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Epigenetic models developed for plains zebras
predict age in domestic horses and endangered
equids
Brenda Larison 1,2,13✉, Gabriela M. Pinho 1,13, Amin Haghani3, Joseph A. Zoller 3, Caesar Z. Li 3,

Carrie J. Finno4, Colin Farrell5, Christopher B. Kaelin 6,7, Gregory S. Barsh 6,7, Bernard Wooding8,

Todd R. Robeck 9, Dewey Maddox10, Matteo Pellegrini5 & Steve Horvath 3,11,12✉

Effective conservation and management of threatened wildlife populations require an accu-

rate assessment of age structure to estimate demographic trends and population viability.

Epigenetic aging models are promising developments because they estimate individual age

with high accuracy, accurately predict age in related species, and do not require invasive

sampling or intensive long-term studies. Using blood and biopsy samples from known age

plains zebras (Equus quagga), we model epigenetic aging using two approaches: the epige-

netic clock (EC) and the epigenetic pacemaker (EPM). The plains zebra EC has the potential

for broad application within the genus Equus given that five of the seven extant wild species of

the genus are threatened. We test the EC’s ability to predict age in sister taxa, including two

endangered species and the more distantly related domestic horse, demonstrating high

accuracy in all cases. By comparing chronological and estimated age in plains zebras, we

investigate age acceleration as a proxy of health status. An interaction between chronological

age and inbreeding is associated with age acceleration estimated by the EPM, suggesting a

cumulative effect of inbreeding on biological aging throughout life.
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Effective management of threatened species relies on the
ability to estimate demographic trends, which depend, in
turn, on accurate information about age distributions within

populations1. Growth rates shape age distributions, can reflect past
and current environmental and anthropogenic perturbances2,3,
and can also be used to predict future population growth4.
However, age is challenging to quantify in wild animals. Age
estimation typically requires either investment in long-term field
studies or invasive approaches that may not be feasible in live
animals4,5. Another problem is the limited accuracy of some
methods, which may negatively impact conservation efforts2. The
challenges and importance of obtaining accurate age information
have motivated efforts to develop an accurate and non-invasive
approach to aging wild animals4,6.

Epigenetic aging models, particularly epigenetic clocks (ECs),
promise to improve the aging of wild animals and thereby make
valuable contributions to wildlife conservation and population
biology4,6. These highly accurate clocks use information from
genomic methylation patterns and have been studied extensively
in humans7–9 and mice10–12. The development and use of epi-
genetic models in other species are still limited but are becoming
increasingly common6. A critical limitation to developing epige-
netic aging models for wildlife is that these models need to be
trained on samples from individuals of known age. Therefore
populations of non-model organisms with known-age individuals
are of extreme importance13. Here, we develop epigenetic models
for a wild equid (plains zebras, Equus quagga) using both blood
and remote biopsy samples collected from known-age individuals
in a captive-bred population.

Besides their high accuracy, four other features of epigenetic
aging models should make them attractive for wildlife managers.
First, they can be developed from many different tissue types6,14.
Second, they can be created based on very few genomic sites. The
most accurate clocks for humans involve only a few hundred CpG
sites14,15, and far fewer CpGs have been used to build ECs in some
wild vertebrates3,16,17. Third, an accurate clock can be developed
using relatively few individuals of known age3,16,17. Finally, ECs
developed for one species have been shown to predict age accurately
in closely related taxa (e.g., humans and chimps14), and therefore
can be developed for a less threatened species with the intent of
using them in threatened sister species. Using this rationale, we aim
to test the performance of the EC developed for plains zebras to
predict age in domestic horses (E. caballus) and two threatened
species: Grevy’s zebras (E. grevyi) and Somali asses (E. africanus
somaliensis).

Since individual chronological ages are known for our plains
zebra population, it is possible to estimate how fast individuals are
aging compared to others by the discrepancy between epigenetic
age and chronological age, dubbed age acceleration. Positive age
acceleration indicates that an individual is biologically older than
expected based on its chronological age. Age acceleration is pre-
dictive of all-cause mortality in humans18–22, which suggests that
epigenetic models can be a powerful approach to study the impact
of different factors on biological aging. Age-acceleration has
also been associated with stress and adversity23–25, elevated
glucocorticoids26,27, and inbreeding28–31, all of which are relevant
for managing wild populations. The plains zebra population
sampled in this study has a complex pedigree due to semi-captive
breeding, which creates the opportunity to test whether inbreeding
is associated with accelerated epigenetic aging in this population.
The strong correlation of ECs to age can sometimes negatively
affect their ability to detect age acceleration associated with bio-
logical variation32,33. We therefore also develop a second model for
the plains zebra, the epigenetic pacemaker model (EPM). The EPM
has previously been found to be useful for investigating how
environmental and life-history factors influence aging34,35.

Our main goals for this study are to (1) develop epigenetic aging
models for plains zebras; (2) test the ability of an EC developed for
plains zebras to predict age in three equid species; and (3) estimate
the influence of inbreeding levels on plains zebra aging patterns by
correlating it with age acceleration predicted by both an EC and
EPM. Our main results include an EC that predicts age accurately
in plains zebras and three congeners tested, including domestic
horse and two endangered sister species. We further show that
inbreeding associated age acceleration increases with age, sug-
gesting that inbreeding may have a cumulative effect on age
acceleration througout life. The development of epigenetic aging
models in a wild equid stands to have broad impact because the
crown group of the genus Equus comprises a closely related group
of six extant species, five of which range from near threatened to
critically endangered36,37.

Results
Epigenetic aging models. We developed epigenetic models using
methylation data profiles from three plains zebra data sets: (1) 76
blood samples, (2) 20 biopsy samples, and (3) 96 blood and
biopsy samples combined (Table 1). For each data set, we
developed both an EC and an EPM. We evaluated the effective-
ness of applying the blood-based zebra EC to predict age in other
equids using known-age domestic horses (E. caballus, n= 188),
Grevy’s zebras (E. grevyi, n= 5), and Somali asses (E. africanus
somaliensis, n= 7).

To develop the ECs we fit a generalized linear model with elastic-
net penalization using leave-one-out (LOO) cross-validation. To
improve EC fit14 we square root transformed chronological age
prior to fitting the models. The blood EC (Pearson’s r= 0.96,
median absolute error (MAE)= 0.56 years, Fig. 1a) and the
combined tissue EC (r= 0.89, MAE= 0.62, Fig. 1c) predicted age
more accurately than the biopsy EC (r= 0.62, MAE= 1.79 years,
Fig. 1b). The blood EC selected 70 CpG sites, the biopsy clock 31
CpGs, and the combined clock selected 99 CpGs. The biopsy EC
had no CpG sites in common with the blood and combined ECs.
The blood EC and combined tissue EC shared only two CpGs.
We report coefficients, intercepts, and lambdas in Supplementary
Data 1 and present the results from using untransformed ages in
Supplementary Fig. 1.

Cross-species predictive ability was high (Fig. 1d–f). The zebra-
blood EC predicted horse age with high accuracy (r= 0.93,
MAE= 1.82). The error when predicting the ages of horses
younger than 15 years is lower (MAE 1.15) than when predicting
the ages of older horses (MAE= 3.97). While prediction errors
for Grevy’s zebra and Somali wild ass ages were even lower (MAE
of 1.08 and 1.15 respectively), this should be viewed with caution
as we had limited sample sizes from Grevy’s zebra (n= 5) and
Somali wild ass (n= 7).

