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MicroSEC filters sequence errors for formalin-fixed
and paraffin-embedded samples
Masachika Ikegami 1,2,3✉, Shinji Kohsaka 1✉, Takeshi Hirose 1,4, Toshihide Ueno 1, Satoshi Inoue1,

Naoki Kanomata5, Hideko Yamauchi6, Taisuke Mori7, Shigeki Sekine7, Yoshihiro Inamoto8, Yasushi Yatabe 7,9,

Hiroshi Kobayashi2, Sakae Tanaka 2 & Hiroyuki Mano 1✉

The clinical sequencing of tumors is usually performed on formalin-fixed, paraffin-embedded

samples and results in many sequencing errors. We identified that most of these errors are

detected in chimeric reads caused by single-strand DNA molecules with microhomology.

During the end-repair step of library preparation, mutations are introduced by the mis-

annealing of two single-strand DNA molecules comprising homologous sequences. The

mutated bases are distributed unevenly near the ends in the individual reads. Our filtering

pipeline, MicroSEC, focuses on the uneven distribution of mutations in each read and

removes the sequencing errors in formalin-fixed, paraffin-embedded samples without over-

eliminating the mutations detected also in fresh frozen samples. Amplicon-based sequencing

using 97 mutations confirmed that the sensitivity and specificity of MicroSEC were 97%

(95% confidence interval: 82–100%) and 96% (95% confidence interval: 88–99%),

respectively. Our pipeline will increase the reliability of the clinical sequencing and advance

the cancer research using formalin-fixed, paraffin-embedded samples.
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Cancer gene panel testing using next-generation sequencing
has been applied in routine practice to identify the somatic
as well as germline mutations and to determine the

appropriate treatment strategy for cancer patients1. Somatic
mutations often only occur in a small subset of cells and are
present in a small fraction of DNA molecules from tumor sam-
ples. Somatic mutations can be detected in fresh or fresh frozen
(FF) samples using next-generation sequencers with low error
rate, but those materials are not always available for clinical
sequencing.

As a result, the nucleic acids extracted from formalin-fixed and
paraffin-embedded (FFPE) tumor tissues collected in surgeries or
biopsies are more commonly used2–4. Formalin fixation and
prolonged storage cause various changes in nucleic acids, such as
the cross-linking between nucleic acids and proteins, denatura-
tion, cytosine deamination, and chemical modification5. As a
result, the DNA extracted from FFPE tissues is usually frag-
mented and contains single-stranded DNA (ssDNA)6. Low DNA
quality causes substantial noise in the sequencing reaction.
Therefore, it is highly challenging to detect the mutations that
occur at low variant allele fractions (VAFs) in FFPE samples7–9.
However, the development of filtering pipelines for FFPE artifacts
has not progressed remarkably beyond the well-known CG-to-TG
mutation caused by cytosine deamination10–14.

Here we propose a major mechanism for FFPE sequencing
errors, microhomology-induced chimeric read (MICR) formation
in capture-based target sequencing. MICRs are ssDNA-derived
artifacts and classified into two types induced by different
mechanisms (Fig. 1). The first type of MICRs results from the
hairpin structure formed by two palindromic sequences in the
same ssDNA molecule. The second type of MICRs is formed from
the mis-annealing of two ssDNA molecules derived from differ-
ent homologous regions. MICRs are formed during the end-
repair step of library preparation for clinical sequencing, wherein
a considerable amount of extracted DNA is denatured to ssDNA
and behaves as site-directed mutagenesis polymerase chain
reaction (PCR) primers15. Based on our theory that artifacts are
derived from ssDNA-annealing, we have developed a MICR-
originating Sequence Error Cleaning pipeline (MicroSEC), a post
hoc filtering pipeline to predict whether a given mutation is an
MICR-derived error. This pipeline allows the processing of
thousands of mutations of target sequencing data within hours on
a standard PC with 16 gigabytes of memory. MicroSEC requires a
list of mutations and corresponding BAM files, rather than
FASTQ files as it uses the positional bias of reads mapped against
mutations.

