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Cortical neural dynamics unveil the rhythm of
natural visual behavior in marmosets
Takaaki Kaneko 1,2,6✉, Misako Komatsu 3,6, Tetsuo Yamamori3, Noritaka Ichinohe4 &

Hideyuki Okano 1,5✉

Numerous studies have shown that the visual system consists of functionally distinct ventral

and dorsal streams; however, its exact spatial-temporal dynamics during natural visual

behavior remain to be investigated. Here, we report cerebral neural dynamics during active

visual exploration recorded by an electrocorticographic array covering the entire lateral

surface of the marmoset cortex. We found that the dorsal stream was activated before the

primary visual cortex with saccades and followed by the alteration of suppression and acti-

vation signals along the ventral stream. Similarly, the signal that propagated from the dorsal

to ventral visual areas was accompanied by a travelling wave of low frequency oscillations.

Such signal dynamics occurred at an average of 220ms after saccades, which corresponded

to the timing when whole-brain activation returned to background levels. We also demon-

strated that saccades could occur at any point of signal flow, indicating the parallel com-

putation of motor commands. Overall, this study reveals the neural dynamics of active vision,

which are efficiently linked to the natural rhythms of visual exploration.
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The primate visual system is one of the most investigated
cortical circuitries. More than 30 cortical areas have visual
functions and are organized hierarchically into complex

feedforward and feedback connections1,2. The dual-stream
hypothesis models how visual information is processed in this
circuitry, in which the visual input received by the retina is
transmitted to the primary visual cortex (V1) and then flows to
the functionally distinct dorsal and ventral visual streams3–5; the
former is dedicated to the analysis of scenes and object
semantics6, while the latter is important for the analysis of the
spatial properties of visual information7.

However, several recent studies have shed light on a com-
plementary or alternative schema for visual information flow
proposed in this theory. First, functional8–10 and anatomical
studies11–14 have shown that there are many alternative routes
that bypass V1, which is often assumed to be the entry point for
visual information into the cerebral cortex, such as the extra-
striate cortex and temporoparietal regions. Second, recent
advances in our understanding of occipital and temporoparietal
white matter revealed that communication across the dorsal
and ventral visual areas is far richer than previously
thought15,16. Third, natural visual behavior in primates is an
intrinsically recurrent process consisting of recursive sampling
of the same visual scene with different eye positions, and sac-
cades are the result of ongoing visual processing. This forms a
circular process of visual computation, a cognitive decision for
the next saccade target, and motor execution17,18. While the
neural mechanisms underlying each step of this behavioral
sequence have been studied in detail, the neural dynamics of the
entire cycle of active vision have been described rarely. A
precise description of the timing at which cortical areas are
activated and which regions exchange signals under active

vision is essential for the construction of a computation model
for active vision.

To capture the neural dynamics in the cerebral cortex during
natural visual behavior, it is crucial to examine the exact spatio-
temporal dynamics and trajectories of neural signal around sac-
cades and the interactions of multiple areas during active visual
exploration. To address these issues, we recorded the cortical
neural dynamics of natural visual behavior in marmoset monkeys
by using an electrocorticographic (ECoG) array covering almost
the entire lateral hemisphere, over 63 cortical areas with 96
electrodes at an inter-electrode distance of 2.5 mm19, while
marmosets freely viewed naturalistic movie stimuli (Fig. 1a, b).
Marmosets are an ideal primate model for this type of study as
their brain shares most of the organizational features of the visual
system found in other primates15,20–23, and their smooth brain
surface without complex sulci allows cortical-wide recording
using ECoG electrodes. In this study, we found that the dorsal
stream was activated prior to the ventral stream under natural
visual behavior. The information traversed the cortical sheet from
the dorsal to ventral areas. Furthermore, we identified the
recursive nature of active vision in which neural architecture and
visual behavior are coordinated for the efficient exploration of
visual scenes.

Results
Signal flow under natural visual behavior. During natural visual
behavior, the marmosets performed rapid eye movements (sac-
cades) to sample a visual scene with different eye positions every
220 ms (Fig. 1c, d). These saccades refresh the visual information
reaching the eyes and are thus a major driver of visual neural
activity during natural visual behavior.
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Fig. 1 Large-scale ECoG recording of natural visual behavior. a A schematic illustration of the experimental design. The marmoset viewed naturalistic
movies while its eye movements and ECoG signals were recorded. A liquid reward was delivered at a random interval irrespective of behavior to keep the
subject awake for a longer duration. b The electrode positions of the four subject animals. The ECoG array with 96 channels covered almost the entire
lateral hemisphere of the marmoset brain. The electrode positions were determined by in vivo CT scans and the cortical areas inferred from registration of
subject MR images to the marmoset atlas. c The main sequence of saccades during the free-viewing paradigm. d Inter-saccade interval. The marmoset
made rapid eye movements every 220ms during natural visual behavior. Color represents individual marmosets as in (b).
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We first computed spectrograms from the ECoG signals
(Fig. 2a) around saccade onset and then extracted the high-
gamma band (Fig. 2b), which is highly correlated with local
neural activity24–26. We found the smooth transition of post-
saccadic activity along the ventral stream (Fig. 2c and
Supplementary Fig. 1a), which was evident by the gradual shift
of high-gamma activity after saccade from V1 (the most posterior
part of the marmoset brain) to the anterior part of the temporal
cortex (Fig. 2d). Conversely, the signal flow corresponding to the
dorsal stream, i.e., the gradual shift of neural activity from early
visual areas to temporoparietal regions, was less prominent
(Fig. 2c). Instead, several cortical regions located along the dorsal
stream showed a faster response than V1 (Fig. 2d). The fastest
response was observed in the dorsal part of the middle temporal
area (MT) and the dorsal part of the superior temporal sulcus
(STS) (Fig. 2c, d), which we collectively termed the dorsal STS
(dSTS). The second region that showed a faster response than V1
covered a large area, including the posterior parietal cortex (PPC)
and dorsal occipital cortex (Fig. 2c, d).