To construct plains zebra EPMs we used sites in which
methylation levels were highly correlated with individual
chronological age. Epigenetic states were estimated using a
leave-one-out cross-validation. The blood, biopsy, and combined-
tissue EPMs included 391, 242, and 248 CpG sites, respectively.
We provide details of the CpGs selected by each model in

Table 1 Description of the zebra data.

Tissue N No. female Mean age Min. age Max. age

Blood 76 42 5.21 0.156 20.2
Biopsy 20 9 5.87 0.162 24.8

We restrict the description to animals whose ages could be estimated with high confidence
(90% or higher). Tissue type, N= Total number of samples/arrays. Number of females. Age:
mean, minimum and maximum.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02935-z

2 COMMUNICATIONS BIOLOGY |          (2021) 4:1412 | https://doi.org/10.1038/s42003-021-02935-z | www.nature.com/commsbio

www.nature.com/commsbio


Supplementary Data 1. Epigenetic state was strongly correlated
with chronological age in both tissue types: blood (r= 0.97,
Fig. 1g) and biopsy (r= 0.95, Fig. 1h). EPMs based on the two
tissues used largely distinct sets of CpG sites, sharing only
40 sites. Despite retaining a strong overall correlation in the
combined EPM (r= 0.96), the difference in the model’s
performance for the two sample types is apparent (Fig. 1i). The
combined tissue pacemaker shared 138 sites with blood and only
34 with biopsies.

Association of inbreeding with biological aging. Inbreeding was
estimated both as the inbreeding coefficient F and by the pro-
portion of the genome in runs of homozygosity (FROH). We
derived the genotypes used to estimate inbreeding from two
sources: RAD sequencing data (42 samples) and genotypes
imputed at the same set of loci from low-coverage whole-genome
sequencing data using GLIMPSE38 (28 additional samples).
GLIMPSE produced high-quality imputations (mean dosage r2 of
80%; mean concordance between imputed and true genotype of

Fig. 1 Predictive ability of epigenetic aging models. a−c Plains zebra epigenetic clocks (EC). We developed 3 ECs for plains zebras using square-root
transformed ages: a blood samples (n= 76), b biopsy samples (n= 20), and c combined tissue types. Leave-one-sample-out (LOO) estimate of DNA
methylation age are plotted against chronological age. Linear regressions of epigenetic age are indicated by a solid line while the diagonal dashed line
depicts y= x. d–f Tests of the ability of the plains zebra blood clock to predict chronological age in other equids: d domestic horse n= 188, e Grevy’s zebra
n= 5, f Somali wild ass n= 7. g–i Epigenetic pacemaker (EPM) models for plains zebras. Epigenetic states (or epigenetic age) of plains zebras predicted
from the EPM using g blood (n= 76), h remote biopsy tissue (n= 20), and i both sample types combined. Predictions are based on 76 blood samples and
20 biopsy samples. The equation of the fitted curve (solid line) is described for each plot. MAE are based on ages translated by the equation.
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92%) as assessed by running leave-one-out imputations on
35 samples present in both the RADseq and low coverage data
sets (Supplementary Fig. 2a, b). The Mendelian error rate across
loci averaged 0.06 (+/−0.06) in the full data set. ROH were
discoverable across 90% of the genome and ranged in size from
1.5 MB (minimum allowed size) up to >60 MB (Supplementary
Fig. 2c). ROH over 10 MB are expected to reflect inbreeding loops
occurring within the last five generations39,40. Individuals from
more recent generations showed a pattern of excessive total ROH
relative to the number of ROH segments as indicated by an
upward shift in ROH size relative to number (Supplementary
Fig. 2d)39. FROH ranged from 0 to 0.37, and F statistics ranged
from −0.21 to 0.32 (one outlier with an extreme negative F value
was removed from the analysis). The Pearson correlation between
F and FROH was 0.84.

We used multiple linear regressions to assess whether
inbreeding is associated with age acceleration in the plains zebra
population. Age acceleration was calculated by subtracting each
individual’s chronological age from its predicted age, and was
calculated separately for the EPM and EC. Sex was added to the
linear models as a covariate. EPM age acceleration was
significantly associated with an interaction between chronological
age and both F and FROH (Fig. 2 and Supplementary Table 1a, c),
indicating that the impacts of inbreeding on biological age
increase with chronological age. EC age acceleration was not
associated with either measure of inbreeding. Sex was not
associated with age acceleration in any model. A re-run of our
analyses using only the RADseq samples gave similar results
(Supplementary Table 1e–h).

EWAS and functional analysis of plains zebra tissues. We
performed the EWAS analysis on the 31,836 probes that could be
uniquely aligned to specific adjacent loci in the horse genome.
Since the mammalian methylation array is based on stretches of
DNA that are conserved in all mammals, the horse annotation
can be applied to the zebra data41. At a nominal p < 10−4, a total
of 9757 and 331 probes were related to age in blood (n= 76, age-
range 0.15–20.2 years) and biopsies (n= 20, age-range 0.16–24.8
years) respectively (Fig. 3a). The top age-related changes per
tissue are as follows (Fig. 3a): blood, hypomethylation in FANCL
upstream, MAF downstream, ZNF608 upstream, and PBX3
intron; biopsy, hypermethylation in PLCB1, NEUROD1, and
BARHL2 upstream. DNAm aging was distributed in both genic

and intergenic regions relative to transcriptional start sites
(Fig. 3b). Promoters and 5′UTR regions, which can be considered
expression regulatory regions, mainly gained methylation with
aging in both tissues. This observation paralleled a systematic
positive correlation of CpG islands with age (Fig. 3c).

The association of CpG sites with chronological age in blood
and biopsy was relatively similar, with a moderate positive
correlation between the z-scores from the EWAS for each tissue
type (r= 0.25, Fig. 3e). Of the CpGs with significant association
with chronological age, only 81 overlapped between blood
and biopsy samples (Fig. 3d). Some of these shared CpGs
include hypermethylation in PLCB1 exon, RIMS1 exon, and
hypomethylation in NOVA2 intron and NFIA intron (Supple-
mentary Fig. 3a, b). In contrast to results based on specific genes,
functional enrichment analysis using GREAT42 identified that
age-related CpGs in both blood and biopsies were significantly
related with regard to biological pathways, specifically develop-
ment (e.g., nervous system) and survival, and were enriched with
polycomb repressor complex 2 (e.g., EED, SUZ12, PCR2) target
genes (Supplementary Fig. 4d).

Discussion
To the best of our knowledge, this is the first study to present
DNA methylation-based age estimators for any wild equid. The
high accuracy of the EC models reflects that we used a custom
array that profiled 36 thousand probes that were highly conserved
across numerous mammalian species. These robust data allowed
us to construct highly accurate epigenetic aging models for plains
zebras. The best model to predict chronological age was the EC
developed from blood samples, which predicted individual age
with a 6-month error.