Results and discussion
Examples of artifacts and the presumed mechanisms. To better
understand the spectrum of FFPE artifacts, we performed target
sequencing of a low-quality FFPE sample of normal breast tissue
using a 478-gene panel and reviewed likely artifacts. First, we
found mapping anomalies characteristic of artifacts in FFPE
samples. DNA extracted from samples was fragmented at random
positions to the appropriate size before sequencing. Mutated
bases are expected to be distributed evenly in the reads. However,
we observed a T-to-C artifact in FGFR4 gene with a marked bias
in the position of the mutation (Fig. 2a). In the case of all reads
with the artifact, only six bases downstream of the mutation were
mapped, and the rest were soft-clipped. This phenomenon was
not observed in the non-mutated reads. The mapping of a
representative read with an artifact in FGFR4 was examined in
detail (Fig. 2b). The upstream sequence of the read was mapped
to the forward strand of the genome, and the downstream
sequence was mapped to the reverse strand of the same genomic

region. Strangely, the upstream and downstream sequences
overlapped, as did the genomic sequences to which each was
mapped. Two palindromic sequences exist in close proximity to
each other in this region. From this, we estimated the phenomena
shown in Fig. 2c in the end-preparation step of library prepara-
tion. A ssDNA containing two palindromic sequences potentially
formed a hairpin structure. After nicking and partial denatura-
tion, the double-stranded DNA could be regenerated by DNA
polymerase. Then, the mismatched base between two palindromic
sequences was detected as a mutation.

The following phenomena are observed when reviewing all the
reads supporting a mutation. In the case of a true mutation, the
altered bases are expected to be evenly distributed across the reads.
Conversely, in case of an MICR error, the altered bases are
distributed preferentially near the effective ends of the read, with
severely limited lengths that match the reference sequence upstream
or downstream of the mutations. The VarScan2 mutation caller
empirically employs whether the mutated bases are biased toward
the ends of the reads as a filtering metric, but it does not take soft-
clipping into account16. However, the details of such a bias is
vaguely known. As MICRs form before the adapter ligation step in
the library preparation, it cannot be ruled out in principle using
template tagmentation techniques such as molecular identifier (ID)
barcoding1. Therefore, there is a strong need for specifically
designed filtering pipelines.

Study design. MicroSEC is based on three criteria (Fig. 2d). First,
the local palindromic sequences causing hairpin-induced errors
are detected (Filter 2). Second, the distribution of mutation
positions in sequencing reads is interrogated if it is too uneven to
occur probabilistically (Filter 1 and 3). Third, distant regions in
the genome are searched, of which sequences are exactly matched
to the query FFPE reads (Filter 4).

During the step of detecting mutated base position bias, the
number of bases from the mutated base to the farthest mapped
base in each read is defined as the 3′ or 5′-supporting lengths
(Fig. 3a). The shorter of the 3′- and 5′-supporting lengths is
defined as the shorter supporting length. The probability of the
mutation distribution of the supporting lengths is calculated
based on the multinomial distribution; mutations with p < 10−6

are considered artifacts (Fig. 3b). During the step of detecting
hairpin-induced errors, 15-base sequences containing the muta-
tion were extracted from each read (Fig. 3c). We considered the
mutation an artifact if more than half of the sequences existed on
the opposite strand within 200 bases of the neighboring sequence.
During the step of detecting distant homologous regions, 40-base
sequences including the mutation were extracted from each read
(Fig. 3d). The mutation is considered an artifact if >15% of the
sequences match another region in the genome.

We first tested the sensitivity of the algorithm using normal
breast tissue, because there were few true mutations in normal
mammary tissue and most mutations detected in FFPE samples
were considered to be artifacts. This was followed by a testing on
specificity using 23 FF and 33 FFPE breast cancer samples. After
confirming the performance, MicroSEC was applied to the clinical
sequencing and whole-exome sequencing data to investigate the
usefulness of MicroSEC in actual clinical practice. Since MICR-
originating artifacts were not produced by PCR, amplicon-based
sequencing was used as an external validation of MicroSEC.

We examined the performance of MicroSEC in distinguishing
true mutations from FFPE artifacts with our custom‐made multi-
gene panel test, “Todai OncoPanel”2. The panel including 15,600
capture probes were designed to examine 478 cancer-related
genes. As the total size of target regions was 3.4 megabases, the
average length of captured regions was approximately 220 base
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pairs. We obtained FF samples of normal blood from all cases.
The somatic mutations were defined as those that were identified
in sample DNA but absent from matched normal blood DNA,
although not all mutations detected in the blood samples were
germline mutations because some mutations could be caused by
clonal hematopoiesis or sequencing errors.

Performance of MicroSEC. To test the sensitivity of the filtering
algorithm, we analyzed the target sequencing data of 53 FF and
190 FFPE normal breast tissue samples with a high mean cov-
erage of ≥400. Our initial somatic mutation analysis pipeline
identified an average of 0.3 and 11.7 somatic mutations per
sample in FF and FFPE samples, respectively (Table 1). With the

MicroSEC pipeline, 0 (0%) and 10.1 (86.0%) mutations per
sample were filtered out from the data of FF and FFPE samples,
respectively. In FFPE samples, possible artifacts such as the CG-
to-TG mutations or mutations in or adjacent to a homopolymer
equal to or longer than 10-base accounted for half of the muta-
tions that had passed through the filter (Table 1). The mutations
passing through the filter had similar VAFs to the filtered out
mutations (Supplementary Fig. 1a–c).