Interestingly, high-gamma activity was suppressed prior to
post-saccade excitation along the areas of the ventral stream
(Fig. 3a, b and Supplementary Fig. 1b). This was less prominent
in the regions of the dorsal stream, except for the dorsal occipital
cortex (Fig. 3a, b). Surprisingly, the timing of suppression differed

drastically across the areas (Fig. 3c), i.e., it changed systematically
according to the excitation timing of each area, so that the time
difference between suppression and excitation remained constant,
and the gradual shift of peak suppression could be seen along the
ventral stream, as observed for the excitation signal.

These results suggest that in natural vision, in which saccades
are critical for refreshing visual information on the retina, the
dorsal stream plays a major role prior to V1, and then the ventral
stream is activated for further visual analysis.

Distinct patterns of motor- and visual-related signals in the
frontal and the dorsal regions. Perisaccade neural activity can be
derived from various processes such as the reafferent visual signal
from the eyes or motor-related signals, e.g., motor preparation27

or efference copy/corollary discharge28,29. Here, we aimed to
characterize further the potential differences across the dorsal
areas that were activated prior to V1.

First, we tested contralateral dominance before saccade onset
(i.e., −30–0 ms) as cortical saccadic motor control is known to be
contralaterally dominated. We found that the ventrolateral
prefrontal cortex (VLPFC) showed the strongest contralateral
dominance among the entire cortex, and this was followed by the
PPC and dorsal occipital regions (Fig. 4). This result indicated
that the activation of these regions before or just after saccades is
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Fig. 2 Perisaccadic activation pattern of active vision. Post-saccadic neural activity of whole electrodes. a ECoG perisaccadic spectrogram of
representative electrodes. The ECoG signals were aligned by saccade onset. Robust activity can be seen in visual areas after saccades. b High-gamma
(100–160 Hz) ECoG signals in representative channels. c The magnitude and latency of the high-gamma signal peak from saccade onset. The data from
four animals and 96 × 4 channels distributed over the entire lateral cortex (63 cortical areas) are plotted. The electrodes on the right hemisphere are
computationally mapped onto the left hemisphere for visualization purposes. The smooth transition of visual information can be seen in the ventral stream.
The areas in the dorsal stream (such as the dSTS including the MT, PPC, and dorsal occipital areas) were activated prior to the ventral stream. Statistical
assessment of signal modulation by randomization is shown in Supplementary Fig. 1. dMean latency of post-saccadic neural activity in each cortical region.
Error bars showed standard error of the mean. Dots show individual electrodes. MidVis mid-visual areas (e.g., V3, TEO), LIT lateral inferior temporal areas
(e.g., TE1, TE2), vSTS ventral superior temporal sulcus (e.g., PG/IPa, vFST), dSTS dorsal superior temporal sulcus (e.g., MST, MT, dFST), DorsalOcc. dorsal
occipital areas (e.g., V6, V3a), PPC posterior parietal cortex (e.g., LIP, AIP, Opt). Supplementary Table 1 shows detailed area names included in each region
of interest.
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largely biased by saccade generation such as target selection and
motor command. On the contrary, such contralateral dominance
before saccades was virtually absent in the dSTS (Fig. 4).
Moreover, the dSTS showed strong ipsilateral dominance from
saccade onset, which contrasted with the VLPFC, PPC, and dorsal
occipital regions. The VLPFC was activated before saccades and
reached an activity peak at saccade onset (Fig. 2b), presumably
because the signal is dominated by neural activity for the
generation of eye movements. The second peak in this region was
after ~200 ms, which is consistent with the typical visual response
in primate prefrontal neurons30. Such a clear separation of the 1st
and 2nd peaks was not evident in the dSTS and PPC (Fig. 2b).
The activity peak of those regions occurred after eye movement
was initiated (Fig. 2b). The dSTS and PPC are known to be
involved in the control of eye movement9,31,32, but the critical
time window in which the dSTS and PPC function in natural
visual behavior is quite distinct from that of the VLPFC.