Developing a highly accurate biopsy-based EC may be chal-
lenging due to the variability of tissue types within such a sample.
Biopsy samples consist of three skin layers—the epidermis, the
dermis, and the hypodermis—and may even contain deeper tis-
sues. These individual layers can exhibit different methylation
patterns43 and are often present in different proportions across
samples because they vary in thickness across the body and among
individuals. A comparison between blood and skin-based (dermis
and epidermis only) odontocete clocks also found the skin-based
clocks to be less accurate44. Despite the inherent difficulties of
using biopsy samples and the small sample size and skewed age

Fig. 2 Relationship between epigenetic age acceleration calculated from the epigenetic pacemaker (EPM) model and inbreeding in plains zebras. Lines
represent the predicted age acceleration for individuals with different chronological ages and different levels of inbreeding. Gray areas show 95%
confidence intervals. Black dots represent the individual plains zebra data. Inbreeding was calculated in PLINK as a F and b FROH.
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distribution of the biopsy samples (Supplementary Fig. 5), our
biopsy clock predicted age with an error of +/−2 years.

The plains zebra blood EC accurately predicted the chron-
ological ages of horses, Grevy’s zebras, and Somali wild asses.
This was expected since caballine and non-caballine equids are
somewhat closely related (4–4.5 MYA)45,46. Non-caballine
species of equids are more closely related to plains zebras
(1.28–1.75 MYA) than domestic horses, which may explain the
lower errors found for age estimation in Grevy’s zebras and
Somali asses. In fact, chimpanzees and bonobos have a similar
divergence time to those observed within the non-caballine
equids47 and align more closely to each other in DNAm age
than either does with humans14.

The extraordinary accuracy of ECs stems from their utilization
of sites that maximize a linear relationship between epigenetic age

and chronological age. This accuracy can sometimes negatively
affect their ability to detect age acceleration associated with bio-
logical variation32,33. Methylation levels change in a non-linear
fashion throughout individuals’ lifetimes in several species, with
accelerated changes in early life and slower changes once indi-
viduals reach adulthood14,34. The EPM was developed to model
these non-linear changes34,48,49. The EPM estimates epigenetic
age by maximizing the similarity between estimated and observed
methylation levels, and therefore does not make any assumptions
about linearity but rather identifies the shape of the relationship
between age and methylation directly from the data. In this sense,
the EPM is potentially more associated with biological than
chronological aging34, which may be particularly useful for
investigating how environmental and life-history factors influence
aging35.

Fig. 3 Epigenome wide association study (EWAS) of chronological age in blood and skin of plains zebras. a Manhattan plots of the EWAS of
chronological age. Since a genome assembly was not available for zebra, the coordinates are estimated based on the alignment of Mammalian array probes
to EquCab3.0.100 (domestic horse) genome. The direction of associations with p < 10−4 (red dotted line) is highlighted by red (hypermethylated) and blue
(hypomethylated) colors. The top 15 CpGs were labeled by the neighboring genes. b Location of top age-related CpGs in each tissue relative to the closest
transcriptional start site. Top CpGs were selected at p < 10−4 and further filtering based on z-score of association with chronological age for up to 500 in a
positive and negative direction. The number of selected CpGs: blood, 1000; biopsy, 331; meta-analysis, 1000. The gray color represents the location of
3,1836 mammalian BeadChip array probes mapped to EquCab3.0.100 genome. c Boxplot of z-scores from a correlation of age with CpG location (within or
outside CpG islands). The median Z statistics are significantly different (p < 10−4). d Venn diagram of the top age-related CpGs in blood and biopsy
samples from plains zebras. e Sector plot of DNA methylation aging in plains zebra blood and biopsy tissues. Red dotted line: p < 10−4; blue dotted line:
p > 0.05; Red dots: shared CpGs; black dots: tissue-specific changes; blue dots: CpGs whose age correlation differs between blood and biopsy tissue.
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The EPM models developed here reveal that epigenetic
changes occur in a non-linear fashion throughout the lifespan of
plains zebras. As has been found in humans and other
species34,35, young zebras undergo faster epigenetic changes
than adult zebras. We also observed that the variance in the
estimates of epigenetic age is lower in young compared to old
zebras. Increased variation in epigenetic age in adults is
observed in humans and other species as well and may be a
consequence of lifetime accumulation of environmental and
physiological factors on the epigenome7,14. In agreement with
the idea of cumulative effects on aging, the effects of inbreeding
on epigenetic aging were more apparent in older individuals. We
found a significant effect of the interaction between inbreeding
measures and chronological age on age acceleration estimated
from the blood EPM, wherein inbred individuals exhibited
higher age acceleration at older chronological ages. The asso-
ciation between inbreeding and DNA methylation has been
described in plants28,30, chickens31, and salmon29. Increases in
inbreeding effects with age, such as those we describe, are pre-
dicted by theory50 and have been shown empirically in an
insect51 and mammal52 species.

Because the probes in the mammalian array were selected
based on conservation in mammalian genomes, we expect our
findings will have high translatability into humans and other
mammals. The age-related gain of methylation in promoters
(Fig. 3b) is consistent with observations in humans and many
other species53,54. The low overlap of significant CpGs between
tissues (Fig. 3d) may reflect the relatively low sample size
(n= 20 skin biopsy samples) or biological differences between
the biopsy and whole blood samples. Some of the genes close to
the most significant CpGs in the EWAS of blood and biopsy
samples play key roles in the DNA damage pathway and
maintenance of genomic integrity (FANCL)55, regulation of
cellular and/or developmental processes (MAF56, PBX357,
NEUROD158, BARHL259,60, NOVA261,62, NFIA63,64), and
extra- and/or intra- cellular signaling (PLCB165,66, RIMS167,68).

Most of these genes are near to the top significant CpG sites
from an EWAS that included multiple mammalian species and
tissues: MAF, NEUROD1, BARHL2, NFIA, PLCB1, and RIMS169.
In mice, MAF promotes osteoblast differentiation and may be an
important gene for age-related bone disease therapy70,71. PBX3 is
at the center of the most enriched network associated with aging
based on differentially methylated regions in human blood72,
and its expression levels in rat frontal cortex with aging may
depend on the amount of stress experienced by the previous
generations73. Many of these genes are potential targets for
therapies to prevent and treat age-related cognitive decline and
neurodegeneration. BARHL2 is differentially expressed in the
hippocampus of young and old rats74, and methylation levels in
nearby CpGs are associated with aging across different tissues in
naked mole rats75. PLCB1’s expression levels are associated with
aging in the human prefrontal cortex76. SNPs near ZNF608 have
been associated with early stage of cognitive decline77, Alzhei-
mer’s disease risk78, and body mass index79,80 in humans.
NEUROD1 is differentially expressed with aging in the mouse
hippocampus and is a critical regulator of neurogenesis81. RIMS1
is important for synaptic transmission at neuromuscular junc-
tions in mammals82. The abundance of the NOVA2 protein in
the cytoplasm decreases with aging in human neurons83. NFIA
modulates the plasticity of local circuits in the adult hippo-
campus and may be involved in the cortical atrophy associated
with Alzheimer’s disease84 In addition to the EWAS results,
the GREAT enrichment analysis implicated developmental
pathways, bivalent chromatin, and regions suppressed by poly-
comb repressor complex 2. These results are consistent with
observations in many other mammalian species and corroborate

findings on DNAm aging in many other mammalian
species3,5,14,17,32,35,69,75,85.

