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Attention modulates neural representation to
render reconstructions according to subjective
appearance
Tomoyasu Horikawa 1✉ & Yukiyasu Kamitani 1,2✉

Stimulus images can be reconstructed from visual cortical activity. However, our perception

of stimuli is shaped by both stimulus-induced and top-down processes, and it is unclear

whether and how reconstructions reflect top-down aspects of perception. Here, we investi-

gate the effect of attention on reconstructions using fMRI activity measured while subjects

attend to one of two superimposed images. A state-of-the-art method is used for image

reconstruction, in which brain activity is translated (decoded) to deep neural network (DNN)

features of hierarchical layers then to an image. Reconstructions resemble the attended

rather than unattended images. They can be modeled by superimposed images with biased

contrasts, comparable to the appearance during attention. Attentional modulations are found

in a broad range of hierarchical visual representations and mirror the brain–DNN corre-

spondence. Our results demonstrate that top-down attention counters stimulus-induced

responses, modulating neural representations to render reconstructions in accordance with

subjective appearance.
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V isual image reconstruction from brain activity produces
images whose features are consistent with neural repre-
sentations in the visual cortex given arbitrary visual

instances1–3, presumably reflecting the person’s visual experience.
Previous reconstruction studies have either examined how sti-
mulus images are faithfully reconstructed or whether mentally
imagined contents can be reconstructed without external stimuli.
Meanwhile, although there is evidence that even stimulus per-
ception is shaped by both bottom-up, stimulus-induced processes
and top-down processes, whether images generated from brain
activity during perception reflect the effect of top-down processes
remains to be examined.

Among top-down processes, attention (or lack of attention) is
known to affect visual experience4–8 and brain activity9–21 pro-
foundly. Previous psychophysical experiments have shown that
attention to visual stimuli can alter the appearance of stimuli, in
which the perceived contrast of attended stimuli is enhanced6–8.
Neuroscience studies have revealed that attention to specific
visual features induces modulations of brain activity associated
with the attended feature representations11–21, which conse-
quently enables decoding of attended information from brain
activity patterns14–18. Although the link between the attentional
modulation of perceptual contrast and that of neural activity was
investigated using computational models22, the study focused on
single-feature stimuli and simple tasks based on single-neuron
responses. It has been elusive how naturalistic visual features and
their neural population-level representations, both of which are
thought to have hierarchical organizations, are linked under the
influence of top-down attention. Attentional modulations could
impact images generated from brain activity to make them look
similar to subjective visual experiences.

To address these questions, here, we used a state-of-the-art
image reconstruction method (deep image reconstruction)3 to
reconstruct visual images from functional magnetic resonance
imaging (fMRI) activity measured while subjects attended to one
of two superimposed images with equally-weighted contrasts.
Deep image reconstruction exploits the hierarchical correspon-
dence between the brain and a deep neural network (DNN) to
translate (decode) brain activity into DNN features of multiple
layers23,24, then create images that are consistent with the deco-
ded DNN features3. Thus, using a deep image reconstruction
model trained on fMRI responses to single natural images, we
decoded brain activity during attention trials to produce
reconstructions.

Using these methods, we first demonstrate examples of the
reconstructed images under attention in comparison to those
from single-image presentations. They show drastic alterations
according to the target of attention given the same stimuli. The
overall perceptual quality of the reconstructions is assessed by
human raters, which indicates the resemblance of reconstructions
to the attended images rather than unattended images. We then
attempt to model the reconstructions with superpositions of
attended and unattended images with variable contrasts. The
results show that the reconstructions can be explained by
superpositions with contrasts more weighted to the attended
images, which are comparable to the appearance of equally-
weighted stimuli under attention measured in a separate session.
The in-depth analysis of the decoded DNN features that underlie
the reconstructions reveals that attentional modulations are
found in a broad range of hierarchical representations con-
strained by the correspondence between brain areas and DNN
layers. These results illustrate that top-down attention counters
bottom-up stimulus representations and modulates visual cortical
representations to render reconstructions according to subjective
appearance. The reconstructions appear to reflect the content of
visual experience and volitional control.

Results
Visual image reconstruction from brain activity during
attention. We collected fMRI data from seven subjects (initially
five [Subject 1–5], then two more [Subject 6 and 7] at the editor’s
request during the revision, see Methods: “Subjects” for details) in
two types of experimental sessions. In the training session, in
which the data for model training were collected, subjects pas-
sively viewed presented natural images while fixating the center of
the images (6000 trials; we reused a subset of previously published
data of the reconstruction study3 for the training session data of
Subject 1–3; see Methods: “Subjects” and “Experimental design”).
The test session, in which the data for testing the trained models
were collected (all data of the test session were newly collected for
this study), consisted of single-image trials and attention trials. In
the single-image trials, subjects viewed presented images (ten
unique images not included in the stimuli of the training session)
as in the training session. In the attention trials, subjects viewed
superpositions of two different images (all 45 pairs from the ten
images). They were asked to attend to one of two superimposed
images while ignoring the other such that the attended image was
perceived more clearly (Fig. 1a). An entire test session of each
subject contained eight attention trials for each pair and attention
condition and 16 single-image trials for each single image.

We analyzed the fMRI data using the deep image reconstruc-
tion approach with which we previously demonstrated that
perceived and imagined images were reliably reconstructed3. We
first extracted DNN features using the VGG19 model25 from the
images presented in the training session. Linear regression models
(decoders) were then trained to predict (decode) the individual
DNN feature values from the patterns of fMRI voxel values in the
visual cortex (VC) covering from V1 through the ventral object-
responsive areas (see Methods: “Feature decoding analysis”). The
trained decoders were then tested on the data from the test
session (160 single-image trials and 720 attention trials). The
decoded DNN features from each of the single-image and
attention trials were processed with the optimization procedure to
create a reconstructed image (Fig. 1b; see Methods: “Visual image
reconstruction analysis”)3.

Reconstructions from individual attention and single-image
trials. Reconstructions from individual attention trials are shown
in Fig. 2a (see Supplementary Fig. 1 for validations of decoders;
see Supplementary Fig. 2 and Supplementary Movie 1 for more
examples). The generated images appear to resemble the attended
images; they tend to represent the shapes, colors, and finer pat-
terns (e.g., faces) of the attended images to a greater degree than
those of the unattended images. Notably, even for identical sti-
mulus images, the appearance of reconstruction was strikingly
different depending on the attention. The quality of successful
reconstructions from attention trials appears to be comparable to
the reconstruction quality from single-image trials (Fig. 2b, c).