Surprisingly, two unique mutations with VAF of >50% in FFPE
samples were eliminated by Filter 1 or 2 (Supplementary Table 1).
Thus, a high VAF does not necessarily indicate a true mutation.
The relationship between the filtering rate and mutation coverage
was also examined using FFPE samples from normal breast
tissues, which were expected to have few or no mutations.

Intact genomic DNA
a b

Intact genomic DNA

Degradation and ssDNA formation

Misannealing by microhomology

Shearing

End repair Step, 3’-5’ exonuclease activity

End repair Step, 5’-3’ polymerase activity

Adapter ligation

Indexing PCR

Mapping to the reference genome

Adapter/index sequence
Soft-clipped sequence

Homologous sequences Mismatch between
homologous sequences

Fig. 1 Two proposed mechanisms of microhomology-induced chimeric read (MICR) formation. a In the region with two proximal palindromic sequences,
single-stranded DNA (ssDNA) is formed after degradation and denaturation. The annealing between the two palindromic sequences forms a hairpin
structure. The chimeric double-stranded DNA is formed during the shearing and end-repair steps of library preparation. Adapter and index sequences are
added to the original sequence. The ligation product is amplified by polymerase chain reaction (PCR), sequenced, and mapped to the reference genome. In
a chimeric read of two sequences, only one is correctly mapped, and the other is clipped by the mapping software. b MICR is also formed by the
homologous sequences in two distant regions in the genome. Chimeric reads are generated by mis-annealing of ssDNA derived from the distant
homologous regions.
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Fig. 2 An example of microhomology-induced chimeric read (MICR)-originated sequencing error. a The genomic sequence visualized by Integrative
Genomics Viewer exhibits a T-to-C artifact in the FGFR4 gene found in target sequencing data of a FFPE normal breast tissue sample. In all mutation-
supporting reads, only six bases downstream of the mutation were mapped, and the rest is soft-clipped (red line). The blue colored read has an inferred
insert size smaller than expected. The mate-reads of green or gold colored reads were mapped to different chromosomes. b A representative read
supporting the T-to-C artifact in Fig. 2a. The upstream sequence of the read (blue arrow) was mapped to the forward strand of the genome, and the
downstream sequence of the same read (green arrow) was mapped to the reverse strand. Strangely, the upstream and downstream sequences overlapped,
as did the genomic sequences to which each was mapped. Since the upstream sequence was longer than the downstream sequence, only the upstream
sequence was eventually mapped and the downstream sequence was soft-clipped. Two palindromic sequences exist in close proximity to each other, and
the mismatched base between the two sequences (red box) represent the source of the T-to-C artifact. Most of the downstream bases were soft-clipped.
c Presumed mechanism of the phenomenon observed in Fig. 2b. Two palindromic sequences in a single-stranded DNA (ssDNA) formed a hairpin structure
at the end-repair step of library preparation. After nicking and partial denaturation, the double-stranded DNA was regenerated during the end-repair step of
library preparation. The mismatched base between two palindromic sequences was defined as a mutation. d The MicroSEC algorithm is based on three
criteria. Filter 1, 3: the distance from the mutation position to the most distant mapped base is distributed over a probabilistically improbable limited range
for any reads. Filter 2: MICR-originated sequencing errors are generated when two palindromic sequences are in the same DNA fragment. Filter 4: The mis-
annealing of ssDNA derived from other distant homologous regions of the genome also creates chimeric reads and artifacts. Dark-red, green, or light-blue
horizontal bars represent sequences of other distant regions of the genome. Chimeric reads with mutated bases were formed.
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More than 90% of mutations were filtered by MicroSEC pipeline
when the mutation coverage was 10–22. A tendency to decrease
could be observed for the mutation filtering rate as the number of
reads with mutations increased (Fig. 4).

We then tested the specificity of MicroSEC by analyzing the
target sequencing data of 23 FF and 33 FFPE breast cancer
samples with a high mean coverage, including 8 sets of matched

FF and FFPE samples from the same patients. Our pipeline
identified 4.0 and 10.7 somatic mutations per sample in the FF
and FFPE samples, respectively (Table 1). All the mutations in the
FF samples passed through the filter, while 3.2 mutations per
sample (30.2%) were filtered out in the FFPE samples. Mutations
passing through the filter tended to have a higher VAF than the
filtered mutations (Supplementary Fig. 1d–f).
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Notably, the MicroSEC did not remove any mutations detected
in matched FF samples (Fig. 5a). Eight mutations were detected in
the frozen samples only, and 42 mutations in both the frozen and
FFPE samples, all of which passed through the MicroSEC filter.
Sixty-five mutations were detected in FFPE samples only, of
which 11 were detected as artifacts. It was necessary to elaborate
that the matched samples were not collected from the exact same
sites. DNA was extracted from frozen specimens of approxi-
mately 3 mm and thinly sliced FFPE specimens. The mutations
found in each site were different due to tumor heterogeneity.
Since frozen specimens consisted of multiple subclones, only
common mutations were detected with VAF > 5%, whereas FFPE
specimens comprised only a small number of subclones,
subclone-specific mutations were thus also detected. The fact
that mutations detected in FFPE samples had greater mutation
coverage than those detected in FF samples supported this theory
(Fig. 5b). This was the reason why 54 unfiltered mutations were
detected in the FFPE samples, which we consider to be true
mutations.