We expect that epigenetic aging models will be valuable for
ecological studies and population management in wild species
since age estimates can be used to assess reproductive potential
and population viability. In known age populations, both
ECs27,41,86,87 and EPMs34,48,49 have the potential to identify
causes of individual accelerated aging. These models can be
especially useful when combined with ecological or other genetic
data4. Given the small number of CpG sites required, an aging
project in a wild population could be done relatively inexpen-
sively using bisulfite sequencing or pyrosequencing88–90, and the
costs of the mammalian array are decreasing. While epigenetic
models based on blood are more accurate and less invasive than
many other options for aging mammals, there are drawbacks in
that animals must be immobilized to obtain the samples. Because
biopsy samples can be obtained with minimal disruption91, a
highly reliable clock based on biopsy samples will be a worthwhile
direction for future research. Since the methods for extracting
genomic DNA from feces have improved92–94, it will be worth-
while to explore whether epigenetic aging models can be adapted
to this non-invasive source of DNA.

Methods
Samples. We obtained both whole blood (96) and remote biopsy (24) samples
from a captive population of zebras maintained in a semi-wild state by the Quagga
Project95 in the Western Cape of South Africa. The population was founded in
1989 with 19 wild individuals (9 from Etosha National Park in Namibia and 10
from the Kwazulu-Natal in South Africa). Since its inception, the population has
undergone artificial selection to reproduce the phenotype of the extinct quagga
subspecies: no stripes on legs and hindquarters, and thinner and paler stripes in the
head and barrel region. At sampling, we identified individuals by their unique
stripe patterns and derived their chronological ages from studbook information, in
which dates of birth are typically accurate to within one month. One exception is a
biopsy sample from a founder that was captured for the project as a young mare
and would have been at least 25 years old at sampling. We obtained remote
biopsies using an air-powered rifle affixed with a 1 mm wide by 20–25 mm deep
biopsy dart and preserved in RNAlater (Qiagen). Veterinarians collected blood
opportunistically during activities of the Quagga Project and preserved them in
EDTA tubes. All but four samples were collected from different individuals; two
individuals were sampled twice at different ages (one and three years apart,
respectively). We stored all samples at −20 °C. After eliminating samples (24 of
120) with <90% confidence for individual identity or age, we retained 76 blood
samples and 20 biopsy samples, totaling 96 plains zebra samples (Table 1).

The collection of 188 whole-blood samples from domestic horses is described in
detail in85. The Grevy’s zebra (n= 5) and Somali wild ass (n= 7) are samples from
zoo-based animals that were opportunistically collected and banked during routine
health exams. The DNA methylation profiles from these samples have been
reported previously69.

Ethics approval. We collected plains zebra samples under a protocol approved by
the Research Safety and Animal Welfare Administration, University of California
Los Angeles: ARC # 2009-090-31, approved initially in 2009.

DNA methylation data. We generated all DNA methylation data (plains zebra,
horse, Somali wild ass, Grevy’s zebra) using a custom Illumina methylation array
(HorvathMammalMethylChip40)96. The array contains 36 thousand probes,
31,836 of which mapped uniquely to the horse genome97,98. We normalized
methylation values from each species (plains zebra, horse, Somali wild ass, and
Grevy’s zebra) and tissue (blood and biopsy) using SeSAMe99. Unsupervised
hierarchical clustering revealed that the plains zebra samples clustered by tissue
(Supplementary Fig. 6).

Epigenetic aging models. We studied epigenetic aging in plains zebras using both
EC14,100,101 and EPM models34,49. For the ECs we fit generalized linear models in
glmnet v.4.0-2 in R v.4.1.0102,103. We treated the methylation data from other
equids (domestic horse, Grevy’s zebra, Somali wild ass) independently and did not
use them for zebra clock development. In addition to the LOO cross-validation
presented here, we also conducted analyses using 10-fold cross-validation. The two
forms of cross-validation did not produce appreciably different results.

We tested the ability of the blood-based EC to predict chronological age for
other equids (domestic horse, Grevy’s zebra, Somali wild ass) by inputting the
DNA methylation profiles of these species into the plains zebra model. We used the
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median absolute error of chronological age estimation and the Pearson correlation
between predicted ages and known ages to assess accuracy for each species.

To construct plains zebra EPMs we used sites in which methylation levels were
highly correlated with individual chronological age. The Pearson correlation (r)
thresholds for entry into the model were absolute values of 0.75 for blood and
biopsy, and 0.6 for the combined EPM. The threshold used to select the sites for
input into the combined EPM was lower because only one CpG site had r higher
than 0.75. Epigenetic states were estimated using a leave-one-out cross-validation
with EpigeneticPacemaker 0.0.348 in Python 3.7.4104. Supplementary Data 2
provides all Pearson coefficients for methylation levels against chronological age.

Association of inbreeding with biological aging. We prepared libraries and
conducted 2 × 150 bp paired-end RAD sequencing as described in105. To maximize
the number of SNPs ascertained, we sequenced reads produced by two restriction
enzymes, SbFI and PacI (74155 and 127429 cut sites in the horse genome,
respectively). We aligned reads to the horse genome EquCab397 using BWA106. We
called genotypes using the haplotype-based callers Freebayes107 and Sentieon108,
retaining only the intersection of variants called by these callers. We retained only
variants within the first read of each paired-end read (a total of ~60.5 Mb). We also
removed indels, multiallelic and non-autosomal sites, loci genotyped in <10% of
individuals, and individuals genotyped at <20% of loci. We followed GATK’s basic
guidelines for additional filtering (https://gatk.broadinstitute.org/hc/en-us/articles/
360035890471-Hard-filtering-germline-short-variants), excluding SNPs with
QD < 2, FS > 60, SOR > 3, MQ < 40, MQRankSum <−12.5, and ReadPosRankSum
<−8. Finally, we removed SNPs with MAF < 0.01. Our filtering strategy resulted in
56 individuals genotyped at 322542 loci. The number of loci is consistent with
levels of heterozygosity observed in inbred wild populations of plains zebras105.

The 56 samples with RADseq genotypes were used as a reference panel to
impute these same 322542 SNPs in 89 individuals sequenced at low coverage. Low
coverage libraries were constructed from 200 ng genomic DNA using Truseq Nano
kit (Illumina), indexed with unique dual indices (Integrated DNA Technologies),
and sequenced 24 libraries per lane on a HiSeqX platform (Illumina), generating
6.2 ± 1.4 raw Gbp per sample. We aligned sequences to the horse genome
EquCab397 using BWA106. Genotypes were then imputed using GLIMPSE38. As
part of the GLIMPSE pipeline, genotype likelihoods were called from the low
coverage bams using mpileup in bcftools109, ignoring indels and duplicate reads,
and recalculating base alignment quality on the fly. Thirty-five of the 89 imputed
individuals were also present in the RADseq data and were used to assess
imputation quality using a leave-one-out-approach.

