and decreasing
between 20 and 60, which is in line with the present findings.
Taken together, these findings suggest that, in adults, age-related
changes in WM integrity of the corpus callosum may be more
prominent anteriorly, and reduced or even reversed posteriorly.

Positive age associations were a more surprising finding, as
numerous articles report negative age/FA associations (e.g.,49)
and postmortem evidence of white matter loss and decrease in the
proportion of small myelinated fibres with age50,51. Both positive
and negative age/FA associations have been reported in at least
one previous brain-wide TBSS study52, however. For DMN in

Fig. 6 Scatter and violin plots of age and sex effects. Plots of selected TSA regression results are shown (N= 130). Top row: DMN tracts with (from left to
right) negative and positive age effects, and a sex difference (male > female). Bottom row: WWN tracts with negative and positive age effects, and an
Age × Sex interaction. Data points are the mean TSA values within significant clusters (as shown in Fig. 5). Shaded areas on scatterplots represent 95%
confidence intervals.
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particular, we found that most positive associations occurred in
regions proximal to ROIs, where the potential confound of
crossing fibres is likely more pronounced53. The positive
relationships in the WWN were especially prominent, and
suggest a (paradoxical) increase in white matter integrity in these
tracts. The majority of positive relationships in WWN were found
in the middle of the superior longitudinal fasciculus (SLF). One
TBSS study focusing on the SLF in a healthy cohort found no
effect of age on FA54, while another whole-brain study found SLF
among tracts with negative age effects38. Similarly, Rojkova
et al.55, using FA and the fibre-specific HMOA approach, found
an age-related decreases in HMOA in the SLF (amongst other
tracts), and reported that HMOA was more sensitive than FA
alone in identifying age-related changes. On the other hand,
increased FA in Alzheimer’s disease patients has also been
reported in SLF56. The authors of this study suggest that a relative
sparing of crossing motor fibres may account for this effect, but
this is inconsistent with our observed increase in TSA; on the
contrary, our findings might be explained by a relative decrease in
WM integrity in these crossing fibres.

It is possible that the increased specificity of the current
approach permits a more fine-grained spatial and angular
dissection of effects than does TBSS with FA, which uses a more
coarse-grain white matter skeleton, and is not orientation-specific.
If so, then the positive effects observed here may reflect a real age-
related increase in white matter integrity for specific tracts. This
possibility is supported by reports of fairly widespread increases in
fMRI-based functional covariance with aging57, which have been
proposed to reflect compensatory changes in response to
degeneration or dysfunction of other brain regions. Given the
conflicting evidence, however – particularly with the HMOA
evidence from Rojkova et al.55, which is fibre-specific – these
effects should be interpreted with caution. It will be important in
future TSA studies to increase the number of ROIs, or query
specific crossing tracts, in order to obtain a more complete picture
of age-related effects across white matter. One promising avenue
could be based on the so-called “tract-specific fractional
anisotropy” approach30, in which uses the free water fraction to
estimate an adjusted FA value in crossing-fibre regions. Alter-
natively, an integration of the current approach with existing
fibre-specific spherical deconvolution-based methods, such as
AFD14 or HMOA17, could potentially be used to disambiguate the
interpretation of TSA values in areas of dense crossing fibres.

More modest sex differences, and age-by-sex interactions, were
also observed for both networks. Previous DWI-based studies
have also found sex differences in FA, typically with males
showing higher FA values58–60. For DMN, we found negative
effects (males > females) for the PCG(L) with PFCm(L), which
accords with findings from Menzler et al.60, who report
prominent differences in the cingulum bundle. We also found
positive effects (females > males) that were mostly left lateralized
and included LOC(L), which have not commonly been reported
in the literature. Although sex differences in LOC function have
been hypothesised on the basis of differential object perception61

– a function that has been associated with this region – there does
not currently appear to be much direct evidence for this.