Second, we attempted to disentangle the characteristics of the
dSTS and PPC regions. Here, we examined whether the rapid

response just after saccades in these regions is derived from
saccade onset or fixation onset. These two events are temporally
close, but their impact on the retina is distinct, e.g., the former
blurs the image, while the latter stabilizes it. In natural visual
behavior, a variety of saccade amplitudes occur so that saccade
duration ranges from 20 to 60 ms. This enabled us to test whether
post-saccade activity was aligned by saccade onset or fixation
onset (saccade offset). Interestingly, activation of the dSTS,
including the MT, was strongly aligned with saccade onset, but
not with saccade offset (Fig. 5a, b and Supplementary Fig. 2).
Furthermore, suppression of the dSTS, which occurred after
activation, was well explained by the timing of fixation onset, but
not by saccade onset. This indicates that the dSTS was active
when the eyes were moving and was suppressed when they
stopped moving. The activity of the PPC contrasted with this
pattern (Fig. 5a, b and Supplementary Fig. 2) and aligned well
with fixation onset, while its suppression, which occurred prior to
activation, was tightly aligned with saccade onset rather than
fixation onset. This indicates that the PPC was suppressed while
eyes were moving and was activated once they became stationary.

In summary, these results showed that the characteristics of
cortical activation prior to ventral stream activation differed
across regions among the frontal and dorsal areas. Activation of
the VLPFC was dominated by contralateral saccades, indicating
signal-related saccade generation. The dSTS was activated while
the eyes were moving and suppressed once they were fixated, and
the majority of PPC activity was suppressed while the eyes were
moving and then activated at fixation onset.

High-gamma signal trajectory accompanied by a traveling
wave of theta oscillations. Next, we sought to describe the spa-
tiotemporal pattern of signal flow across the cerebral cortex. As
high-gamma activity was transient and its timing differed across
regions, it seems that the high activation spot should be limited in
space and time. Figure 6a shows the high-gamma power of each
time window around saccades. Indeed, the high-gamma signal
was compact in space, and the activated area shifted gradually
over time (Fig. 6a, b). The center of gravity of the active region
traversed from the dorsal region, from anterior to posterior, and
was eventually transmitted along the ventral stream (Fig. 6c and
Supplementary Fig. 3), which contrasts with passive visual pre-
sentation, in which the signal generated in the occipital cortex
was transmitted to the dorsal and ventral streams (Fig. 6c and
Supplementary Fig. 4). The signal trajectory from the dorsal areas,
which are usually placed in the dorsal stream, to the earlier visual
areas (V1 and V2) is plausible as a substantial number of ana-
tomical connections exist in this direction (Supplementary
Fig. 5)33. Granger causality analysis also supported the presence
of signal influence from the dorsal visual areas to the posterior
part of the occipital visual areas (Supplementary Fig. 6).

Growing evidence suggests that synchronized neural activity is
accompanied by low-frequency oscillations. The phase of these
oscillations forms a spatial gradient on the cortical surface and
travels as a wave along the cortex carrying information across
distant regions, namely the traveling wave34–36. A recent study
showed that the phase of the spontaneous traveling wave alters
the visibility of subtle visual stimuli in marmosets37. Here, we
tested whether the transition of the high-gamma signal peak
observed in this study might be accompanied by such a traveling
wave of lower frequency oscillations. We computed phase-
amplitude coupling of the perisaccade period across the low-
frequency phase and high-gamma signal amplitude. We found
that the high-gamma signal was coupled with low-frequency
oscillations of 6–12 Hz (Fig. 7a–c). Next, we analyzed the
directionality of phases in this frequency range. We found that
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Fig. 3 Presaccadic suppression pattern of active vision. a Presaccadic
suppression pattern across the whole lateral hemisphere from four animals.
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except for the dorsal occipital cortices.
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the traveling wave propagated from the posterior terminal of the
occipital cortex to the anterior pole of the temporal cortex along
the ventral stream (Fig. 7d–f). Interestingly, in the frontal lobe
and dorsal regions, the direction of the wave was reversed;
namely, it propagated from the frontal pole to the posterior
parietal regions. In addition, the wave around the dorsal occipital
regions changed its direction of propagation to the ventral
regions. This pattern of wave propagation was consistent with the
trajectory of the high-gamma signal peak, suggesting high-gamma
activity carried a traveling wave at a lower frequency range across
the cortical surface from the dSTS, PPC, and dorsal occipital
regions, and then to the ventral stream.

The rhythm of brain dynamics linked to saccade behavior. Such
high-gamma activity propagation occurred 5 times per second,
which corresponds to the rhythm of saccades in natural visual
behavior. How is the cycle of the signal dynamics determined?
When the neural activity of representative electrodes was aligned
by saccade (saccade i), each area showed three distinct local peaks
that consisted of the activity of saccade i− 1, saccade i, and
saccade i+ 1. This resulted in an interesting situation in which at
least some cortical areas were always active between two adjacent
saccades, and the signal was relayed from one area to another
without any moment at which the activity of the entire brain

returned to background levels (Fig. 8a and Supplementary Fig. 7).
It seems that the saccades are timed to occur before the activity of
the whole brain returns to pre-activation levels and occurs at an
interval that is sufficiently long to ensure that the signal reaches a
variety of cortical areas.

To test this hypothesis directly, we computed the total activity
of the whole brain and compared it with the inter-saccade
interval. We found that a saccade occurred most frequently at
~220 ms after the previous saccade, and this timing coincided
with the total activity of the whole cerebral cortex returning to
background levels (Fig. 8b and Supplementary Fig. 8). In this
manner, cortical computation is maintained at a certain level of
activity without being completely inactive, and thus the neural
network and behavior are optimized for the efficient computation
of a visual scene.