Forty-two individuals from the RAD-seq data and 28 from the imputed data
had associated epigenetic data. The combined sample of 70 individuals spans seven
generations of the Quagga Project. With the exception of removing singletons and
private doubletons, we did not further MAF prune or LD prune the combined RAD
and imputed data, as such pruning can bias the detection of ROH in an inbred
population110. We used 313,645 autosomal SNPs to estimate the inbreeding
coefficient F and to detect runs of homozygosity (ROH). F was estimated in
PLINK111 using methods of moments. We used PLINK’s default settings to detect
runs of homozygosity (ROH) with the exception that we increased the stringency
to require detection of runs in 150 rather than 100 bp windows, and final runs had
to be at least 1.5 MB long. In addition, we allowed only two missing SNPs per
homozygous window. We converted ROH to the inbreeding coefficient FROH112 by
dividing the total length of ROH for each individual by the length of the genome
over which we screened for ROH110.

Linear regression models to assess the relationship between inbreeding and age
acceleration were fitted with the lmtest v.0.9–38113 package in R v.4.1.0103. We
fitted four linear models in total, running separate analyses for the two estimates of
inbreeding, F and FROH, and separate analyses for the two measures of age
acceleration calculated based on EPM or EC. Age acceleration was the dependent
variable and was calculated as the residuals of chronological age regressed on
predicted age. In each analysis the independent variables were sex, chronological
age, inbreeding, and the interaction between chronological age and inbreeding. We
checked the residuals for normality and adjusted for heteroskedasticity via Huber-
White with the package sandwich v.3.0-1114,115. We repeated our analyses using
only the individuals genotyped directly with RAD-seq data to ensure imputed
genotypes did not bias our results.

EWAS and functional analysis of plains zebra tissues. To identify genes
potentially associated with aging, we performed EWAS in each tissue separately
using the R function “standardScreeningNumericTrait” from the “WGCNA” R
package116. The results were combined across tissues using Stouffer’s meta-analysis
method117. We estimated the distance of each significant CpG site to the closest
transcriptional start site. We retained only the 500 CpGs with the most positive
z-scores and the 500 with the most negative z-scores from each EWAS (blood,
biopsy, and the combined meta-analysis). Restricting the number of analyzed CpGs
did not have a drastic impact on the enriched pathway results. We used these CpGs
as the input for GREAT analysis software42. The background was the human Hg19
genome, limited to 31,836 CpG sites mapping to the horse genome. The options in
the analysis included “Basal plus extension” and a maximum of 50 kb flanking
window for the CpGs coordinates.

Statistics and reproducibility. Statistical analyses were performed for the epige-
netic models, inbreeding and age-acceleration, and EWAS and functional analysis.
The analyses are described in the corresponding Methods sections, including all
parameters used to allow reproducibility.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Methylation data for plains zebras can be downloaded from Gene Expression Omnibus
GSE184223. RAD sequencing data is available as fastq files on SRA, BioProject ID:
PRJNA670933. Data and scripts associated with model development and the creation of
Figs. 1 and 2 are published on DRYAD (doi:10.5068/D1W39K).

Code availability
Scripts used to run EWAS and functional analyses are at https://github.com/shorvath/
MammalianMethylationConsortium.

Received: 27 August 2021; Accepted: 2 December 2021;

References
1. Beissinger, S. R. & Westphal, M. I. On the use of demographic models of

population viability in endangered species management. J. Wildl. Manag. 62,
821–841 (1998).

2. Campana, S. Accuracy, precision and quality control in age determination,
including a review of the use and abuse of age validation methods. J. Fish. Biol.
59, 197–242 (2001).

3. Polanowski, A. M., Robbins, J., Chandler, D. & Jarman, S. N. Epigenetic
estimation of age in humpback whales. Mol. Ecol. Resour. 14, 976–987 (2014).

4. Jarman, S. N. et al. Molecular biomarkers for chronological age in animal
ecology. Mol. Ecol. 24, 4826–4847 (2015).

5. Thompson, M. J., vonHoldt, B., Horvath, S. & Pellegrini, M. An epigenetic
aging clock for dogs and wolves. Aging 9, 1055–1068 (2017).

6. De Paoli-Iseppi, R. et al. Measuring animal age with DNA methylation: from
humans to wild animals. Front. Genet. 8, 106 (2017).

7. Bell, C. G. et al. DNA methylation aging clocks: challenges and
recommendations. Genome Biol. 20, 249 (2019).

8. Field, A. E. et al. DNA methylation clocks in aging: categories, causes, and
consequences. Mol. Cell 71, 882–895 (2018).

9. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic
clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

10. Petkovich, D. A. et al. Using DNA methylation profiling to evaluate biological
age and longevity interventions. Cell Metab. 25, 954–960 e956 (2017).

11. Stubbs, T. M. et al. Multi-tissue DNA methylation age predictor in mouse.
Genome Biol. 18, 68 (2017).

12. Wang, T. et al. Epigenetic aging signatures in mice livers are slowed by
dwarfism, calorie restriction, and rapamycin treatment. Genome Biol. 18, 57
(2017).

13. Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M. & Austad, S. N.
Senescence in natural populations of animals: widespread evidence and its
implications for bio-gerontology. Ageing Res. Rev. 12, 214–225 (2013).

14. Horvath, S. DNA methylation age of human tissues and cell types. Genome
Biol. 14, R115 (2013).

15. Voisin, S. et al. An epigenetic clock for human skeletal muscle. J. Cachexia
Sarcopenia Muscle https://doi.org/10.1002/jcsm.12556 (2020).

16. De Paoli-Iseppi, R. et al. Age estimation in a long-lived seabird (Ardenna
tenuirostris) using DNA methylation-based biomarkers. Mol. Ecol. Resour. 19,
411–425 (2019).

17. Ito, H., Udono, T., Hirata, S. & Inoue-Murayama, M. Estimation of
chimpanzee age based on DNA methylation. Sci. Rep. 8, 9998 (2018).

18. Chen, B. H. et al. DNA methylation-based measures of biological age: meta-
analysis predicting time to death. Aging 8, 1844–1865 (2016).

19. Christiansen, L. et al. DNA methylation age is associated with mortality in a
longitudinal Danish twin study. Aging Cell 15, 149–154 (2016).

20. Horvath, S. et al. Decreased epigenetic age of PBMCs from Italian semi‐
supercentenarians and their offspring. Aging 7, 1159–1170 (2018).

21. Marioni, R. E. et al. DNA methylation age of blood predicts all-cause mortality
in later life. Genome Biol. 16, 25 (2015).

22. Perna, L. et al. Epigenetic age acceleration predicts cancer, cardiovascular, and
all-cause mortality in a German case cohort. Clin. Epigenetics 8, 64 (2016).