It is also notable that, for numerous tracts, we found both
positive and negative age effects in different parts of the same
tract (see Fig. 5). It is not immediately clear how to interpret such
a result. If our inference is that a TSA value represents the
number of intact axons projecting between two grey matter ROIs,
this is contradicted by the observation of both increases and
decreases in this region - damage to an axon anywhere along its
length will trigger Wallerian degeneration in both directions. On
the other hand, this finding is consistent with the idea that TSA
reflects the degree of (de)myelination, which may be increased on

average in one part of the tract and decreased in another.
Importantly, there is evidence that demyelinated axons, while
they may be functionally impaired, are not necessarily at higher
risk of degeneration62. A third possibility is that TSA is
influenced by the degree of crossing fibres in a particular region
along its length; changes to diffusion in directions other than the
average orientation of interest will influence the regression fit
used to estimate this metric.

Limitations and future directions. The NKI Rockland dataset
was chosen due to its large size, age range, and the use of a single
MRI scanner and protocol. To ensure the cohort was as repre-
sentative of the general population as possible, and to enable the
analysis of age over the lifespan, we chose to use close to the full
age range (18–80), and to exclude participants with clinical
diagnoses. As with most population templates, however, the
choice of cohort is an important consideration when interpreting
a derived result. The human brain is known to show systematic
anatomical grey matter changes across the lifespan63,64, and this
will almost certainly bias normalisation in a way that may
account for a portion of the TSA effects reported here. Indeed,
variability of findings due to the choice of T1w template has been
shown for voxel-based morphometry65. It will be important in
future studies to assess the influence of this bias, use cohorts that
are more targeted to a particular phenomenon under investiga-
tion (see, e.g.,66), and compare the predictions of TSA to in vivo
or post mortem analyses of white matter (e.g., as in26).

The estimation of tract trajectories and TSA values involves a
heuristic approach, with numerous parameters involved at each
step. This raises the potential for parameter adjustments to vary
the results in ways that bias the resulting distributions and
statistics. In general, however, these parameters were chosen in
order to spatially constrain these estimates in reasonable ways; for
example: to optimise a threshold such that a single trajectory is
chosen from several alternatives, to constrain core polylines to
realistic geometries, or to determine the spatial extent at which
TSA values are used to compute distance-wise statistics. Of these
parameters, it is only the latter where the researcher is able to
exercise discretion, i.e., over the degree of spatial certainty used to
map statistics at a given distance to the “core” tract trajectory
(specified by the σr, and λ parameters). As a general policy, we
recommend using the default parameter values for tract and TSA
estimation, in the absence of a principled reason to adjust them.

The relatively small networks used here (9 ROIs for DMN and
10 ROIs for WWN) required a total processing time of over
200 hours per participant, on CPU processors (see Supplementary
Table 3). Notably, this processing time will scale quadratically
with the number of ROIs (O(n2)), indicating that it may be
infeasible to apply the TSA approach to the full set of possible
ROIs (of comparable size) in the brain. On the other hand, the
volume of grey matter in the brain is finite, and the number of
ROIs comprising a whole-brain network depends critically on
their granularity. Additionally, the bulk of processing time for
this approach is attributable to the preprocessing steps (bed-
postx and probtrackx). GPU versions of these functions
have recently been introduced, which can reduce processing time
by a factor of 20067. This would reduce the required processing
time for the present study to 10 hours per participant. A related
limitation is that the number of multiple hypothesis tests (and
associated family-wise error) also increases by O(n2). However,
the false discovery rate (FDR) approach we use to control family-
wise error should be robust even to the high number of tests
expected with a whole-brain TSA analysis (and is commonly used
in genomic studies; see68). Ultimately, whether whole-brain TSA
analysis is feasible in practice remains to be demonstrated.
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The ability to estimate spatial trajectories of white matter
projections between specific pairs of ROIs could lead to a number
of important applications. For instance, this information could be
used to predict the functional outcomes of age-related white
matter lesions (WML), which have a prevalence of ~18% in
people aged 60–69 and ~40% in people over 8069. Conceivably,
clinicians would identify WML locations using T2-FLAIR
imaging, estimate which tracts intersect these lesions, and predict
functional deficits on the basis of the brain regions connected by
these tracts. This approach could also augment previous studies
investigating connectivity70, cortical thickness71, and gait changes
related to WML72.