We evaluated the reconstruction quality using behavioral
ratings in a pair-wise identification task (see Methods: “Evalua-
tion of reconstruction quality”). Human raters judged which of
two candidates (attended and unattended images for attention
trials; true [presented] and false images for single-image trials) is
more similar to the reconstruction from each trial. Twenty raters
performed the identification task for each reconstruction with a
specific candidate pair (e.g., “post” and “leopard” for reconstruc-
tion with the target “post”). In the statistical analyses, the
accuracy for attended image reconstructions was defined for each
image pair by the ratio of correct identification across all trials
and ratings. Since we did not control for the saliency of the
images, each image pair might have had an intrinsic bias where
one image became dominant over the other even without
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top-down attention. Therefore, we pooled over the two attention
conditions (attending to one or to the other) to cancel the
potential effect of image saliency: if identification solely depends
on the relative saliency of the two-component images regardless
of top-down attention, the pooled identification ratios would
cancel to the chance level. This yields a total of 45 data points in
each subject that correspond to all the image pairs. To enable
comparison, the accuracy for single-image reconstructions was
also defined for each of the 45 image pairs by the ratio of correct
identification across all trials and the ratings where the pair were
presented as options for identification (45 data points corre-
sponding to the 45 image pairs). Statistical analyses and tests were
primarily performed within each individual subject, while the
results averaged across subjects (45 data points, each representing
the accuracy averaged across subjects for each image pair) are
presented for summary and visualization purposes.

For attended image reconstructions, the identification accura-
cies were significantly higher than chance in four of the five
original subjects (Fig. 2c; one-sided t-test, p < 0.01 for Subject 1–4,

and p= 0.17 for Subject 5, Bonferroni correction by the number
of subjects; effect size [Cohen’s d]= 1.251, 1.139, 0.890, 0.588,
and 0.140 for Subject 1–5, respectively) and in the two additional
subjects for replication (p < 0.01, Bonferroni corrected; effect size
[Cohen’s d]= 0.946 and 1.847, respectively). For single image
reconstructions, the identification accuracies were significantly
higher than chance in all original and additional subjects (Fig. 2d;
one-sided t-test, p < 0.01 for all subjects, Bonferroni correction by
the number of subjects; effect size [Cohen’s d]= 3.191, 3.894,
4.307, 4.713, 4.211, 7.415, and 5.389 for Subject 1–7, respectively).
The overall accuracy levels for attended image reconstructions
were modest (95% confidence interval [C.I.] of the mean of the
subject-averaged accuracies for 45 pairs, [57.1, 59.3]; see
Supplementary Fig. 2c, d for reconstructions from poorly
identified pairs). However, the accuracies were positively
correlated between attention and single-image reconstructions
across pairs (Fig. 2e; correlation with subject-averaged accuracies,
Pearson’s r= 0.696; permutation test, p < 0.01; similar results
with individual subjects’ accuracies). This indicates that atten-
tional modulation was more pronounced for the pairs of the
images that were easy to reconstruct when presented alone. Note
also that subjects who were generally better at single-image
reconstruction did not necessarily achieve greater accuracies for
attended image reconstructions (e.g., Subject 4). The variance
across subjects may reflect individual differences in the capability
to exert attention.

Attentional modulation modeled by image contrast. Attention
is known to enhance the perceived contrast of stimuli6–8,13. We
thus sought to model the reconstructed images by superimposed
images with biased contrasts (Fig. 3a; see Methods: “Evaluation of
attentional modulation by weighted image contrast”). We created
superpositions with weighted contrasts ranging from 0/100% to
100/0% (attended vs. unattended) for each pair, where 50/50%
corresponds to the contrasts used for the stimuli in the attention
trials. These weighted superpositions were given to the DNN to
obtain their stimulus feature representations of individual layers
(19 layers), which were then compared with neural feature
representations to see attentional biases in multiple levels of
visual representations. For each DNN layer, Pearson correlations
were calculated between the decoded feature pattern from each
attention trial and a set of DNN feature patterns of the super-
imposed images with different contrasts. The contrast weight that
yielded the highest correlation was considered to indicate the
degree of attentional modulation. We could use the DNN features
calculated from the reconstructions instead of the decoded fea-
tures, but they highly resembled and yielded similar results in this
analysis. Thus, the decoded features can be seen as the stimulus
features of the reconstructions, too.

Examples from reconstructions with relatively high rating
accuracies are illustrated in Fig. 3b (decoded from VC). The
decoded features generally showed correlation peaks at greater
contrasts of the attended images. The estimated correlations often
peaked at 100% (i.e., attended image), indicating that representa-
tions regulated by top-down voluntary attention can override
those from external stimuli in these examples.

In statistical analyses, the peaks from individual reconstruc-
tions were averaged within or across subjects for each image pair
to cancel potential effects of image saliency as in the previous
analyses (resulting in 45 data points corresponding to the image
pairs). Overall, the peak correlations were shifted toward attended
images in most DNN layers except for some lower layers (Fig. 3c;
averaged across subjects). The mean of the peaks across layers
was 56.4% with 95% C.I. [55.1, 57.6]. In individual subjects,
statistically significant shifts were observed in 15, 17, 16, 11, 0, 13,
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Fig. 1 Overview of image reconstruction from brain activity during
attention. a Experimental design of attention trials. In each trial, two cue
images and a superposition of the preceding two cue images (flashed at
2 Hz) were sequentially presented to subjects. During an attention period,
subjects were asked to attend to one of two superimposed images
indicated by green fixation color during cue periods while ignoring the
other. Subjects pressed a button to indicate which of the first or second
images were attended to for confirmation. b Reconstruction procedure.
Given a set of decoded features for all DNN layers as a target of
optimization, the method3 optimizes pixel values of an input image so that
the features computed from the input image become closer to the target
features. A deep generator network (DGN)45 was introduced to produce
natural-looking images, in which optimization was performed at the input
space of the DGN (see Methods: “Visual image reconstruction analysis”).
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trials. Images with black and gray frames indicate presented and reconstructed images, respectively (see Supplementary Fig. 1c for more examples).
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and 17 layers out of 19 layers for Subject 1–7, respectively
(Supplementary Fig. 3; one-sided t-test, p < 0.01, Bonferroni
correction by the number of DNN layers). In an independent
behavioral experiment, we measured the perceived contrasts of
equally-weighted stimuli under attention by matching the