23. Mitchell, C., Schneper, L. M. & Notterman, D. A. DNA methylation, early life
environment, and health outcomes. Pediatr. Res. 79, 212–219 (2016).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02935-z ARTICLE

COMMUNICATIONS BIOLOGY |          (2021) 4:1412 | https://doi.org/10.1038/s42003-021-02935-z | www.nature.com/commsbio 7

https://gatk.broadinstitute.org/hc/en-us/articles/360035890471-Hard-filtering-germline-short-variants
https://gatk.broadinstitute.org/hc/en-us/articles/360035890471-Hard-filtering-germline-short-variants
https://github.com/shorvath/MammalianMethylationConsortium
https://github.com/shorvath/MammalianMethylationConsortium
https://doi.org/10.1002/jcsm.12556
www.nature.com/commsbio
www.nature.com/commsbio


24. Pérez, R. F., Santamarina, P., Fernández, A. F., & Fraga, M. F. Epigenetics and
Lifestyle: The Impact of Stress, Diet, and Social Habits on Tissue Homeostasis.
In Epigenetics and Regeneration (ed. Palacios, D.) pp. 461–489 (Academic
Press, 2019).

25. Szyf, M., Tang, Y. Y., Hill, K. G. & Musci, R. The dynamic epigenome and its
implications for behavioral interventions: a role for epigenetics to inform
disorder prevention and health promotion. Transl. Behav. Med. 6, 55–62
(2016).

26. Lee, R. S. et al. Chronic corticosterone exposure increases expression and
decreases deoxyribonucleic acid methylation of Fkbp5 in mice. Endocrinology
151, 4332–4343 (2010).

27. Zannas, A. S. et al. Lifetime stress accelerates epigenetic aging in an urban,
African American cohort: relevance of glucocorticoid signaling. Genome Biol.
16, 266 (2015).

28. Biemont, C. Inbreeding effects in the epigenetic era. Nat. Rev. Genet. 11, 234
(2010).

29. Venney, C. J., Johansson, M. L. & Heath, D. D. Inbreeding effects on gene-
specific DNA methylation among tissues of Chinook salmon. Mol. Ecol. 25,
4521–4533 (2016).

30. Vergeer, P., Wagemaker, N. C. & Ouborg, N. J. Evidence for an epigenetic role
in inbreeding depression. Biol. Lett. 8, 798–801 (2012).

31. Han, W. et al. Genome-wide analysis of the role of DNA methylation in
inbreeding depression of reproduction in Langshan chicken. Genomics 112,
2677–2687 (2020).

32. Thompson, M. J. et al. A multi-tissue full lifespan epigenetic clock for mice.
Aging 10, 2832–2854 (2018).

33. Zhang, Q. et al. Improved precision of epigenetic clock estimates across tissues
and its implication for biological ageing. Genome Med. 11, 54 (2019).

34. Snir, S., Farrell, C. & Pellegrini, M. Human epigenetic ageing is logarithmic
with time across the entire lifespan. Epigenetics 14, 912–926 (2019).

35. Pinho, G. M. et al. Hibernation slows epigenetic aging in yellow-bellied
marmots. Preprint at bioRxiv https://doi.org/10.1101/2021.03.07.434299
(2021).

36. Moehlman, P. D. Equids: Zebras, Asses, and Horses Status Survey and
Conservation Action Plan Vol. 37, 190 pp (IUCN/SSC Equid Specialist Group,
2002).

37. Moehlman, P. D. & King, S. R. B. IUCN SSC Equid Specialist Group 2020
Report. https://www.iucn.org/commissions/ssc-groups/mammals/mammals-
a-e/equid (2020).

38. Rubinacci, S., Ribeiro, D. M., Hofmeister, R. & Delaneau, O. Efficient phasing
and imputation of low-coverage sequencing data using large reference panels.
Nat. Genet. 53, 120–126 (2021).

39. Ceballos, F. C., Hazelhurst, S. & Ramsay, M. Runs of homozygosity in sub-
Saharan African populations provide insights into complex demographic
histories. Hum. Genet. 138, 1123–1142 (2019).

40. Curik, I., Ferenčaković, M. & Sölkner, J. Inbreeding and runs of homozygosity:
a possible solution to an old problem. Livest. Sci. 166, 26–34 (2014).

41. Anderson, J. A. et al. The costs of competition: high social status males
experience accelerated epigenetic aging in wild baboons. eLife 10, e66128
(2020).

42. McLean, C. Y. et al. GREAT improves functional interpretation of cis-
regulatory regions. Nat. Biotechnol. https://doi.org/10.1038/nbt.1630 (2010).

43. Gronniger, E. et al. Aging and chronic sun exposure cause distinct epigenetic
changes in human skin. PLoS Genet. 6, e1000971 (2010).

44. Robeck, T. R. et al. Multi-species and multi-tissue methylation clocks for age
estimation in toothed whales and dolphins. Commun. Biol. https://doi.org/
10.1038/s42003-021-02179-x (2021).

45. Jonsson, H. et al. Speciation with gene flow in equids despite extensive
chromosomal plasticity. Proc. Natl Acad. Sci. USA 111, 18655–18660 (2014).

46. Vilstrup, J. T. et al. Mitochondrial phylogenomics of modern and ancient
equids. PLoS One 8, e55950 (2013).

47. Jensen-Seaman, M. I. & Hooper-Boyd, K. A. in Encyclopedia of Life Sciences
(ELS) (John Wiley & Sons, Ltd., 2008).

48. Farrell, C., Snir, S. & Pellegrini, M. The epigenetic pacemaker—modeling
epigenetic states under an evolutionary framework. Bioinformatics https://
doi.org/10.1093/bioinformatics/btaa585 (2020).

49. Snir, S. & Pellegrini, M. An epigenetic pacemaker is detected via a fast
conditional expectation maximization algorithm. Epigenomics 10, 695–706
(2018).

50. Charlesworth, B. & Hughes, K. A. Age-specific inbreeding depression and
components of genetic variance in relation to the evolution of senescence.
Proc. Natl Acad. Sci. USA 93, 6140–6145 (1996).

51. Fox, C. W. Inbreeding depression increases with maternal age. Evolut. Ecol.
Res. 12, 961–972 (2010).

52. Benton, C. H. et al. Inbreeding intensifies sex- and age-dependent disease in a
wild mammal. J. Anim. Ecol. 87, 1500–1511 (2018).

53. Mayne, B., Berry, O., Davies, C., Farley, J. & Jarman, S. A genomic predictor of
lifespan in vertebrates. Sci. Rep. 9, 17866 (2019).

54. McClain, A. T. & Faulk, C. The evolution of CpG density and lifespan in
conserved primate and mammalian promoters. Aging 10, 561–572 (2018).

55. Alpi, A. F., Pace, P. E., Babu, M. M. & Patel, K. J. Mechanistic insight into site-
restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI.
Mol. Cell 32, 767–777 (2008).

56. Kannan, M. B., Solovieva, V. & Blank, V. The small MAF transcription factors
MAFF, MAFG, and MAFK: current knowledge and perspectives. Biochim.
Biophys. Acta 1823, 1841–1846 (2012).

57. Li, Z. et al. PBX3 is an important cofactor of HOXA9 in leukemogenesis.
Blood 121, 1422–1431 (2013).

58. Malecki, M. T. et al. Mutations in NEUROD1 are associated with the
development of type 2 diabetes mellitus. Nat. Genet. 23, 323–328 (1999).

59. Ding, Q., Joshi, P. S., Xie, Z. H., Xiang, M. & Gan, L. BARHL2 transcription
factor regulates the ipsilateral/contralateral subtype divergence in postmitotic
dI1 neurons of the developing spinal cord. Proc. Natl Acad. Sci. USA 109,
1566–1571 (2012).