Methods
Participants. Participant data were obtained from the publicly available Nathan
Klein Institute (NKI) Enhanced Rockland sample19,73, through the 1000 Functional
Connectomes Project (www.nitrc.org/projects/fcon_1000/). We included partici-
pants from the first four data releases, while excluding any participant with an
existing clinical diagnosis at the time of scanning. In total, 130 participants (86
female, age range 18–80) were analysed. Written informed consent was obtained
from all participants.

Neuroimaging data and metadata. All imaging data in the Rockland sample were
acquired from the same scanner (Siemens Magnetom TrioTim, 3.0T). T1-weighted
images were obtained using a MPRAGE sequence (TR= 1900 ms; TE= 2.52 ms;
voxel size= 1 mm isotropic). DWI was collected with a high spatial and angular
resolution (TR= 2400 ms; TE= 85 ms; voxel size= 2 mm isotropic; b= 1500 s/
mm2; 137 gradient directions). Age and sex data were also obtained, with the Sex
factor encoded as 1=Male, 2= Female.

Preprocessing. DWI images for all participants were preprocessed using FMRIB
software74,75; specifically, FSL version 6.0.0. Participant datasets were processed in
parallel using a Linux-based SLURM computing cluster, located at the University
of Nottingham. Raw diffusion data were first corrected for eddy current artifacts
using the eddy command. All B0 (zero-gradient) images were then averaged and
used to extract a brain mask using the bet command. Next, for each voxel in the
brain mask, a diffusion tensor model was fit to the data using dtifit, and sub-
sequently passed to the bedpostx command, which infers the existence of
crossing fibres and estimates the contribution of each crossing fibre to the
diffusion-weighted signal7. The default number of 3 fibre populations was mod-
elled. Finally, to express the voxel-wise diffusion models in standard space, linear
and nonlinear transforms between native diffusion and MNI-152 space were
estimated, by applying the flirt (12 degrees of freedom) and fnirt commands,
respectively, using individual FA images as input and a mean template FA image as
the reference. Inverse transforms were also estimated, using the invwarp com-
mand, for use in later steps.

Regions of interest. Seed regions of interest (ROIs) were obtained from two
previously-defined networks (see Fig. 3b). For each network, all possible ROI pairs
were considered as potential tracts.

The default-mode network (DMN) was derived from Schilbach et al.76, who
performed an Activation Likelihood Estimation (ALE;77,78) meta-analysis using
533 experiments from the BrainMap database79, querying for regions that were
consistently deactivated across tasks. The ROIs were obtained by downloading the
DMN network from the ANIMA database (https://anima.inm7.de/studies/
Schilbach_SocialNetworks_2012;80). The network was comprised of 9 ROIs:
anterior cingulate cortex (ACC; left only), lateral occipital cortex (LOC; bilateral),
posterior cingulate gyrus (PCG; bilateral), precuneus (PCm; bilateral), and medial
prefrontal cortex (PFCm; bilateral).

The what/where network (WWN) was derived from Rottschy et al.81, with data
obtained from the ANIMA database (https://anima.inm7.de/studies/
Rottschy_WorkingMemory_2012). The authors performed a conjunction on ALE
analyses for tasks testing memory for object identity (“what”; 42 experiments) and
object location (“where”; 13 experiments). The WWN was comprised of 10 ROIs,
with 5 brain regions represented bilaterally. These ROIs were: dorsal and ventral
premotor cortex (dPMC, vPMC), superior parietal lobule (SPL), inferior parietal
lobule (IPL), and infraparietal sulcus (IPS).

Probabilistic tractography. Probabilistic tractography was performed in MNI-152
space, using the probtrackx command7. For both networks, we generated
50,000 streamlines per seed voxel, with the other seed regions as target masks. We
applied a step length of 0.5 mm, a curvature threshold of 0.2, a minimal path
distance of 5 mm, and a fibre threshold of 0.01. A distance correction was also
applied. Notably, this correction merely multiplies the streamline count at each
voxel by its expected distance from the seed voxel. This is not an adequate cor-
rection for distance bias (which is unlikely to be linear), but does help reduce this

bias in the middle of trajectories, for the purpose of tract determination (see next
section). For each voxel probtrackx recorded the number of streamlines that
encountered that voxel, producing a separate count for streamlines terminating in
each target ROI. Additionally, the voxel-wise mean orientation of streamlines
between each seed/target pair was computed.