Parallel saccade generation at various visual processing stages.
Our observation of the correspondence between the timing of
saccade generation and cortical activity returning to background
levels raises two possible explanations for how saccades are
generated during natural visual behavior. First, a saccade occurs
when the analysis of a visual scene with a new eye position has
been completed along the entirety of the visual stream. Alter-
natively, any part of the sensory cortical hierarchy could influence
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saccade generation in parallel, for example, via direct projections
to the midbrain, the superior colliculus38. In this view, the cor-
respondence between saccade timing and the timing of cortical
silencing is simply a balance point between parallel saccade
generation from different cortical computational stages. That is, a
saccade may sometimes be generated by an earlier part of the
cortical hierarchy or at the final stage. However, on average, the
rhythm of active vision is designed to be neither too long so that
the entire cortical computational process returns to background
levels nor too short so that many cortical regions are unable to
contribute to determine the next saccade.

To test these hypotheses, we examined how activity patterns
changed according to fixation duration before the next saccade,
which is the time that can be used for visual computation of the
current eye position. Figure 6a shows the saccade-evoked cortical-
wide signal dynamics followed by different fixation durations.
The signal peak after the termination of fixation (the 2nd local
peak from the saccade) was systematically delayed according to
fixation duration, which confirmed our analysis worked well as
the 2nd peak is derived from the subsequent saccade that
terminates fixation, and this timing was delayed according to
fixation duration. Conversely, we found that cortical signal
dynamics were very similar after a saccade until fixation
termination, regardless of fixation duration (Fig. 9a and
Supplementary Fig. 9). In turn, when the fixation period was
short, the activity level of early cortical areas remained high, even
just before saccade onset, and the higher visual areas did not
reach their activity peak (Fig. 9b and Supplementary Fig. 10).
Furthermore, the activity pattern of this fixation duration was
very similar to the activity pattern for longer fixation durations
(Fig. 9c, d). This suggests that the speed and pattern of a signal
traversing the cortical sheet did not change according to the
subsequent fixation duration. Conversely, the pattern of cortical
activity just before the saccade was drastically different according
to fixation duration before the saccade (Fig. 9b, magenta boxes;

Fig. 9d). When fixation duration was short, the anterior part of
the inferior temporal regions did not receive full visual
information, and only the early and mid-visual areas reached a
high activation level before the next saccade target was selected.
Conversely, when fixation duration was long, the anterior part of
the temporal cortex tended to increase its activity toward saccade
generation (Fig. 9b). These results support the view that the visual
cortices are able to contribute to the generation of saccades at any
stage of cortical visual computation in parallel.

In Fig. 9a, there appears to be a relationship between fixation
duration and the power of subsequent peaks. We are not sure for
the precise reason why the power of subsequent peaks differed
across fixation duration. The signal pattern after fixation
initiation (0–200 ms; 0–130 ms for the 150 ms fixation condition)
was quite similar regardless of how long the subsequent fixation
was maintained, however, the activity profiles just before the next
saccade differed drastically according to the prior fixation
duration. This difference might explain the difference in the
power of the subsequent peak.

It should be noted that the absence of cortical activity before
saccade onset shown in Fig. 7b cannot be attributed solely to
saccade suppression39. If this was the case, then the timing when
cortical activity returned to background levels should system-
atically shift according to the timing of the next saccade; however,
this was not supported by our results (Fig. 9a and Supplementary
Fig. 9).

Discussion
In this study, we identified several distinctive features of brain
dynamics during active visual behavior captured by an ECoG
array covering almost the entire lateral surface of the marmoset
cortex. During the course of active visual behavior, we found that
the dorsal stream acts even earlier than V1, and activation of the
ventral stream follows. The high-gamma signal traverses the
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cortical sheet from the dorsal to ventral areas accompanied by a
traveling wave of theta oscillations. This signal was generated five
times per second, just before the activity of the entire brain
returned to background levels. We further demonstrated that
saccades could be generated at any step of visual computation,
indicating the parallel computation of motor commands. In this
manner, neural network architecture and visual behavior are
coordinated for the efficient exploration of the environment.

Primate eyes sample a visual scene recursively with different
eye positions, and the timing and target of the next saccade are
determined by the results of ongoing visual processing. Our study
showed, in the free-viewing condition, the VLPFC plays a pro-
minent role in triggering saccades, and visual information, while
eyes are moving, may first arise in the dSTS. Area MT (in the
dSTS) has a neural pathway that bypasses the primary visual area
to receive visual input from the eyes11,14, and can thus receive
visual information even faster than V1. Rosa and Tweedale40

claimed that the MT can be thought of as “an additional primary
visual area” as it has strong direct input from the lateral geni-
culate nucleus41. In this sense, V1 is not a unique cortical area
that receives the earliest visual input from subcortical structures.
This information may merge with the signal in the PPC and
dorsal occipital cortices, presumably involving computation for
the spatial conversion of visual information across different eye
positions29. Then, with a slight delay to this process, information
flows along the ventral stream for further analysis of object
semantics. At approximately the time when the anterior part of
the temporal cortex receives visual information, which coincides
with the second peak of frontal cortical activity, the next saccade
will likely occur before the whole-brain computation process
becomes silent. This represents a cyclic flow of information that
fits the recursive and dynamic nature of visual behavior.