stimulus contrasts after the attention period. The matched
contrasts (indicated by “visual appearance” in Fig. 3c) were
comparable to the biases observed in the decoded features (55.6%,
five subjects averaged; see Methods: “Evaluation of visual
appearance”).
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An additional analysis using five visual subareas (V1–V4 and
higher visual cortex [HVC]) showed similar results with medium-
to-large effect sizes mainly around middle DNN layers even at
lower visual areas (Fig. 3d; shown in effect size). Similar results
were observed in individual subjects (Supplementary Fig. 3).
Significant peak shifts toward the attended image were observed
in multiple combinations of brain areas and DNN layers for all
subjects except Subject 5 (one-sided t-test, p < 0.01 in 70, 68, 65,
40, 0, 58, and 85 combinations from a total of 95 combinations
[19 layers × 5 visual subareas] for Subject 1–7, respectively;
Bonferroni correction by the number of combinations). These
results indicate that robust attentional modulations are found
across visual areas and the levels of hierarchical visual features as
measured by the equivalence to biased stimulus contrasts.

Identification by feature correlation. We further investigated
attentional modulations in terms of feature specificity in indivi-
dual visual areas. Here, we performed a pair-wise identification
analysis based on feature correlation, in which a decoded feature
pattern was used to identify an image between two candidates by
comparing the correlations to the image features (see Methods:
“Identification analysis”). The value of each decoded feature was
normalized by the mean and the standard deviation of the same
unit’s values in the 1200 natural images used for training feature
decoders so that baseline differences among features were
removed. The identification of attended images was performed
for all combinations of areas and layers, and the results were
compared with single-image identification (Fig. 4a). The identi-
fication accuracy was defined for each image pair by the ratio of
correct identifications among all identifications where the pair

was used as options, yielding 45 data points for each area-layer
combination and each of attended image and single-image
identification.

The identification accuracies averaged across subjects are
shown in Fig. 4b, c (only the means of 45 pairs are shown;
see Supplementary Figs. 4, 5 for individual subjects’ results).
While V1–V3 showed markedly superior performance in single-
image identification (Fig. 4c), especially at lower-to-middle DNN
layers, such superiority is diminished in attended image
identification (Fig. 4b). Regarding V1, attended image identifica-
tion is generally poor across all DNN layers. Thus, V1–V3 appear
to play a major role in representing stimuli, but not as much in
attentional modulation. The attended image identification
performances of different brain areas exhibit similar profiles,
peaking at middle-to-higher DNN layers. The representations of
these levels may be critical in attentional modulation.

A closer look reveals a hierarchical correspondence between
brain areas and DNN layers. Attended image identification shows
relatively higher accuracies from lower-to-middle areas (V2 and
V3) with features of lower-to-middle layers (conv2–5) and from
higher areas (V4 and HVC) with features of higher layers (fc6–8;
Fig. 4b; see Supplementary Fig. 4 for individual subjects’ results).
This accuracy pattern generally mirrors the tendency found in the
single-image identification performance (Fig. 4c) except V1.
These results suggest that attentional modulation is also
constrained by the hierarchical correspondence between brain
areas and DNN layers for stimulus representation.

Evaluation of amplitude modulations on decoded features. To
examine how attention affects the decoded features of individual
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DNN units, we evaluated the amplitude modulation of the
decoded features in attention trials by comparing the amplitudes
of the decoded features of different sets of DNN units (see
Methods: “Evaluation of amplitude modulations on decoded
features”). For each combination of brain areas and layers, we
first defined feature sets for each of the ten images used in single-
image trials (also used as the component images in attention
trials) by selecting the top 10% DNN units that exhibited the
highest decoded feature values in single-image trials (Fig. 5a left;
normalized by the values in training images for each unit and
averaged across trials). For each attention trial, we compared the
decoded feature values (normalized) between the feature sets for
the attended image, the unattended image, and the other images
(Fig. 5a right). The mean amplitudes for the three feature sets
were averaged across trials for each image pair, yielding 45 data
points for each combination of brain areas and layers.

The averaged amplitudes of the 45 image pairs for the feature
sets are shown for each DNN layer in Fig. 5b (averaged across
subjects, decoded from VC). Overall, the feature sets of attended
and unattended images showed higher amplitudes than that of
the other images, reflecting the fact that the presented images
consisted of the attended and the unattended images (one-sided t-
test, p < 0.01 for all layers, Bonferroni correction by the numbers
of layers; see Supplementary Fig. 6 for the results of individual

subjects, in which p < 0.01 for all layers and subjects after
Bonferroni correction by the number of combinations). Sig-
nificantly greater amplitudes were found for the attended than the
unattended feature sets in multiple DNN layers in the subject-
averaged results (Fig. 5; all 19 layers; one-sided t-test, p < 0.01,
Bonferroni correction by the numbers of layers). The results of
individual subjects also showed significantly greater amplitudes in
multiple layers for most subjects except Subject 5 (Supplementary
Figs. 6; 9, 14, 17, 6, 0, 16, and 19 layers out of 19 layers for Subject
1–7, respectively; one-sided t-test, p < 0.01, Bonferroni correction
by the numbers of layers and subjects). These results indicate that
top-down attention is reflected in the amplitudes of a particular
set of features relevant to the attended image. This may arise from
amplitude modulations of neural feature representations because
linear transformations link brain activity and decoded feature
values. Interestingly, amplitudes for the feature set of the other
images were slightly biased to negative values consistently across
all layers, possibly indicating suppressive effects on irrelevant
features during attention. Note that the value zero here is the
mean feature value in each unit across many natural images
(those used for decoder training). The stimulus feature values did
not show such negative biases.