Tract determination. Tracts were determined separately for each ROI pair. Voxel-
wise streamline counts for each direction (Ra to Rb or Rb to Ra) were first nor-
malised by dividing by the total number of streamlines reaching target Rb from seed
Ra, and the minimum across both directions was obtained. These minimum images
were subsequently averaged over participants, smoothed, and normalised to the
range [0,1], yielding a probability Pab(i) of voxel i being included in tract Tab. It is
noteworthy that in some cases, the matrix Pab of such values is constrained to a
single, geometrically confined tract, while in others, it reflects many possible routes
between two ROIs (see examples in Fig. 2b). Our objective was to identify the single
most probable tract, or reject the tract altogether if such could not be determined.
This was done in a heuristic manner. Firstly, we thresholded Pab by setting all
values where Pab < α to zero. A threshold of α= 0.07 was applied by experi-
mentation, in order to both disconnect most low-probability alternative pathways,
and ensure that (for cases where the existence of a tract is known or likely) at least
one pathway remained intact. Additionally, because Pab proximal to ROIs tended
to be lower that for the main tract trajectory, ROIs were dilated by 3 voxels to
ensure they remained connected after thresholding.

We next discretized Pab into distance assignments D, using a flood-fill
approach, assigning all voxel neighbours of seed region Ra a value of d= 1, all
subsequent neighbours d= 2, and so on, until all voxels in Tab were assigned a
distance. We then identified the voxel of maximal Pab for each distance d,
constructing a polyline Lab with centre points of these voxels as its vertices.
Inclusion of a vertex in Lab was conditional on two constraints: (1) segment length
∣xi−1,i∣ < 4 mm; and (2) vertex angle θi < π/3. Where a constraint was violated, the
voxel with the next highest Pab was tested, and so on until a voxel was found
satisfying the constraints. In cases where no appropriate voxels were found, the
maximal voxel was added and the violation was recorded as a flag for visual
inspection. Lab was extended in this fashion until: (1) the target region Rb was
encountered, and the tract was accepted for further analysis; or (2) the maximal
distance was encountered, but not the target region Rb, and the tract was rejected
for further analysis (i.e., the thresholding broke all routes, and thus a “true” route
between Ra and Rb could not be determined).

With the assumption that an accepted polyline represents the geometric centre
of a given tract Tab, we then modelled the probability Pab−tract of a voxel being in
that tract, as the product of an uncertainty field Φab oriented around Lab, and the
original probability field Pab (see Fig. 1).

Φab was constructed as follows. For every vertex v∈ Lab, an orientation vector
ωv was computed as the sum of the segment vectors xv−1,v and xv,v+1 (at the
endpoints of Lab, only one segment was used). From ωv, an anisotropic Gaussian
kernel ϕ(i, ωv, μ, σa, σr) was applied to the subset of voxels within a radius of 8 mm
of v. Parameters defining the shape of the Gaussian function were fixed at μ= 0
mm, axial σa= 10 mm, and radial σr= 4 mm; where axial and radial axes were
parallel and perpendicular to ωv, respectively. For a given voxel i in Tab, the
maximal value of ϕ across all vertices v was assigned:

ΦabðiÞ ¼ max
v

ϕði;ωv ; μ; σa; σrÞ
� �

ð1Þ
Pab−tract was determined as:

Pab�tract ¼ f ðΦab � Pab; dÞ ð2Þ
The function f(g, d) normalizes g, at each discrete distance d, to values between

0 and 1.

Tract-specific anisotropy estimation. Having defined (or rejected) a tract Tab, we
were next interested in extracting meaningful diffusion metrics from it, which can
allow us to perform statistical inference on specific tracts. At each voxel, we thus
wanted to estimate how strongly its diffusion weighed onto the orientation of the
tract at that voxel. To do this, we obtained the average orientation (across all
participants) of streamlines going through voxels in Tab using probtrackx (see
Probabilistic tractography). These average orientation images, along with the
Pab−tract images, were warped from standard to individual participants’ diffusion
space, using the inverse transforms computed in the preprocessing step (see
Preprocessing).