Our findings raise several questions that remain to be inves-
tigated. First, what is the neural basis for the distinctive timing of
saccade suppression along the ventral stream? The detailed
mechanism for saccadic suppression is still controversial, but one
of the most plausible hypotheses assumes that the visual areas
might receive extra-retinal information that indicates the timing
and profile of saccades from the areas controlling saccadic eye
movements such as the superior colliculus42. However, solely
with these models, the differential timing of saccadic suppression
along the ventral stream might not be explained. Second, what
computational process underlies the distinctive activation pattern
of perisaccadic periods across the dSTS, PPC, and VLPFC? At
mesoscopic levels of ECoG recording, we found that the dSTS was
active while the eyes were moving and suppressed at fixation
onset, and vice versa for the PPC. We speculate that the signal in
the dSTS is dominated by the reafferent signal from the eyes, as
ipsilateral dominant activity was seen just after saccade onset in
these electrodes (Fig. 4). Eye position was not controlled in our
experiment, so gaze position on saccade onset was random across
the stimulus movies; however, ipsilateral saccades, on average,
tended to bring the stimulus inside the receptive field of neurons
under the dSTS electrode. This view is consistent with a previous
study of single-unit recordings of macaques showing that MT/
medial superior temporal neurons retain stimulus-evoked acti-
vation during saccades, and the receptive field moves along with
the trajectory of saccades on the stimulus display coordinates43.
The activation and suppression patterns of the PPC are appar-
ently counterintuitive. The lateral intraparietal region in the
primate PPC is known as the parietal eye field that controls
saccadic eye movement. This apparent discrepancy might be
explained by that fact that the motor receptive field differs across
neurons covering the entire lateral hemifield as a population, and
they are suppressed if saccades are away from the receptive field.
Thus, as ECoG signals represent a summation of multiple

neurons, the high-gamma signal was suppressed before saccades
and activated at fixation onset. The signal increased rapidly with
fixation onset, which was stronger for contralateral saccades and
this bias was extended further during fixation. This signal might
include a mixture of the eye-position signal, efference copy, and
visual information; however, it is difficult to come to a conclusion
on this issue with the findings of the present study. A combina-
tion of saccade experiments under complete darkness or the
precise control of eye position is necessary to disentangle further
the precise content of the signal and its interactions across those
areas in natural vision.

In any case, it is worth noting the signal dynamics of natural
active visual behavior. The visual system is one of the most
investigated cortical circuitries, and an enormous number of
studies have characterized the functional properties of each
region. Many different behavioral tasks have given different
functional labels to single cortical regions, which makes it difficult
to extract the principal computation of each region. Therefore, a
precise description of the timing of activation of cortical areas and
which regions exchange signals under natural behavior might
provide unique insights for the construction of a visual
computation model.

Not only primate visual behavior but also many sensory sys-
tems, such as mice whisking and sniffing samples, occur
rhythmically44, while the rationale for such oscillatory processes
is elusive45,46. The present study provides a simple view of how
this timing is regulated. As the visual system is organized hier-
archically, it takes a certain amount of time until the final visual
center has completed the analysis of new visual information, and
then the visual system can decide which direction the eyes should
be moved in. This network property may simply determine the
interval of visual exploration, and thus the rhythm of visual
exploration is intrinsic to the hierarchical neural architecture.

Note that we do not assume that saccade generation is a
completely serial process, rather we believe it is a parallel com-
putational process. Indeed, many saccades are generated far
earlier than when the higher visual areas receive the information
for a new eye position. In this case, the saccade target is deter-
mined without the full contribution of the higher visual areas. In
fact, a saccade following short fixation is influenced more by
visual salience than a saccade after long fixation, probably due to
faster computation within the superior colliculus than for
semantic analysis in the ventral stream47. Guillery and Sherman38

claimed that any of the steps of cortical sensory computation can
send a certain type of instructor signal to the motor apparatus; on
the basis of neuroanatomical evidence, they further con-
ceptualized such circuitry in which motor instructions are sent
from multiple cortical areas in parallel at different levels of the
cortical hierarchy. Our data, showing a distinctive activity profile
at fixation termination, support this view. Along with this theory,
it might be fruitful to disentangle the information dynamics
according to saccade parameters such as prior fixation duration
or the visual features of the target that triggered the saccade.
Schall et al.48 proposed a beautiful schema showing an anatomical
connectivity gradient in the anterior bank of the arcuate sulcus
that coexists with a functional gradient in saccade amplitude at
the frontal eye field. The visual system is designed to work under
natural behavior, so there must be a reasonable link across dif-
ferent types of saccade (amplitude, interval, and target visual
features), its underlying neural architecture, and the visual
environment. Our current analysis focused on neural dynamics of
the trial averaged signal. The analysis with a single-trial level may
reveal such a link across behavior, neural architecture, and the
environment in future work.