Additional analyses were performed for each combination of
brain areas and layers, focusing on the difference between the
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Fig. 5 Evaluation of amplitude modulations on decoded features. a Evaluation procedure by amplitude modulations. The amplitude of decoded features in
each attention trial was evaluated for different sets of DNN features (“feature set” for the attended image, the unattended image, and the other images;
normalized by the values in training images for each unit; see Methods: “Evaluation of amplitude modulations on decoded features”). b Amplitude of
decoded features in attention trials (averaged across subjects). Mean amplitude averaged across units, trials, and subjects for the three types of feature
sets are shown (decoded from VC; see Supplementary Fig. 6 for the results of individual subjects). Each dot indicates the mean amplitude of each image
pair. Black and red lines indicate mean and lower/upper bounds of 95% C.I. across pairs. c Cohen’s d of amplitude differences between the attended and
the unattended feature sets at visual subareas (averaged across subjects). The effect sizes (Cohen’s d) of the amplitude differences are shown for each
area and layer. Statistical analyses were performed with the Cohen’s d across 45 image pairs. Colored lines beneath data indicate the statistical significance
of the difference (one-sided t-test, p < 0.01, Bonferroni correction by the numbers of brain areas and DNN layers). See Supplementary Fig. 7 for the results
of individual subjects.
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attended and the unattended feature sets (Fig. 5c; averaged across
subjects; shown in effect sizes). Significant differences in mean
amplitudes were found in multiple combinations of areas and
layers. The results of individual subjects also showed significant
differences in multiple combinations for most subjects except
Subject 5 (Supplementary Figs. 7; 11, 32, 78, 12, 0, 51, and 92
combinations from a total of 95 combinations [19 layers × 5
visual subareas] for Subject 1–7, respectively; one-sided t-test,
p < 0.01, Bonferroni correction by the number of combinations).
The amplitude differences had medium-to-large effect sizes while
showing the hierarchical correspondence between areas and
layers consistent with the results in the identification analysis (c.f.,
Fig. 4 and Supplementary Figs. 4, 5). These results suggest a
potential mechanism based on selective amplitude modulations of
neural feature representations, which may underlie the effect of
attention on reconstructed images.

Discussion
This study investigated how top-down attention modulates the
neural representation of visual stimuli and their reconstructions
using the deep image reconstruction approach. Note that the
decoding and reconstruction models had been trained with
independent datasets of fMRI responses to single natural images,
which did not involve the images used in the test (attention and
single-image) trials. We found that the reconstructions from
visual cortical activity during top-down, selective attention
resembled the attended images rather than unattended images.
While reconstruction quality varied across stimuli, successful
reconstructions reproduced distinctive features of attended ima-
ges (e.g., shapes and colors). When the reconstructions were
modeled using superimposed images with biased contrasts,
attentional biases were observed consistently across the visual
cortical areas and the levels of hierarchical visual features. They
were comparable to the subjective appearance of equally-weighted
stimuli under attention. The identification analysis based on
feature correlations revealed elevated attentional modulation for
middle-to-higher DNN layers across the visual cortical areas.
Attentional modulation exhibited a hierarchical correspondence
between visual areas (except V1) and DNN layers, as found in
stimulus representation. The feature amplitude analysis demon-
strated the unit-level, selective modulations on features relevant
to attended images. Our results demonstrate that top-down
attention can render reconstruction in accordance with subjective
experience by modulating a broad range of hierarchical visual
representations.

We have shown robust attention-biased reconstructions,
especially with image pairs whose individual images were well
reconstructed when presented alone (Fig. 2e). The main results
initially found from five subjects were replicated with two addi-
tional subjects collected during the revision (Fig. 2c). However,
there were substantial performance differences across subjects.
We found that subjects with higher performances in single-image
reconstructions (e.g., Subject 4) did not necessarily exhibit better
reconstructions of attended images (Fig. 2c, d) or greater atten-
tional modulations (Supplementary Figs. 3–5). The difference in
attentional modulation across subjects may be attributable to the
individual difference in the capability to control attention.
Exploring psychological and neuronal covariates with these dif-
ferences may be an important research direction for future
studies.

Reconstructions were explained by superimposed images with
contrasts biased to the attended images, which were comparable
to the appearance of stimulus images under attention (Fig. 3c).
On average, decoded features were most strongly correlated with
the stimulus features with biased contrasts of around 55/45%,

overriding the 50/50% contrasts in the stimuli. However, it should
be noted that the peak biases were variable across DNN layers.
Further, the visual features of biased stimulus images cannot
account for the interaction of attentional modulations across
layers. Thus, biased image contrast should be considered a rough
approximation of attentional modulation in the visual system.

Another limitation of this study is the lack of explicit
instructions to subjects regarding the strategy for directing
attention to target images, which might partly explain the var-
iations across subjects (Supplementary Fig. 4). Higher visual areas
tended to be more closely linked to attentional modulation
(Supplementary Fig. 3) potentially because subjects paid more
attention to categorical aspects of the stimulus. Future experi-
ments with explicit instructions regarding attention strategy
would elucidate how specifically and flexibly attention can be
deployed.

Because the identification analysis via decoded features was
performed in a pair-wise manner using multivariate sets of fea-
tures (Fig. 4), it is important to exclude potential confounding
factors to correctly attribute the results to the effect of attention
(as discussed in Naselaris & Kay, 201526). Unlike conventional
classification methods, our decoders were specifically tuned
(trained) to predict the responses of individual DNN units (i.e.,
explicit models of representations as in Naselaris & Kay, 201526),
which could in part resolve the ambiguity of the source of the
identification accuracies by attributing to the variations in feature
representations. Our analysis of selected sets of features revealed
that attention specifically enhanced the amplitudes of decoded
feature values relevant to attended images (Fig. 5 and Supple-
mentary Figs. 6, 7). Such selective amplitude modulations may
make the pattern of decoded features similar to that of attended
stimuli, resulting in accurate identifications.