Hyperparameter optimization. We revealed the different dis-
tribution of the rates among low-quality bases, soft-clipped reads,
artifacts from homologous regions, and mutations derived from
hairpin structures in the FF and FFPE samples (Supplementary
Fig. 2). We further validated the filtering hyperparameters and

thresholds. The median insert size of FFPE normal breast
tissue samples for target sequencing was 158 (Table 1). We
counted palindromes in FFPE normal breast samples and frozen
breast tumor samples with three different ranges (150, 200, and
300 bases) to search for palindromes (Supplementary Fig. 3a). No
palindromes were detected in frozen tumor samples. Using
the search range of 150 bases, 430 palindromes were detected.
When the search range was extended to 200 bases, we could
detect 438 palindromes. Interestingly, extending the search range
to 300 bases did not increase the number of detected palin-
dromes. Based on these results, we concluded that the search
range of 200 bases was appropriate. However, all analyses using
any thresholds for Filter 1–4 did not filter out mutations detected
in frozen tumor samples and we could not identify the optimal
thresholds (Supplementary Fig. 3b–d). Further analyses with
more tumor-derived mutations would thus be necessary to
determine the optimal thresholds.

To evaluate the relationship between the mean coverage and
artifact detection rate, we performed random sampling from the
sequences of FFPE normal breast tissue samples and frozen breast
cancer samples. From each library, three random sampling runs
were performed so that the mean coverage of each library was
400, 300, 200, 100, 50, and 30. We calculated the average artifact
detection rate after excluding mutations for which there were no
reads observed. We also varied the P value threshold for Filters 1
and 3 from 10−2 to 10−9 to determine the appropriate threshold

Fig. 3 The details of the MicroSEC filtering criteria. The principle of the algorithm is described with hypothetical reads. a Definition of supporting lengths.
Supporting lengths are defined as the distances from the mutated base to the 5′ or 3′ ends of an individual read (excluding soft-clipped bases). The shorter
supporting length is defined as the shorter one. b Filtering based on biased distribution of supporting lengths. The supporting lengths are calculated only for
the reads with a mutation. A and B indicate the minimum and maximum lengths, respectively. The supporting lengths that the mapping software can
theoretically generate for reads with the mutation are determined. C and D indicate the minimum and maximum values, respectively. E indicates the total
count of reads with mutations. Based on the distribution of supporting lengths in reads without mutations, the probability (p0) that the supporting lengths
are between A and B is calculated (Eq. (1)). c Filtering based on suspected hairpin formation. Based on the putative mechanism of artifact generation during
the end-repair step, the sequence around the mutation is derived from the opposing strand. Sequences of 15 bases containing the mutation are extracted
from each read and mapped to the opposite strand within 200 bases of the neighboring sequence. If a 15-base sequence is mapped without mismatch, the
read is considered to be hairpin-derived. The mutation is considered as an artifact if more than half of the reads are hairpin-derived. ssDNA single-stranded
DNA. d Filtering for distant homologous region-derived artifacts. A G > T artifact in chromosome 19 is shown. Sequences of 40 bases containing the
mutation are extracted from each read. The mutation is considered an artifact if >15% of the 40-base sequences match completely to other regions in the
genome.

Table 1 MicroSEC filtering summary for target deep sequencing.

Normal breast tissue Breast cancer Clinical sequencing

Fresh frozen (N= 53) FFPE (N= 190) Fresh frozen (N= 23) FFPE (N= 33) FFPE (N= 54)