Our results demonstrate only the most prominent route of
signal flow by ECoG recording, which represents the summation
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of the activity of the heterogeneous neural population on the
cortical surface under each electrode. To differentiate information
dynamics with a finer resolution by ECoG, further technical
challenges need to be addressed. For example, the magnocellular
and parvocellular layers in the lateral geniculate nucleus represent
functionally distinct information, and these convey information
to succeeding areas while keeping a certain degree of segregation
across channels49–51. In this study, we did not track these two
streams independently. Similarly, signal transmission from early
visual areas to the dorsal stream (as expected from the dual-
stream model) could not be identified in the active exploration
condition (while it was supported by Granger causality analysis),
and was only observed in the passive-viewing condition. The
activity of all heterogenous neurons in the dorsal regions was
mixed in a single channel in our analysis, and this may have
prevented us from observing signal transmission from V1 to the
dorsal stream because of the dominance of the faster visuomotor
response just after saccades (Fig. 4a). Similarly, our study pri-
marily focused on the high-gamma signal as this frequency range
is known to be highly correlated with local neural activity;
however, signals in different frequency ranges are likely to convey
different types of information that are complementary to the
high-gamma signal52. Future studies require technical advances
such as a combination of ECoG and circuit-specific genetic
manipulation53–55 to capture the information stream with a finer
resolution and to provide further details for the model of visual
information dynamics in active vision.

Methods
Ethics information. All procedures in the animal experiments were approved by
the Wako Animal Experiment Committee (Animal Care and Use Committee),
RIKEN, and all experiments followed the institutional ethical guidelines for the
care and use of experimental animals.

ECoG implantation. The ECoG array, consisting of 96 electrodes, was chronically
implanted in a half hemisphere of four marmoset monkeys (Callithrix jacchus)
(two each for the left and right hemispheres) following the protocol developed by
Komatsu et al.19. The contact area of each gold-plated copper electrode was 0.8 mm
in diameter (Cir-Tech Co., Ltd.). We performed a craniotomy of ~2 × 2 cm and
gradually inserted the ECoG sheet between the skull and dura. The reference
electrode was placed on the dorsal part of the somatosensory cortex on the con-
tralateral hemisphere, and the ground electrode was attached to the skull of the
contralateral hemisphere. About 6–8 plastic screws (1.4 × 2.5 mm) were implanted
in the skull, and a connector of the electrodes was fixed with the skull and the
screws using acrylic cement. A plastic headpost was also attached to the skull beside
the connector. The marmoset was immobilized by ketamine(15 mg/kg) and
maintained under anesthesia using isoflurane (1–3%) during all surgical proce-
dures. The condition of the animal was monitored by body temperature and
arterial blood oxygen saturation. Each surgery was conducted under aseptic
conditions.

Electrode localization. We localized the electrodes using computed tomography
(CT) and magnetic resonance (MR) imaging. We acquired T2-weighted MR
images in advance of ECoG implantation. The marmoset was anesthetized and
maintained by 1–3% isoflurane during imaging while their body temperature, heart
rate, respiration, and SP02 were monitored. T2-weighted MR images were taken
using a RARE sequence with the following parameters: TE= 11 ms, TR= 4,000
ms, FA= 90°, RARE factor= 4, matrix size= 178 × 178, slice number= 48, reso-
lution= 0.27 × 0.27 × 0.54 μm. CT images were taken at 1 week after ECoG
implantation when the animal had recovered fully. The animal was anesthetized by
ketamine (30 mg/kg i.m.) while its respiration was monitored. CT images were
taken at an isotropic resolution of 60 μm. To infer electrode positions on the brain
surface, the CT images were aligned manually to the T2-weighed images using
AFNI software56 (http://afni.nimh.nih.gov). The location of the electrodes was
segmented manually on the CT images using 3D Slicer57 (http://www.slicer.org).
To help annotate the regions where the electrodes were attached to the brain
surface, the cortical annotation of the marmoset MR imaging atlas58 was trans-
formed onto the subject space by using a free-form deformation named Symmetric
Normalization, implemented in the ANTs toolbox59. We determined the putative
cortical areas of the electrodes based on visual inspection of the MR images
compared to the standard atlas60 and digital annotation based on spatial defor-
mation on the subject brain.

Behavioral paradigm. Four marmoset monkeys observed 18 variations of 10-min
movies that contained a variety of naturalistic scenes (such as social interactions of
monkeys). To maintain the arousal level of the marmoset, a small amount of liquid
reward was delivered while movie viewing. In the passive-viewing task, static
images, which were from the same movies of the free-viewing task, were presented
sequentially to the marmoset with an average stimulus interval of 1200 ms. Reward
timing was distributed randomly with a mean interval of 1500 ms and was inde-
pendent of gaze behavior. The marmoset viewed 2–4 movies per day. The viewing
distance was ~20 cm and the stimulus had a visual angle of 40 × 22.5°. Stimulus and
reward timing was controlled by a custom-written MATLAB program using
Psychtoolbox61,62 (http://psychtoolbox.org) and synchronized with the ECoG
signal by an analog trigger signal via the National Instrument DAQ system. Eye
movement was obtained by pupil-corneal reflection methods using an infrared
camera (GS3-U3-32S4; Point Gray) at 500 Hz with iRecHS software63. We per-
formed gaze calibration using a protocol based on the one described by Mitchell
et al.64. In short, small images of interest to the marmoset were presented on the
display for 7 s, and this was repeated with a different stimulus set for a total of five
times. Four parameters adjusting gain and shift in the x and y directions were
estimated to maximize their gaze to be on one of the images as they spent more
time viewing those stimuli than blank space on the display.