60. Mo, Z., Li, S., Yang, X. & Xiang, M. Role of the Barhl2 homeobox gene in the
specification of glycinergic amacrine cells. Development 131, 1607–1618
(2004).

61. Giampietro, C. et al. The alternative splicing factor Nova2 regulates vascular
development and lumen formation. Nat. Commun. 6, 8479 (2015).

62. Yano, M., Hayakawa-Yano, Y., Mele, A. & Darnell, R. B. Nova2 regulates
neuronal migration through an RNA switch in disabled-1 signaling. Neuron
66, 848–858 (2010).

63. Deneen, B. et al. The transcription factor NFIA controls the onset of
gliogenesis in the developing spinal cord. Neuron 52, 953–968 (2006).

64. Hiraike, Y. et al. NFIA co-localizes with PPARgamma and transcriptionally
controls the brown fat gene program. Nat. Cell Biol. 19, 1081–1092 (2017).

65. Caricasole, A., Sala, C., Roncarati, R., Formenti, E. & Terstappen, G. C.
Cloning and characterization of the human phosphoinositide-specific
phospholipase C-beta 1 (PLCβ1). Biochim. Biophys. Acta 1517, 63–72 (2000).

66. McOmish, C. E., Burrows, E. L., Howard, M. & Hannan, A. J. PLC-beta1
knockout mice as a model of disrupted cortical development and plasticity:
behavioral endophenotypes and dysregulation of RGS4 gene expression.
Hippocampus 18, 824–834 (2008).

67. Mittelstaedt, T., Alvarez-Baron, E. & Schoch, S. RIM proteins and their role in
synapse function. Biol. Chem. 391, 599–606 (2010).

68. Schoch, S. et al. RIM1α forms a protein scaffold for regulating
neurotransmitter release at the active zone. Nature 415, 321–326 (2002).

69. Lu, A. T. et al. Universal DNA methylation age across mammalian tissues.
Preprint at bioRxiv https://doi.org/10.1101/2021.01.18.426733 (2021).

70. Nishikawa, K. et al. Maf promotes osteoblast differentiation in mice by
mediating the age-related switch in mesenchymal cell differentiation. J. Clin.
Invest. 120, 3455–3465 (2010).

71. Saidak, Z., Hay, E., Marty, C., Barbara, A. & Marie, P. J. Strontium ranelate
rebalances bone marrow adipogenesis and osteoblastogenesis in senescent
osteopenic mice through NFATc/Maf and Wnt signaling. Aging Cell 11,
467–474 (2012).

72. McClay, J. L. et al. A methylome-wide study of aging using massively parallel
sequencing of the methyl-CpG-enriched genomic fraction from blood in over
700 subjects. Hum. Mol. Genet. 23, 1175–1185 (2014).

73. Ambeskovic, M. et al. Ancestral stress programs sex-specific biological aging
trajectories and non-communicable disease risk. Aging 12, 3828–3847 (2020).

74. Burger, C., Lopez, M. C., Baker, H. V., Mandel, R. J. & Muzyczka, N. Genome-
wide analysis of aging and learning-related genes in the hippocampal dentate
gyrus. Neurobiol. Learn Mem. 89, 379–396 (2008).

75. Horvath, S. et al. DNA methylation clocks show slower progression of aging in
naked mole-rat queens. Preprint at bioRxiv https://doi.org/10.1101/
2021.03.15.435536 (2021).

76. Rapoport, S. I., Primiani, C. T., Chen, C. T., Ahn, K. & Ryan, V. H.
Coordinated expression of phosphoinositide metabolic genes during
development and aging of human dorsolateral prefrontal cortex. PLoS One 10,
e0132675 (2015).

77. Dube, J. B. et al. Genetic determinants of “cognitive impairment, no
dementia”. J. Alzheimers Dis. 33, 831–840 (2013).

78. Hinney, A. et al. Genetic variation at the CELF1 (CUGBP, elav-like family
member 1 gene) locus is genome-wide associated with Alzheimer’s disease and
obesity. Am. J. Med. Genet. B Neuropsychiatr. Genet. 165B, 283–293 (2014).

79. Ntalla, I. et al. Replication of established common genetic variants for adult
BMI and childhood obesity in Greek adolescents: the TEENAGE study. Ann.
Hum. Genet. 77, 268–274 (2013).

80. Speliotes, E. K. et al. Association analyses of 249,796 individuals reveal 18 new
loci associated with body mass index. Nat. Genet. 42, 937–948 (2010).

81. Gao, Z. et al. Neurod1 is essential for the survival and maturation of adult-
born neurons. Nat. Neurosci. 12, 1090–1092 (2009).

82. Badawi, Y. & Nishimune, H. Presynaptic active zones of mammalian
neuromuscular junctions: Nanoarchitecture and selective impairments in
aging. Neurosci. Res. 127, 78–88 (2018).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02935-z

8 COMMUNICATIONS BIOLOGY |          (2021) 4:1412 | https://doi.org/10.1038/s42003-021-02935-z | www.nature.com/commsbio

https://doi.org/10.1101/2021.03.07.434299
https://www.iucn.org/commissions/ssc-groups/mammals/mammals-a-e/equid
https://www.iucn.org/commissions/ssc-groups/mammals/mammals-a-e/equid
https://doi.org/10.1038/nbt.1630
https://doi.org/10.1038/s42003-021-02179-x
https://doi.org/10.1038/s42003-021-02179-x
https://doi.org/10.1093/bioinformatics/btaa585
https://doi.org/10.1093/bioinformatics/btaa585
https://doi.org/10.1101/2021.01.18.426733
https://doi.org/10.1101/2021.03.15.435536
https://doi.org/10.1101/2021.03.15.435536
www.nature.com/commsbio


83. Tollervey, J. R. et al. Analysis of alternative splicing associated with aging and
neurodegeneration in the human brain. Genome Res. 21, 1572–1582 (2011).

84. Kim, B. H., Nho, K. & Lee, J. M., Alzheimer’s Disease Neuroimaging, I. Genome-
wide association study identifies susceptibility loci of brain atrophy to NFIA and
ST18 in Alzheimer’s disease. Neurobiol. Aging 102, 200 e201–200 e211 (2021).

85. Horvath, S. et al. DNA methylation aging and transcriptomic studies in
horses. Preprint at bioRxiv https://doi.org/10.1101/2021.03.11.435032 (2021).

86. Benayoun, B. A., Pollina, E. A. & Brunet, A. Epigenetic regulation of ageing:
linking environmental inputs to genomic stability. Nat. Rev. Mol. Cell Biol. 16,
593–610 (2015).

87. Quach, A. et al. Epigenetic clock analysis of diet, exercise, education, and
lifestyle factors. Aging 9, 419–446 (2017).

88. Crary-Dooley, F. K. et al. A comparison of existing global DNA methylation
assays to low-coverage whole-genome bisulfite sequencing for epidemiological
studies. Epigenetics 12, 206–214 (2017).

89. Reed, K., Poulin, M. L., Yan, L. & Parissenti, A. M. Comparison of bisulfite
sequencing PCR with pyrosequencing for measuring differences in DNA
methylation. Anal. Biochem. 397, 96–106 (2010).