Total reads (in millions) 61.3 (36.6–120.4) 83.5 (37.3–154.8) 60.8 (43.3–114.2) 67.5 (20.0–127.6) 87.8 (38.0–216.0)
Mapped reads (%) 92.2 (89.7–93.7) 93.4 (89.4–96.8) 91.9 (88.7–93.6) 92.3 (89.0–94.3) 90.5 (85.9–92.9)
Unique reads (%) 77.1 (55.9–87.9) 51.1 (32.6–79.8) 76.5 (51.9–84.9) 55.3 (38.6–86.6) 41.1 (17.8–77.2)
Mean coverage 928 (417–1584) 919 (438–1544) 944 (550–1880) 767 (403–1525) 817 (404–1589)
Median insert size (base) 217 (163–312) 158 (117–196) 202 (158–293) 142 (119–173) 135 (104–177)
Somatic mutations 0.3 (0–9) 11.7 (0–117) 4.0 (0–13) 10.7 (2–34) 21.6 (1–135)
Removed by
Filter 1 0 (0–0) 4.4 (0–88) 0 (0–0) 1.0 (0–9) 0.5 (0–13)
Filter 2 0 (0–0) 2.3 (0–30) 0 (0–0) 0.7 (0–4) 0.1 (0–1)
Filter 3 0 (0–0) 3.4 (0–73) 0 (0–0) 0.9 (0–6) 0.6 (0–18)
Filter 4 0 (0–0) 5.3 (0–40) 0 (0–0) 1.8 (0–9) 3.2 (0–90)
Any of the Filters 1–4 0 (0–0) 10.1 (0–113) 0 (0–0) 3.2 (0–15) 3.6 (0–93)

Mutations passing the filter 0.3 (0–9) 1.6 (0–50) 4.0 (0–13) 7.5 (0–33) 18.0 (0–135)
Filtered rate (%) 0 86.0 0 30.2 16.6
CG-to-TG potential artifacts NA 0.1 (0–12) NA 0.2 (0–1) 2.6 (0–37)
Intra ≥10-base homopolymer 0.0 (0–1) 0.7 (0–13) 0.0 (0–0) 0.1 (0–2) 0.1 (0–1)
Remaining mutations 0.3 (0–9) 0.8 (0–38) 4.0 (0–13) 7.1 (0–33) 15.3 (0–128)

Data are shown as mean (range).
NA not applicable, FFPE formalin fixed and paraffin embedded.
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(Fig. 6). The artifact detection rate decreased, and the number of
false positives increased when the average depth of coverage was
<100. In addition, false positives were seen in frozen tumor
samples when the P value threshold was >10−5, indicating that
the threshold should be ≤10−5. Although the threshold could be
10−5, we adopted 10−6 to avoid overfiltering.

Amplicon sequencing. The MicroSEC analysis results were
validated with amplicon-based sequencing that enriches target
genomic regions by PCR. Ninety-seven mutations including
germline mutations and low VAF ones, found in the breast tissue
samples, were examined. The mutations were randomly selected
from 31 FFPE normal breast tissue samples, 12 FFPE breast
tumor samples, 2 FF normal breast tissue samples, and 6 FF
breast tumor samples. In theory, MICR-originated artifacts can-
not occur in amplification-based sequencing because PCR does
not amplify small structures formed by microhomology. Con-
sistent with this prediction, 28 out of 31 mutations that passed
through the MicroSEC filter were detected by amplicon-based
sequencing with a similar level of VAF, whereas 64 out of 65
filtered mutations were not detected by amplicon-based sequen-
cing (Fig. 7 and Supplementary Data 1). With a total of 97
mutations, the sensitivity and specificity of MicroSEC in the
validation study were 97% (95% confidence interval (CI):
82–100%) and 96% (95% CI: 88–99%), respectively (Fisher’s exact
test). Of the four mutations with discordant results, two were CG-
to-TG mutations (BRCA2 p.Arg2520* and ESR1 p.Arg394Cys).
These artifacts arose from deaminated cytosines. The Q5 DNA
polymerase used in the amplicon-based sequencing could not
amplify such degenerated template DNA. NFYA p.Gln155Pro
(VAF 5.4% by target sequencing) was filtered out by MicroSEC
but detected by amplicon-based sequencing at a low frequency of
1.6%. The aligned reads in capture-based sequencing visualized

by Integrative Genomics Viewer suggested that the mutation was
a hairpin-derived artifact. However, it could be a true mutation
(Supplementary Fig. 4a). CENPA p.Leu91Pro, recognized as a
true mutation by MicroSEC, was not detected by amplicon-based
sequencing. Of the 954 reads mapped to the mutated base in
capture-based sequencing, 227 (24%) were of low quality and
failed to call bases, 689 were wild type (T), 47 were C, and 1 was
A (Supplementary Fig. 4b). We considered that the mutation
could be an artifact caused by miscalls due to low-quality reads.

Application of MicroSEC to clinical sequencing and whole-
exome sequencing. We further examined the utility of MicroSEC
in the clinical setting by re-analyzing the sequencing data of 54
clinical FFPE samples with a high mean coverage (Table 1)2. At
first, 21.6 somatic mutations per sample were detected by the
conventional mutation caller pipeline. MicroSEC detected 3.6
artifacts per sample (16.6%), including 5 unique pathogenic
mutations (Supplementary Table 2). Since annotating artifacts as
pathogenic can compromise the reliability of the clinical
sequencing, the post hoc filtering with MicroSEC is of great value.