ECoG recording. The ECoG signal was recorded at 1 kHz with a bandpass filter
ranging from 0.3 to 250 Hz using a data acquisition system (Ripple; Grapevine).
The signal was digitalized and multiplexed at the head stage using the common
reference, which was placed on the foot region of the somatosensory cortex on the
contralateral hemisphere. We analyzed 79 movie viewings with approximately
137,000 saccades, 70 with 135,000, 70 with 128,000, and 63 with 81,000 for each
animal, respectively, for the free-viewing task. For the passive-viewing task (Sup-
plementary Fig. S1), we analyzed approximately 40 sessions per animal including
7680 stimulus presentations. We performed this task in two of the four animals
with implanted electrodes.

Saccade analysis. Saccades were extracted by an acceleration filter and logistic
fitting to eye-movement data following the protocol proposed by Mitchell et al.64.
Raw eye traces were smoothed by a median filter (100 ms window size) and a
second-order Butterworth noncausal filter (−3dB at 50 Hz)to reduce high-
frequency noise. Then, the candidates for saccade onset and offset were extracted
by the velocity(over 10 degrees/s) and acceleration (over 1000 degrees2/seconds)
profile of the smoothed eye trace. For each candidate saccade, we fitted the logistic
function to the eye trace of the perisaccadic period and compared that with a spline
model having the same number of parameters. The logistic model consisted of
three parameters fitted to the mean, linear and quadratic trends over 150 ms time
series of eye-position data, centered by a pair of candidate saccade onset and offset.
The other two parameters fit the width and the amplitude of the logistic function.
The spline model was fourth-order spline with an additional parameter for the
mean. We consider a saccade only when logistic fitting explained the variance of
the perisaccadic eye trace 50% better than that of the spline model.

ECoG spectrogram analysis. To create spectrograms from the ECoG data, we
applied a bandpass filter to the raw ECoG signals and then obtained the envelope
by applying the Hilbert transformation as the signal intensity of each frequency
band. Bandpass width was 4 Hz and center frequency was moved from 4 to 200 Hz.
The resulting time courses of the envelope were z-scored in each frequency range
and in each channel, and then this was highpass-filtered to remove signal drift
(cutoff= 0.1 Hz). High-gamma signal intensity was obtained as an average across
100–160 Hz, which is known to be highly correlated with local neural activity24–26.
The magnitude and latency of perisaccadic activation peak were obtained as the
local maximum from 0 to 250 ms from saccade onset. This was obtained from the
averaged signal time course aligned by saccade onset. Saccadic suppression was a
local minimum before saccade-evoked activation for each channel.

Contralateral dominance and activity with different fixation durations. To
estimate the activation pattern of ipsi/contralateral saccades, we performed the
same analysis as above, except that only a subset of saccade onset was used to
obtain the averaged signal. Contralateral dominance was determined by subtracting
the perisaccadic activity of ipsilateral saccades from that of contralateral saccades.
Subtraction was performed using the z-scored spectrogram data. The estimation of
p-values is described in the Statistical Analysis sub-section. Similarly, in Fig. 9, we
subsampled the saccades based on the duration of the subsequent fixation.

Activation/suppression driven by saccade or fixation onset. To determine
whether the perisaccadic signal was better explained by saccade or fixation onset,
we obtained two different average signal time courses aligned by saccade or fixation
onset. We computed them with different saccade durations ranging from 20 to
60 ms (bin width= 3 ms, sliding step= 1 ms). To classify the channels to either
type 1 (eye-movement type: activation by saccade onset and suppression by fixation
onset) or type 2 (fixation type: suppression by saccade onset and activation by
fixation onset) in Fig. 5, we performed the following analysis. First, we obtained the
activation peak in different conditions (saccade/fixation onset × saccade duration),
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and obtained the activation peak and suppression peak timing as local maximum/
minimum. In each channel, we considered either only pre- or post-suppression
whose signal modulation was larger than the other. Then, we performed regression
of those latencies separately to the aligned event timing (saccade activation peak
aligned to saccade onset, and fixation aligned to fixation onset, which are the same
as for suppression). We obtained a saccade-fixation (s-f) bias by subtracting the
regression coefficient for fixation onset from that of saccade onset for each acti-
vation and suppression regression coefficient. The s-f bias represents the extent to
which degree perisaccadic modulation is better explained by saccade onset (a
negative value indicates modulation is better explained by fixation onset). We
considered an electrode as type 1 (eye-movement type) if the s-f bias for activation
was greater than 0.4 and less than −0.4 for suppression and also that suppression
was larger after activation. An electrode was defined as type 2 (fixation type) if the
s-f bias for suppression was greater than 0.4 and less than −0.4 for activation and
also that suppression occurred before activation. The original s-f values for acti-
vation and suppression are shown in Supplementary Fig. 2. We considered only
electrodes whose regression coefficient was obtained reliably, i.e., the residual peak
latency time as compared to estimated timing by regression was less than 10 ms on
average across different saccade durations.