90. Tost, J., Dunker, J. & Gut, I. G. Analysis and quantification of multiple
methylation variable positions in CpG islands by Pyrosequencing.
Biotechniques 35, 152–156 (2003).

91. Karesh, W. B. in Zoo and Wild Animal Medicine: Current Therapy (eds Fowler
Murray, E. & Eric Miller, R.) 298−308 (Saunders Elsevier, 2008).

92. Chiou, K. L. & Bergey, C. M. Methylation-based enrichment facilitates low-
cost, noninvasive genomic scale sequencing of populations from feces. Sci.
Rep. 8, 1975 (2018).

93. Orkin, J. D. et al. The genomics of ecological flexibility, large brains, and long
lives in capuchin monkeys revealed with fecalFACS. Proc. Natl Acad. Sci. USA
https://doi.org/10.1073/pnas.2010632118 (2021).

94. Snyder-Mackler, N. et al. Efficient genome-wide sequencing and low-coverage
pedigree analysis from noninvasively collected samples. Genetics 203, 699–714
(2016).

95. Harley, E. H., Knight, M. H., Lardner, C., Wooding, B. & Gregor, M. The
Quagga project: progress over 20 years of selective breeding. South African J.
Wildlife Res. https://doi.org/10.3957/056.039.0206 (2009).

96. Arneson, A. et al. A mammalian methylation array for profiling methylation
levels at conserved sequences Preprint at bioRxiv https://doi.org/10.1101/
2021.01.07.425637 (2021).

97. Kalbfleisch, T. S. et al. Improved reference genome for the domestic horse
increases assembly contiguity and composition. Commun. Biol. 1, 197 (2018).

98. Wade, C. M. et al. Genome sequence, comparative analysis, and population
genetics of the domestic horse. Science https://doi.org/10.1126/
science.1178158 (2009).

99. Zhou, W., Triche, T. J. Jr., Laird, P. W. & Shen, H. SeSAMe: reducing
artifactual detection of DNA methylation by Infinium BeadChips in genomic
deletions. Nucleic Acids Res. 46, e123 (2018).

100. Bocklandt, S. et al. Epigenetic predictor of age. PLoS One 6, e14821 (2011).
101. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views

of human aging rates. Mol. Cell 49, 359–367 (2013).
102. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized

linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).
103. R Core Team. R: A language and environment for statistical computing (R

Foundation for Statistical Computing, 2020).
104. Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).
105. Larison, B. et al. Population structure, inbreeding and stripe pattern

abnormalities in plains zebras. Mol. Ecol. 30, 379–390 (2021).
106. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows

−Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
107. Garrison, E. & Marth, G. Haplotype-based variant detection from short-read

sequencing. Preprint at https://arxiv.org/abs/1207.3907 (2012).
108. Freed, D., Aldana, R., Weber, J. A. & Edwards, J. S. The Sentieon Genomics

Tools—A fast and accurate solution to variant calling from next-generation
sequence data. Preprint at bioRxiv https://doi.org/10.1101/115717 (2017).

109. Li, H. et al. The sequence alignment/map format and SAMtools.
Bioinformatics 25, 2078–2079 (2009).

110. Meyermans, R., Gorssen, W., Buys, N. & Janssens, S. How to study runs of
homozygosity using PLINK? A guide for analyzing medium density SNP data
in livestock and pet species. BMC Genomics 21, 94 (2020).

111. Purcell, S. et al. PLINK: a tool set for whole-genome association and
population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

112. McQuillan, R. et al. Runs of homozygosity in European populations. Am. J.
Hum. Genet. 83, 359–372 (2008).

113. Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R
News 2, 7–10 (2002).

114. Zeileis, A. Econometric computing with HC and HAC covariance matrix
estimators. J. Stat. Softw. 11, 1–17 (2004).

115. Zeileis, A., Köll, S. & Graham, N. Various versatile variances: an object-
oriented implementation of clustered covariances in R. J. Stat. Softw. 95, 1–36
(2020).

116. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinform. 9, 559 (2008).

117. Stouffer, S. A., Suchman, E. A., DeVinney, L. C., Star, S. A. & Williams, R. M.
J. Adjustment During Army Life (Princeton University Press, 1949).

Acknowledgements
This work was supported by the Paul G. Allen Frontiers Group (SH). G.P. was supported
by the Science Without Borders program of the National Counsel of Technological and
Scientific Development of Brazil. Sample collection was supported by National Geo-
graphic Grant 8941-11 (BL). We thank the following people for their assistance with
acquiring the plains zebra blood and tissue samples: Colleen O’Ryan, Stephen Mitchell,
Mick D’Alton, Tom Turner, Boet le Roux, Evert Grobbelar, Ewald Groenewald, Basie and
Coenraad Bezuidenhout, Linda Mason, Patricia Swanepoel, Fernando Rueda, Ross
Cowlin, Melissa Stander, Hanna Lindstadt, Ansel Abels, J.P. Hugo, Cobus van Coller,
Jannie du Plessis, and SANParks. White Oak Conservation kindly provided Grevy’s zebra
and Somali wild ass samples.

Author contributions
B.L., S.H. and G.P. conceived of the study. B.L. and G.P. analyzed data, and B.L., G.P.,
and S.H. co-wrote the article. The remaining authors helped with the statistical analysis
(A.H., J.Z., C.L., C.F., and M.P.), or the data generation (B.W., C.J.F., C.K., G.B., T.R., and
D.M.). All authors reviewed and edited the article.

Competing interests
The authors declare the following competing interests: S.H. is a founder of the non-profit
Epigenetic Clock Development Foundation which plans to license several patents from
his employer UC Regents. These patents list S.H. as inventor. The other authors declare
no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-021-02935-z.

Correspondence and requests for materials should be addressed to Brenda Larison or
Steve Horvath.

Peer review information Communications Biology thanks Aaron Shafer and the other,
anonymous, reviewer for their contribution to the peer review of this work. Primary
Handling Editors: Christopher Hine and Luke R. Grinham. Peer reviewer reports are
available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02935-z ARTICLE

COMMUNICATIONS BIOLOGY |          (2021) 4:1412 | https://doi.org/10.1038/s42003-021-02935-z | www.nature.com/commsbio 9

https://doi.org/10.1101/2021.03.11.435032
https://doi.org/10.1073/pnas.2010632118
https://doi.org/10.3957/056.039.0206
https://doi.org/10.1101/2021.01.07.425637
https://doi.org/10.1101/2021.01.07.425637
https://doi.org/10.1126/science.1178158
https://doi.org/10.1126/science.1178158
https://arxiv.org/abs/1207.3907
https://doi.org/10.1101/115717
https://doi.org/10.1038/s42003-021-02935-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio
www.nature.com/commsbio

	Epigenetic models developed for plains zebras predict age in domestic horses and endangered equids
	Results
	Epigenetic aging models
	Association of inbreeding with biological aging
	EWAS and functional analysis of plains zebra tissues

	Discussion
	Methods
	Samples
	Ethics approval
	DNA methylation data
	Epigenetic aging models
	Association of inbreeding with biological aging
	EWAS and functional analysis of plains zebra tissues
	Statistics and reproducibility

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