We investigated the applicability of MicroSEC not only for
target deep sequencing but also for whole-exome sequencing with
a relatively lower coverage. Whole-exome sequencing data of 14
matched FF and FFPE samples of primary cancer (12 colorectal
adenocarcinoma and 2 oral squamous cell carcinoma) was
performed with a mean coverage of 199 and 255, respectively
(Supplementary Table 3). Our mutation caller identified 107.0
and 118.2 mutations per sample in the FF and FFPE samples,
respectively. Only 0.6 mutations per sample (0.5%) detected in
the FF samples were filtered by the filter, while 10.3 mutations per
sample (8.7%) were filtered out in the FFPE samples (Fig. 5c).
This result suggests that the ssDNA-derived artifacts are also
present in the sequencing data of frozen samples. CG-to-TG

Fig. 4 The relationship between the mutation depth and filtering efficiency in the 190 FFPE normal breast tissue samples. The histograms of mutation
depth for total mutations (gray) and mutation passing the MicroSEC filter (blue) are shown. Most of the called mutations are considered to be artifacts as
normal breast tissues have little or no mutations. The mutation filtering rate (black line) is high at low depth and >90% of mutations are filtered by
MicroSEC pipeline when the mutation coverage is 10–22. There is a tendency for the percentage of reads that passed the filter to increase as the number of
reads with mutations increases. Local regression curve of the filtering rate is shown as a red line. The gray bars represent the number of total mutations,
and the purple bars represent the number of mutations that passed through the filter. FFPE formalin fixed and paraffin embedded.
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mutations were detected at a high rate of 38.7% of the total
somatic mutations (45.8 mutations per sample), and thus most of
these were possible artifacts. The ratio of CG-to-TG mutations to
MicroSEC-filtered artifacts was 4.45:1, but this ratio might vary
depending on the sample conditions and analysis methods. With
sufficient coverage, MicroSEC was considered to be applicable for
whole-exome sequencing.

Conclusions
Most other existing error detection algorithms utilize strand bias,
k-mer frequency, suffix trie, multiple sequence alignment, and
statistical error models12, 13. The application of these algorithms
is limited because they are not highly accurate. These methods

disregard detailed genomic information, such as the local palin-
dromic sequences and the position of mutations within reads. For
example, Strand Orientation Bias Detector (SOBDetector)17, the
most recent filtering algorithm for FFPE sequencing artifacts, was
applied to sequence data of frozen breast tumor samples and
FFPE normal breast tissue samples (Fig. 8). Based on the
assumption that formalin modification occurs only in one of the
strands, SOBDetector detects artifacts based on the strand bias of
the detected mutations, and the creators claim that it shows a
state-of-the-art performance that can predict artifacts with 90%
accuracy. Both SOBDetector and MicroSEC identified all
74 single-nucleotide variants (SNVs) detected in frozen breast
tumor samples as true mutations. SOBDetector was able to detect
only 3 of the 1351 SNVs detected in FFPE normal breast tissue
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Fig. 5 The mutations detected in matching FF and FFPE samples. a The somatic mutations detected in the target sequencing of matching sets of frozen
(blue) and FFPE (peach) breast cancer samples from eight patients. Eleven mutations found in only FFPE samples were filtered by MicroSEC (green). All
mutations found in fresh frozen samples passed through the MicroSEC filter. b Kernel density plots and box plots of mutation depths in matched FFPE and
fresh frozen breast cancer samples. The width of each kernel density plot showed the approximate frequency of the data points. In target sequencing,
mutations detected in FFPE samples showed higher mutation depths than those detected in frozen samples. c The somatic mutations detected in the
whole-exome sequencing of matching sets of frozen (blue) and FFPE (peach) primary cancer samples from 14 patients. The 123 mutations (21.0%) found
in only FFPE samples were filtered by MicroSEC (green). Eight mutations (0.5%) found in fresh frozen samples were filtered by the MicroSEC filter. FFPE
formalin fixed and paraffin embedded.
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samples as artifacts, whereas MicroSEC detected 1199 SNVs as
artifacts. A few pipelines are constructed to remove the chimeric
reads generated by PCR, only during the sequencing of about
1.5 kilobase pairs of the 16S ribosomal RNA14, 18, 19.