While many previous studies of attention have reported effects
of attentional modulation across multiple levels of the visual
hierarchy in the brain, those studies have mainly focused on
specific types of visual features and categories (e.g., edge
orientations14, motion directions15, properties of receptive field
models19,20, and semantic categories12,16–19) using experimen-
tally designed stimuli. In contrast, our approach is based on
hierarchical DNN features that are discovered via the training
with a massive dataset of natural images and thus are difficult for
an experimenter to design. It enables us to examine millions of
naturalistic visual features, many of which are relevant to neural
representations in the human brain24,27. Attentional modulations
were found in a broad range of hierarchical representations
constrained by the correspondence between brain areas and DNN
layers. Furthermore, the image reconstruction from decoded
features enables in-depth examination of the extent and specifi-
city of attentional effects. Admittedly, as this approach primarily
relies on the validity of DNNs as computational models of the
neural representation28,29, the use of even more brain-like
DNNs30,31 may be needed to enhance the efficacy further to
reveal fine-grained contents of attentionally modulated visual
experience.

The present study is closely related to previous studies that
have examined the relationship between a visual experience
(appearance) and neural responses13,22. Störmer et al. (2009)13

studied human EEG responses evoked by Gabor stimuli while
spatial attention (left vs. right visual fields) was controlled by
cross-modal cueing. The enhancement of apparent contrast of the
cued stimulus was accompanied by an enlarged EEG response in
the contralateral hemisphere. While this study found a link
between appearance and neural activity under attentional mod-
ulation, our study extends it to fine-grained and hierarchical
neural representations of complex and naturalistic stimuli,
enabling the reconstruction of subjective percepts.
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Cutrone et al. (2014)22 investigated the effect of attention on
appearance using simulated activities from simple contrast-
response functions. They showed that the change in input base-
lines could account for psychophysical results on perceived
contrasts of Gabor stimuli (gratings within apertures) under
attention. Our findings are based on descriptive models that map
brain activity to hierarchical image features of a fixed DNN model
(and then to an image), which do not implement attentional
modulation mechanisms. The comparison of the decoded feature
values for the different sets of units (Fig. 5) suggests a mechanism
mediated by amplitude modulations. It is consistent with the
candidate models in Cutrone et al. (2014)22 but does not dis-
tinguish between them. It also remains to be seen what
mechanisms could underlie attentional modulation in the hier-
archical representations of naturalistic stimuli. Our results from
multiple layers of image and neural representations might provide
constraints for potential models.

In the present study, we obtained image reconstructions from
single trial fMRI activity (though statistical analysis was per-
formed on pooled data). Despite the relatively low signal-to-noise
ratio, the reconstructions were of comparable quality to those
from trial-averaged data3. The single trial-based reconstruction of
subjective images opens new possibilities of applications. It can be
applied to new experimental designs that use real-time decoding/
reconstruction and the feedback of the information. Furthermore,
as the reconstruction reflects the content of experience and
volitional control, it may provide a new means to express and
communicate internal messages in the form of visual images.

Methods
Subjects. Seven healthy subjects with normal or corrected-to-normal vision par-
ticipated in our experiments: Subject 1 (male, age 34–36), Subject 2 (male, age
23–24), Subject 3 (female, age 23–24), Subject 4 (male, age 22–23), Subject 5 (male,
age 27–29), Subject 6 (female, age 27–28), and Subject 7 (male, age 30–31). The
first three subjects (Subject 1–3) were the same as those in a previous study (Shen
et al., 2019). For these subjects, we reused a subset of previously published data
(data for the training session, which was originally referred to as “training natural
image session” of the “image presentation experiment”; available from https://
openneuro.org/datasets/ds001506/versions/1.3.1), while newly collecting additional
data (data for the test session). For the last four subjects (Subject 4–7), we newly
collected a whole dataset (data for the training session and the test session). The
sample size was first chosen on the basis of previous fMRI studies with similar
experimental designs3,23 (n= 5), and then we further collected data from addi-
tional two subjects (Subject 6 and 7) following the request by the editor through the
revision. All subjects provided written informed consent for participation in the
experiments, and the study protocol was approved by the Ethics Committee
of ATR.

Stimuli. The stimuli consisted of natural color images, which were used in previous
studies3,23 and were originally collected from an online image database ImageNet
(2011, fall release)32. The images were cropped to the center and resized to
500 × 500 pixels.

Experimental design. We conducted two types of experimental sessions: a training
session and a test session. All stimuli were rear-projected onto a screen in the fMRI
scanner bore using a luminance-calibrated liquid crystal display projector. The
stimulus images were presented at the center of the display with a central fixation
spot and were flashed at 2 Hz (12 × 12 and 0.3 × 0.3 degrees of visual angle for the
visual images and fixation spot, respectively). To minimize head movements during
fMRI scanning, subjects were required to fix their heads using a custom-molded
bite-bar and/or a personalized headcase (https://caseforge.co/) individually made
for each subject except for the case where subjects were reluctant to use those
apparatuses (a subset of sessions with Subject 5). Data from each subject were
collected over multiple scanning sessions spanning approximately 2 years. On each
experimental day, one consecutive session was conducted for a maximum of 2 h.
Subjects were given adequate time for rest between runs (every 7–10 min) and were
allowed to take a break or stop the experiment at any time.

Training session. The training session consisted of 24 separate runs. Each run
comprised 55 trials that consisted of 50 trials with different images and five ran-
domly interspersed repetition trials where the same image as in the previous trial
was presented (7 min 58 s for each run). Each trial was 8 s long with no rest period

between trials. The color of the fixation spot changed from white to red for 0.5 s
before each trial began to indicate the onset of the trial. Additional 32- and 6-s rest
periods were added to the beginning and end of each run, respectively. Subjects
were requested to maintain steady fixation throughout each run and performed a
one-back repetition detection task on the images, responding with a button press
for each repeated image to ensure they maintained their attention on the presented
images. In one set of training session, a total of 1200 images were presented only
once. This set was repeated five times (1200 × 5= 6000 samples for training). The
presentation order of the images was randomized across runs. This training session
is identical to that conducted in the previous study3 (referred to as “training natural
image session” of the “image presentation experiment”). The data for the last four
subjects (Subject 4–7) were newly collected, whereas the data for the first three
subjects (Subject 1–3) were adopted from the data published by a previous study3

(https://openneuro.org/datasets/ds001506/versions/1.3.1).