The trajectory of the high-gamma signal. To visualize the trajectory of high-
gamma activity, we used a 3D vertex of the standard marmoset brain model. We
assigned the high-gamma activity of each electrode on the nearest vertex of the 3D
brain surface derived from nonlinear registration across the atlas and subject MR
images as described in the previous section. Signal amplitude was derived from
average activity aligned by saccade onset as described earlier. Then, we smoothed
the activity power along the cortical surface using the “SurfSmooth” function
implemented in AFNI software56 (http://afni.nimh.nih.gov) with 10 mm FWHM.
To assess the center of gravity of high-gamma activity, we computed the Fréchet
mean of high-gamma activity from all ECoG electrodes as the vertex p that was
obtained by the following formula:

argmin
p

∑
i
wi � d2ðp; xiÞ ð1Þ

where xi is a location of an electrode, w is the high-gamma signal of the electrode, p
is any vertex of the 3D brain model, and d(p,xi) is the distance (geodesics) between
p and the electrode xi. Geodesics between electrodes x to an arbitral vertex p on the
3D brain model were computed using the MATLAB (MathWorks) utility “Exact
geodesic for triangular meshes.”

Phase-amplitude coupling (PAC) and the traveling wave of theta oscillations.
PAC was computed as a circular-linear correlation65. When evaluating the time-
evolving PAC of the perisaccadic period, we adjusted the size of the sliding window
based on the phase frequency so that it contained one cycle, e.g., for 8 Hz theta
oscillations, the sliding window size was 125 ms. PAC was computed trial-by-trial,
i.e., without averaging phase or amplitude across trials; all time points within the
window from all trials were concatenated to compute the circular-linear correla-
tion. In the traveling wave analysis for Fig. 6, we analyzed the phase of theta
oscillations (8 Hz). To determine the propagation direction of the traveling wave, at
time t and electrode i, we sought the electrode j that minimized:

Pj;tþ1 � Pi;t

�
�
�

�
�
� ð2Þ

where P represents the phase of electrode i at time t. Then, the direction of pi to pj
was computed on the surface model. In this case, phase was obtained by signal time
course averaged across multiple saccades for a reliable estimation of theta oscil-
lation phase at each timing of each electrode.

Temporal dynamics of whole-brain activation and the effect of subsequent
fixation duration. Figure 8b shows a simple summation of the positive part of
high-gamma activity for all electrodes from all four animals. The high-gamma
signal was averaged time course aligned by saccade onset obtained as described
above. Here, we considered only the positive component over baseline activity from
all electrodes because the primary focus of the present study was to see to what
extent the cortical activity evoked by a saccade remained before the next saccade
was likely to occur. In addition, the inclusion of the negative component may
underestimate the ongoing activation in other electrodes (see Supplementary Fig. 8
in the case when the negative component was included).

Granger causality. We assessed the degree of signal interaction and its direc-
tionality by Granger causality analysis, which is a statistical measurement indi-
cating the extent that one time series with a slight time delay can predict another
time series66. First, we computed the Bayesian information criterion (BIC) to the
autocorrelation of a single channel, which is the regression equation to predict the
time series of high-gamma activity of channel i based on the past activity of the
same channel i. Then, we performed the same process for regression-predicting
channel i from the past activity of channel j. We computed ΔBIC as the subtraction
of the BIC for the autoregression model (i and past i) from that of a pair of
electrodes (i and past j). Lower ΔBIC values indicate a higher degree of Granger

causality from channel j to channel i. We repeated this process for all combinations
of electrodes for each animal.

Statistics and reproducibility. For Figs. 2c and 3a, statistical significance was
obtained by a randomization test in which saccade onset and ECoG signal were
derived from different sessions of the same animal. Then, we obtained activation/
suppression magnitude from the pseudo-randomly generated perisaccadic signal.
We repeated this procedure 500 times, and the p-value was estimated based on the
distribution of the resulting magnitude derived from randomization. We computed
the P-value by fitting the Gaussian model to the resulting distribution, rather than
directly estimating the P-value. This is because it was computationally too heavy to
repeat randomization for the thousands of iterations that are required for the direct
estimation of the P-value from the distribution. The false discovery rate for mul-
tiple comparisons was controlled by Storey’s method67. The resulting P-values are
shown in Supplementary Fig. 1.

For Fig. 4, we performed a randomization test to obtain statistical significance,
where labels of contralateral or ipsilateral saccade were randomized within the
same session, so that the null hypothesis is the signal pattern should be the same
regardless of saccade direction. The following procedure was the same as
described above.

In Fig. 9d, the similarity of the spatial–temporal pattern of cortical-wide activity
was compared across “time from fixation onset” and “time from fixation end.” The
correlation value was computed from 96 × 4 channels from four animals in each
time window with different fixation durations, and those values were compared
across conditions (“time from fixation onset” and “time from fixation end”) by an
unpaired two-tailed t test.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data underlying Figs. 2d, 3c, 4c, and 9d is presented in Supplementary Data 1.
Other data acquired for this study is available upon reasonable request.

Code availability
The custom code used for data analysis in this study is available upon reasonable request.
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