In contrast, MicroSEC utilizes such overlooked information.
MicroSEC’s focus on the distribution of mutations in each read
enables it to remove only FFPE artifacts without eliminating the
true mutations. The effectiveness of MicroSEC is similar to the
experimental reduction of FFPE artifacts by degrading ssDNA
with S1 nuclease6. MicroSEC is useful in applications in target
deep sequencing or whole-exome sequencing data with very high
coverage. A caveat of MicroSEC lies in its basis on probability
calculations; therefore, it requires a high number of reads sup-
porting each mutation. Overall, our pipeline will increase the
reliability of the studies that use FFPE samples, thus advancing
cancer research substantially. Our algorithm can also help to
convey the correct information to cancer patients who underwent
clinical sequencing, resulting in the improvement of quality and
precision of their treatments.

Methods
Specimens. The study cohort comprised 26 patients with breast cancer who
underwent tumor resection or prophylactic surgery because of hereditary breast
and ovarian cancer syndrome at St. Luke’s International Hospital between 2010
and 2020 and 14 patients with primary cancer at National Cancer Center Hospital.
A pathologist (N.K.) specializing in breast cancer reviewed the histological features
and location of the tumors. Fifty-six FF samples of normal breast tissue were
obtained from 14 patients, and 211 FFPE samples were obtained from 26 patients.
Twenty-three FF breast cancer samples were obtained from 9 patients, and

37 FFPE samples were obtained from 11 patients, including matching FF and FFPE
samples from 8 patients. We also obtained 14 matched FF and FFPE primary
cancer samples from 12 colorectal adenocarcinoma patients and 2 oral squamous
cell carcinoma patients. The surgeries were performed between 2012 and 2019.
Tissue samples were provided by the National Cancer Center Biobank, Japan. The
FFPE specimens were fixed in 10% neutral-buffered formalin for 15–72 h and then
embedded in paraffin blocks. All FFPE specimens had been stored at room tem-
perature for at least 6 months before DNA extraction. Blood samples were obtained
from all the patients as a source of matching normal DNA. The study protocol was
approved by the Ethics Committees of St Luke’s International Hospital, National
Cancer Center Hospital, and the National Cancer Center Research Institute.
Written informed consent was obtained from all the participants.

Capture-based panel sequencing and whole-exome sequencing. Breast samples
were subjected to capture-based panel sequencing, and primary cancer samples
were subjected to whole-exome sequencing. Genomic DNA was isolated from FF
or blood samples using QIAamp DNA Mini Kits (Qiagen, Germany) or FFPE
samples using GeneRead DNA FFPE Kits (Qiagen, Germany). Then uracil DNA
glycosylase treatment was performed for FFPE samples to remove C-to-T artifacts.
Lastly, 500 or 50 ng of genomic DNA was subjected to target fragment enrichment
using SureSelectXT Custom kits (Agilent Technologies, USA) or Twist Custom
Panels (Twist Bioscience, USA) for capture-based panel sequencing, respectively.
Libraries for whole-exome sequencing were generated from genomic DNA (50 ng)
using the Twist Library Preparation EF kit and Twist Universal adapter system
(Twist Bioscience). Enrichment of exonic fragments was performed by using Twist
Human Comprehensive Exome Panel kit and Twist Fast Hybridization and wash
kit (Twist Bioscience).

Custom-made probes were designed to hybridize and capture the target genes
listed in the Todai OncoPanel (TOP)2. Custom-made probes for the panel
hybridized and captured the genomic DNA of the target exons of 478 cancer-
related genes. Because MGI sequencing platforms utilized single-stranded circular
DNA libraries, adapter conversion PCR amplification was performed before
sequencing. Double-stranded linear DNA libraries for Illumina sequencer were

Fig. 7 Mutation validation by amplicon-based sequencing. The MicroSEC analysis results were validated with amplicon-based sequencing that enriches
target genomic regions by PCR. Ninety-seven mutations were randomly selected from 31 FFPE normal breast tissue samples, 12 FFPE breast tumor samples,
2 fresh frozen normal breast tissue samples, and 6 fresh frozen breast tumor samples. Each shape shows the variant allele frequencies (VAFs) in amplicon-
based sequencing and capture-based sequencing for a specific mutation detected in a sample. The mutations that passed through the MicroSEC filter were
detected with a similar level of VAF by both capture-based sequencing and amplicon-based sequencing (blue), with the exception of a CENPAmutation. Of
the five potential CG-to-TG artifacts (red), two mutations in ESR1 or BRCA2 were not amplified by amplicon-based sequencing. Filtered out mutations were
not detected by amplicon-based sequencing (green), with the exception of a NFYA mutation.
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converted to single-stranded circular DNA libraries for MGI sequencer with the
MGIEasy Universal Library Conversion Kit (MGI Technologies, China). A library’s
quantity and quality were assessed with a Qubit 2.0 Fluorometer (Thermo Fisher
Scientific, USA) and the Agilent 2200 TapeStation System (Agilent Technologies,
USA). The massive parallel sequencing of the isolated fragments with 124–151 base
pair read lengths was performed using the HiSeq 2500 System, NovaSeq 6000
System (Illumina, USA), or DNBSEQ-G400 sequencer (MGI Technologies, China).
Samples with an insufficient mean coverage of <400 were excluded (n= 28, 8.6%)
in capture-based panel sequencing.