Test session. The test session consisted of 16 separate runs. Each run comprised
55 trials that consisted of ten single-image trials and 45 attention trials (7 min 58 s
for each run). In each single-image trial, images were presented in the same
manner as the training session. In each attention trial, subjects were presented with
a sequence of images, each of which consisted of two successive cue images (2 s, 1 s
for each cue) and spatially superimposed images of the two cue images (6 s), and
were asked to attend to one image (indicated by green fixation shown with either of
the two cue images) of a superposition of two images while ignoring the other such
that the attended images are perceived more clearly. During the attention period,
subjects were also required to press one of two buttons gripped by their right hand
to answer whether they correctly recognized which of the first and second cue
image should be attended (percentages of correct, error, and miss trials among a
total of 720 attention trials; 99.4%, 0.6%, and 0% for Subject 1; 98.8%, 0.6%, and
0.7% for Subject 2; 97.4%, 0.8%, and 1.8% for Subject 3; 99.9%, 0 %, and 0.1% for
Subject 4; 93.5%, 3.5%, and 3.1% for Subject 5; 98.6%, 0.8%, and 0.6% for Subject 6;
99.3%, 0.7%, and 0.0% for Subject 7). In the test session, we used ten out of 50
natural images that were used in the previous study3 (“test natural image session”
of the “image presentation experiment”; these images were not included in the
stimuli of the training session). The ten images were used to create a total of 45
combinations of superimposed images, and all these 45 unique superimposed
images, as well as ten unique single images, were presented in each run with
randomized orders (a total of 55 unique images were presented in each run). For
each pair of superimposed two images, the number of trials to be the target of
attention was balanced between the two images in every two consecutive runs over
an entire session consisting of 16 runs. In total, there were eight trials for each
condition of an image pair and attention, and 16 trials for each single image.

MRI acquisition. fMRI data were collected using a 3.0-Tesla Siemens MAGNETOM
Verio scanner located at the Kokoro Research Center, Kyoto University. An inter-
leaved T2*-weighted gradient-echo echo-planar imaging (EPI) scan was performed to
acquire functional images covering the entire brain (TR, 2000ms; TE, 43ms; flip
angle, 80 deg; FOV, 192 × 192mm; voxel size, 2 × 2 × 2mm; slice gap, 0mm; number
of slices, 76; multiband factor, 4). T1-weighted (T1w) magnetization-prepared rapid
acquisition gradient-echo (MP-RAGE) fine-structural images of the entire head were
also acquired (TR, 2250ms; TE, 3.06 ms; TI, 900ms; flip angle, 9 deg; FOV,
256 × 256mm; voxel size, 1.0 × 1.0 × 1.0mm).

MRI data preprocessing. We performed the MRI data preprocessing through the
pipeline provided by FMRIPREP (version 1.2.1)33. For functional data of each run,
first, a BOLD reference image was generated using a custom methodology of
FMRIPREP. Using the generated BOLD reference, data were motion corrected
using mcflirt from FSL (version 5.0.9)34 and then slice time corrected using
3dTshift from AFNI (version 16.2.07)35. This was followed by co-registration to the
corresponding T1w image using boundary-based registration implemented by
bbregister from FreeSurfer (version 6.0.1)36. The coregistered BOLD time-series
were then resampled onto their original space (2 × 2 × 2mm voxels) using
antsApplyTransforms from ANTs (version 2.1.0)37 using Lanczos interpolation.

Using the preprocessed BOLD signals, data samples were created by first
regressing out nuisance parameters from each voxel amplitude for each run,
including a constant baseline, a linear trend, and temporal components
proportional to the six motion parameters calculated during the motion correction
procedure (three rotations and three translations). The data samples were
temporally shifted by 4 s (2 volumes) to compensate for hemodynamic delays, were
despised to reduce extreme values (beyond ± 3 SD for each run), and were then
averaged within each 8-s trial (training session, four volumes), the last 6-s period of
each trial (single-image trials in the test session, three volumes corresponding to
second to fourth volumes in each trial), or 6 s attention period (attention trials in
the test session, three volumes). For data from the test session, we discarded
samples corresponding to error trials (miss or incorrect button responses) from the
main analyses unless otherwise stated (e.g., Supplementary Fig. 2c, d; numbers of
samples after removal, 716, 711, 701, 719, 673, 710, and 715 for Subject 1–7,
respectively).
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Regions of interest. V1, V2, V3, and V4 were delineated following the standard
retinotopy experiment38,39. The lateral occipital complex (LOC), fusiform face area
(FFA), and parahippocampal place area (PPA) were identified using conventional
functional localizers40–42. A contiguous region covering the LOC, FFA, and PPA
was manually delineated on the flattened cortical surfaces, and the region was
defined as the higher visual cortex (HVC). Voxels overlapping with V1–V3 were
excluded from the HVC. Voxels from V1–V4 and the HVC were combined to
define the visual cortex (VC).

Deep neural network features. We used the Caffe implementation43 of the
VGG19 DNN model25, which was pre-trained with images in ImageNet32 to
classify 1000 object categories (the pre-trained model is available from https://
github.com/BVLC/caffe/wiki/Model-Zoo). The VGG19 model consisted of a total
of sixteen convolutional layers and three fully connected layers. To compute out-
puts by the VGG19 model, all visual images were resized to 224 × 224 pixels and
provided to the model. The outputs from the units in each of the 19 layers
(immediately after convolutional or fully connected layers, before rectification)
were treated as a vector in the following decoding and reconstruction analysis. The
number of units in each of the 19 layers is as follows: conv1_1 and conv1_2,
3211264; conv2_1 and conv2_2, 1605632; conv3_1, conv3_2, conv3_3, and
conv3_4, 802816; conv4_1, conv4_2, conv4_3, and conv4_4, 401408; conv5_1,
conv5_2, conv5_3, and conv5_4, 100352; fc6 and fc7, 4096; and fc8, 1000.

Feature decoding analysis. We used a set of linear regression models to construct
multivoxel decoders to decode a DNN feature pattern for a single presented image
from a pattern of fMRI voxel values obtained in the training session (training
dataset; samples from 6000 trials for each subject). The training dataset was used to
train decoders to predict the values of individual units in feature patterns of all
DNN layers (one decoder for one DNN unit). Decoders were trained using fMRI
patterns in an entire visual cortex (VC) or individual visual subareas (V1–V4 and
HVC), and voxels whose signal amplitudes showed the highest absolute correlation
coefficients with feature values of a target DNN unit in the training data were
provided to a decoder as inputs (with a maximum of 500 voxels).