Next, for each participant, and for each voxel j, the fraction of the diffusion-
weighted signal along the average tract orientation was estimated by fitting the
following linear regression using the statsmodels Python library (https://
www.statsmodels.org):

sj=s
0
j ¼ βj � e�bδðR>vjÞ2 þ cj ð3Þ

where vj is the average streamline orientation, R is the M × 3 matrix of gradient
orientation vectors (whereM is the number of orientations, hereM= 137), s0j is the
non-diffusion-weighted signal, sj is the observed signal at each gradient orientation,
b is the gradient strength (b-value), and δ is the diffusivity.
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Notably, this formulation is equivalent to that presented in6,7, but applying only
to the average orientation vj . βj is the regression coefficient (with cj being an
intercept term), and is analogous to the f value from the crossing fibres model; i.e.,
the fraction of signal contributed by vj . We refer to these coefficients as tract-
specific anisotropy (TSA).

Statistics and reproducibility. The TSA values obtained in the preceding step
were warped back into standard space and smoothed with a Gaussian kernel with a
full-width at half-maximum (FWHM) of 1.5 mm. Subsequently, for each voxel in a
tract, the following linear regression model was tested, for the first-order effects of
Age and Sex, and their interaction:

TSA ¼ β0 þ β1 � Ageþ β2 � Sexþ β3 � Age ´ Sexþ ε ð4Þ
For each contrast, we next wanted to summarise the resulting t-statistics at each

discrete distance along the trajectory of the tract. To do this, following an approach
similar to TBSS8, we computed weighted t-statistics for each voxel j as
t0ðjÞ ¼ tðjÞ � Pab�tractðjÞλ , where λ determines the rate of decay (here, we set λ= 1.0).
At each discrete distance d along the tract, we assigned (unweighted) td as the
t-statistic corresponding to the maximal t0d .

Because anatomical properties along a tract can be assumed to form a
continuous random field (i.e., neighbouring vertices have a spatial dependence), we
analysed the resulting distance-wise summary statistics as a one-dimensional
random field, using the rft1d Python library (http://www.spm1d.org/rft1d/;82).
Firstly, the spatial smoothness of model residuals was estimated for each tract as a
FWHM value, and averaged across tracts. For each tract, this mean FWHM was
used to compute t*, the critical t-value at α= 0.05 for a Gaussian field, using an
inverse survival function. Secondly, cluster-wise inference was performed to
identify significant clusters along the tract, with a minimum cluster size of 3.
Thirdly, p-values for all clusters, across all tracts, were corrected for family-wise
error using a false discovery rate (FDR) threshold of 0.05. FDR was performed
using the statsmodels Python library, with a two-stage non-negative FDR
method (fdr_tsbky). Finally, to estimate the spatial extent of effects for a given
tract, significant t-values were summed over that tract, for positive and negative t-
values separately.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Enhanced NKI-Rockland dataset73 used in this study is freely available at
www.nitrc.org/projects/fcon_1000/. Derived participant- and sample-wise data, along
with parameter files specifying the processing and analysis steps used to generate them,
are freely available from the University of Nottingham Research Data Management
Repository at https://doi.org/10.17639/nott.7102. Source data for the DMN scatterplots
in Fig. 6 and Supplementary Fig. 3, and t-value plots in Supplementary Fig. 1, are
provided as comma-separated values in Supplementary Data 1. Source data for the
WWN scatterplots in Fig. 6 and Supplementary Figs. 4 and 5, and t-value plots in
Supplementary Fig. 2, are provided as comma-separated values in Supplementary Data 2.

Code availability
All code for this procedure was written in Python 3 (Anaconda build), making system
calls of native FSL packages (available at https://fsl.fmrib.ox.ac.uk/), as indicated. The
following third-party Python libraries were also used: nibabel, nilearn, and
statsmodels. Source code for all procedures used in this study is freely available as
dwi-tracts (v.1.0.2)83. This includes: scripts to run FSL preprocessing and DWI
analyses, using standard SGE- or SLURM-style parallel environments; a module to
estimate core trajectories and TSA values; a module to fit general linear models to TSA
values; and a module to plot the results of these. The output of these modules (polylines,
surface meshes, graphs) can be visualised using ModelGUI software, an open source Java
library available at https://github.com/neurocoglab/mgui-core.
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