The trained decoders were then applied to the fMRI data obtained in the test
session (test dataset) to decode feature values of individual DNN units from fMRI
samples constructed for each trial (samples from 160 single-image trials and 720
attention trials for each subject). The performance of the feature decoding was
evaluated by calculating Pearson correlation coefficients between patterns of true
and decoded feature values for each sample. To eliminate potential biases for
calculating correlations due to baseline differences across units, feature values of
individual units underwent z-score normalization using means and standard
deviations of feature values of individual units estimated from the training data
before calculating the correlations.

While similar decoding analyses were performed using a sparse linear
regression algorithm in the previous studies3,23, we here used the least-squares
linear regression algorithm as the number of training samples (6000 samples)
exceeded the input dimensions (500 voxels). We confirmed that results obtained
from these algorithms were almost equivalent in decoding performance.

For the subsequent image reconstruction analysis, to compensate for possible
differences in the distributions of true and decoded DNN feature values, the
decoded feature values were normalized such that variances across units within
individual channels/layers (groups of units within each channel for convolutional
layers and all units within each layer for fully connected layers) matched with the
mean-variance of DNN feature values computed from an independent set of 10,000
natural images. The feature values after this correction were then used as inputs to
the reconstruction algorithm.

Visual image reconstruction analysis. We performed the image reconstruction
analysis using a previously proposed method3, which optimizes pixel values of an
input image based on a set of target DNN features such that the DNN features
computed from the input image become closer to the target DNN features. The
algorithm was originally formalized to solve the optimization problem for recon-
structing images from image feature representations, such as activations of DNN
units in a specific layer, by inverting them to pixel values for a certain reference
image44. Shen et al.3 extended the algorithm to combine features from multiple
DNN layers and to use DNN features decoded from the brain instead of those
computed from a reference image. To produce natural-looking images, they further
introduced a deep generator network (DGN)45, which was pre-trained to generate
natural images using the generative adversarial network (GAN) framework46, and
performed optimization at the input space of the DGN.

In this study, following the method developed by the previous study3, we used
decoded DNN features from multiple DNN layers (a total of 19 layers of the
VGG19 model) and introduced the pre-trained DGN47 (the model for fc7 available
from https://github.com/dosovits/caffe-fr-chairs) to constrain reconstructed images
to have natural image-like appearances. The optimization was performed using
gradient descent with momentum algorithm48 starting from zero-value vectors as
the initial state in the latent space of the DGN (200 iterations; see Shen et al.3 for
details; code is available from https://github.com/KamitaniLab/
DeepImageReconstruction).

Evaluation of reconstruction quality. We evaluated the quality of reconstructed
images using behavioral ratings to quantify the similarity of reconstructions to
attended (for attention trials) or presented single images (for single-image trials)
via a crowdsourcing platform. In this behavioral rating experiment, human raters
were asked to judge which of a pair of two candidate images (an attended image
and an unattended image for attention trials; a true [presented] image and a false
image for single-image trials) is more similar to a reconstructed image. The eva-
luation was conducted by 20 raters for each reconstruction with a specific candi-
date pair (e.g., “post” and “leopard” for a reconstruction with target “post”), and a
ratio of correct identification of attended and presented images among all raters
(n= 20) and candidate pairs (n= 1 for attention trials, n= 9 for single-image
trials) were defined as the accuracy of a reconstructed image (this definition of the
accuracy was used to categorize reconstructions into nicely or poorly reconstructed
examples in Figs. 2, 3b, and Supplementary Fig. 2). The evaluation was conducted
for all reconstructed images from samples of attention and single-image trials. In
Fig. 2c, d, identification results of attended and presented images pooled overall
trials (n= 8 for attention trials, n= 16 for single-image trials) and paired-images
(n= 2, attended/unattended for attention trials and true/false for single-image
trials) are shown.

Evaluation of attentional modulation by weighted image contrast. We eval-
uated the attentional modulation on decoded feature patterns (or reconstructed
images) using superpositions of attended and unattended images with weighted
contrasts. In this analysis, we assessed the effect of the attentional modulation by
how the contrast showing the highest correlation with the decoded feature pattern
deviated from the contrast of the presented image (50/50% for attended and
unattended images, respectively). We first created superimposed images with
weighted contrasts for every 5% steps ranging from 0/100% to 100/0% (attended vs.
unattended) for each pair, in which 50/50% corresponds to the contrasts used for
the stimuli in the attention trials (presented images). We then fed these weighted
superpositions to the DNN (VGG19) to compute their stimulus features of indi-
vidual DNN layers (19 layers). For each DNN layer, Pearson correlations were
calculated between feature patterns decoded from individual brain areas and a set
of DNN feature patterns of the superimposed images with different contrasts. The
weighted contrast that yielded the highest correlation (peak) was considered to
indicate the degree of attentional modulation (circles on lines in Fig. 3b). To cancel
potential effects of image saliency, we then averaged peaks estimated from indi-
vidual trials for each image pair (averaged across a total of 16 trials from two
attention conditions except the error trials) to yield 45 data points that correspond
to the image pairs and then used those data points to estimate the density, mean,
and the confidence interval of the peak shifts for each DNN layer (Fig. 3c, averaged
across subjects).

Additionally, the effect size of the peak shift was evaluated by calculating
Cohen’s d, in which the shifts of the peak position obtained from individual
attention trials were first averaged for each pair (a total of 16 trials from two
attention conditions except the error trials), and then the mean shifts toward the
attended image relative to the chance (50%) were normalized by the standard
deviation across pairs (Fig. 3d and Supplementary Fig. 3). The analysis was
performed using features from individual DNN layers separately to see the degree
of attentional bias at each level of visual representation and to avoid obscuring
differences in effects from different layers due to substantial differences in the
numbers of DNN units between layers.

Evaluation of visual appearance. To evaluate the visual appearance of stimulus
images while paying attention to one of the overlapping images as in the fMRI
test session (cf., Fig. 1a; see Methods: “Experimental design”), we conducted an
out-of-scanner behavioral experiment with an available subset of the subjects
who participated in the fMRI experiments (Subject 1, 4–7). Each trial in this
experiment consisted of a cue period (2 s), an attention period (6 s), a white-
noise period (0.1 s), and an evaluation period (no time constraint), in which the
cue and attention periods were the same as those in an attention trial in the
fMRI test session. During a white-noise period, we presented white-noise
images (0.1 s, 60 Hz) at the same location as the presented images during the
preceding cue and attention periods to diminish any potential effects of after-
images. During an evaluation period, we presented a test image consisting of a
mixture of two preceding cue images, which was initialized with a random
contrast for the weighted superpositions. Subjects were required to change the
stimulus contrast of the presented test image to be closer to the visual
appearance of the image perceived during the preceding attention period by
pressing buttons for control. After matching the contrast, subjects were allowed
to start the next trial in 2 s after pressing another button for proceeding. The
evaluation was performed for all 45 combinations of superimposed images and
two attention conditions (a total of 90 conditions), which were separately
evaluated in two separate runs with randomized orders (~15 min for each
run). Each subject evaluated all conditions twice, and mean contrast averaged
across all subjects (n= 5), repetitions, and attention conditions were used as a
score for a specific pair (e.g., “owl” and “post”; a total of 45 data points in
Fig. 3c).
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Identification analysis. In the identification analysis based on feature correla-
tions, correlation coefficients were calculated between a pattern of decoded
features and patterns of image features computed from two candidate images
(one for attended and the other for unattended images for attention trials; one
for true [presented] and the other for false images for single-image trials). For
each reconstructed image from attention trials, the pair-wise identification was
performed with a pair of attended and unattended images (one pair for each
sample). For each reconstructed image from single-image trials, the identifica-
tion was performed for all pairs between one true (presented) image and the
other nine false images that were used in the test session (nine pairs for each
sample). To eliminate potential biases due to baseline differences across units,
feature values of individual units underwent z-score normalization using means
and standard deviations of feature values of individual units estimated from the
training data before performing the identification. The image with a higher
correlation coefficient was selected as the predicted image. In Fig. 4 and Sup-
plementary Figs. 4, 5, the identification accuracy was defined for each image pair
by the ratio of correct identification across all trials (except error trials) for
attended image identification and by the ratio of correct identification where the
pair was presented as options for single-image identification. These procedures
yield 45 data points for each area-layer combination and for each attended image
and single-image identification. In Fig. 4 and Supplementary Fig. 4, the accuracy
is shown as a percentage. In Supplementary Fig. 5, the accuracy is shown as an
effect size, which was calculated by first subtracting 50 (chance level) from the
accuracy averaged for each pair (45 pairs) and then by normalizing the mean
accuracies by the standard deviation across pairs.

Evaluation of amplitude modulations on decoded features. We evaluated the
effect of attention on decoded features in attention trials by comparing mean
amplitudes of decoded feature values between different sets of DNN features
(“feature set”). For each combination of brain areas and layers, we first defined a
feature set for each of ten images used in single-image trials (also used as the
component images in attention trials) by selecting DNN units that exhibited the
highest amplitudes in decoded features in single-image trials (top 10%, averaged
across 16 trials). For each attention trial, we then used those feature sets to
estimate mean amplitudes of decoded feature values averaged across DNN units
that belong to each feature set of the attended image, the unattended image, and
the other eight images. The estimated mean amplitudes for the feature sets of the
eight “other” images were averaged to have a single scalar value for the “others”
feature set. The same operation was performed for all attention trials, such that
mean amplitudes for the three types of feature sets (attended, unattended, and
others) were estimated for all trials according to the combination of presented
image pairs. The trial-wise mean amplitudes were further averaged within each
image pair (except error trials), yielding 45 data points for each combination of
area and layer. The analysis was performed using normalized feature values, in
which the baseline differences across units were removed in advance by applying
z-score normalization to feature values of individual units using means and
standard deviations of feature values of individual units estimated from the
training data (1200 natural images).

The effect size of the amplitude difference between the feature sets of attended
and unattended images was evaluated by calculating Cohen’s d, in which the
differences of mean amplitudes between the feature sets for attended and
unattended images were first calculated for each of the 45 image pairs, averaged
across pairs, and then normalized by the standard deviation across pairs (Fig. 5c
and Supplementary Fig. 7).

Statistics and reproducibility. One-sided t-test was used to test the significance of
the identification accuracies based on behavioral evaluations (n= 45; Fig. 2c, d),
the significance of the feature decoding accuracies, and identification accuracies for
the single-image trials (n= 160, decoded from VC, Supplementary Fig. 1a, b), the
significance of the peak position shift from the baseline (50%; n= 45; Fig. 3b), the
significance of the identification accuracies based on decoded DNN features
(n= 45, Fig. 4b, c and Supplementary Fig. 4), and the significance of the difference
of amplitude modulations between attended and unattended feature sets (Fig. 5c
and Supplementary Figs. 6, 7). A Pearson’s correlation coefficient between the
identification accuracies of attention and single-image trials evaluated based on
behavioral evaluations were tested by a two-sided exact permutation test (n= 45;
Fig. 2e). A post-hoc power analysis was performed to estimate the power of the t-
test (n= 45) for evaluations of identification accuracies via decoded feature pat-
terns (Fig. 4 and Supplementary Fig. 4). The normality of the distributions ana-
lyzed with t-test was tested by Kolmogorov–Smirnov test.

Results from multiple subjects and trials can be considered as replications of
the analysis. Using fMRI data of initially collected five tested subjects, the main
findings were independently replicated from four subjects with multiple
successful trials for each subject. Furthermore, at the request of the editor and
reviewers during the revision, we have additionally collected data from two more
subjects and confirmed the replicability of the main findings with those new
subjects.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The experimental data that support the findings of this study are available from open
data repository (raw data in OpenNeuro: https://openneuro.org/datasets/ds001506/
versions/1.3.1; https://openneuro.org/datasets/ds003430; preprocessed data and all source
data underlying the graphs and charts presented in the main figures in figshare: https://
doi.org/10.6084/m9.figshare.13474629).

Code availability
The code that support the findings of this study are available from our repository (code
for feature decoding: https://github.com/KamitaniLab/GenericObjectDecoding, https://
doi.org/10.5281/zenodo.5722665 49; code written in MATLAB R2017b was used in this
study; code for image reconstruction: https://github.com/KamitaniLab/
DeepImageReconstruction, https://doi.org/10.5281/zenodo.5717775 50, python 2.7).
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