Amplicon-based sequencing. Ninety-seven mutations were randomly selected so
that the ratio of true mutations to artifacts predicted by MicroSEC was approxi-
mately 1:2. The mutations were derived from 31 FFPE normal breast tissue sam-
ples, 12 FFPE breast tumor samples, 2 FF normal breast tissue samples, and 6 FF
breast tumor samples. The genomic regions of 101–156 bases around a mutation
were amplified by PCR using the NEB Q5 Hot Start HiFi PCR Master Mix (New
England BioLabs, USA) and appropriate primer sets (Supplementary Data 1). PCR
products were purified using Agencourt AMPure XP beads (Beckman Coulter,
USA) and subjected to library preparation with the NEBNext Ultra II DNA Library
Prep Kit for Illumina (New England BioLabs, USA). The libraries were sequenced
to generate 150 base paired-end reads using the MiSeq system (Illumina, USA). If
the VAF of a mutation by amplicon-based sequencing was <30% of the VAF of the

mutation by capture-based sequencing, we determined that the mutation was
an artifact.

Somatic mutation calls. Paired-end reads were independently aligned to the
human reference genome (University of California, Santa Cruz Genome Browser
assembly ID: hg38) using Burrows-Wheeler Aligner (v0.7.17)20 and Bowtie2
(v2.1.0)21. Potential PCR duplicates were removed with SAMtools (v1.9)22. Since a
single algorithm might fail to detect important mutations, the union of somatic
mutations identified using MuTect2 (GATK v4.1.3.0)23, VarScan2 (v2.4.3)16, and
our in-house pipeline was used for the analysis. Somatic mutations in each sample
were determined by comparison with sequence data from normal blood from the
same individuals.

Mutations were discarded if the read depth was <100 base pairs or the number
of mutation-supporting reads was <10 or VAF was <5%. Mutations were also
eliminated if the reads were supported by only one strand of the chromosome,
observed in normal human genomes in the 1000 Genomes Project dataset24 with a
frequency >1% or in our in-house database, located outside the 3.4 megabase TOP
target region, or located at simple repeat sequences downloaded from the Tandem
Repeats Database (https://tandem.bu.edu/cgi-bin/trdb/trdb.exe)25, 26. In addition,
the mutations were removed if a homopolymer consisting of >14 bases was present
within 20 bases around the mutation; or >10% of the bases within the mutation
supporting reads had a Phred quality score of <Q18. The mapped reads and called
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Fig. 8 Filtering efficiency of SOBDetector and MicroSEC. a The single-nucleotide variants detected in the frozen breast tumor samples were subjected to
SOBDetector and MicroSEC. All 74 variants passed through both the filters. b The single-nucleotide variants detected in the FFPE normal breast tissue
samples were subjected to SOBDetector and MicroSEC. Of the 1351variants, only 3 variants were filtered out by SOBDetector, whereas MicroSEC detected
1199 variants as possible artifacts. FFPE formalin fixed and paraffin embedded.
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mutations were visualized and manually checked with the Integrative Genomics
Viewer (v2.4.10)27.

MicroSEC pipeline. MicroSEC (v1.2.8) is a filtering pipeline written in R language
designed to discover MICR-derived sequencing errors in FFPE samples. It detects
local palindromic sequences, the uneven distribution of mutated bases within each
read, and the pseudo-mutations introduced by distant homologous regions.

The workflow of MicroSEC in this study was composed of several steps. First,
the positions of the mutated bases were detected with the matchPattern function
from the Biostrings package (v2.54.0). Second, the adapter sequence at the 3′ end of
each read was trimmed with the trimLRPatterns function from the Biostrings
package with the maximum mismatch rate of 10%, so as to analyze libraries that
did not perform adapter trimming in the quality check step. Then, the distance
from the altered base to the read’s effective ends was calculated based on the
Compact Idiosyncratic Gapped Alignment Report (CIGAR) strings of the
alignment results (see “Supporting length analysis”). Next, the hairpin structure-
induced chimeric reads were detected (see “Hairpin structure detection”).
Afterward, the entire genome was searched for regions that were homologous to
the sequence around the mutation using the countPDict function from the
Biostrings package (see “Homologous region detection”). Lastly, the above results
were combined to construct the MicroSEC filtering pipeline. The results of
MicroSEC’s filtering of the somatic mutations in breast tissue samples and clinical
sequencing samples were provided as Supplementary Data 1.

Supporting length analysis. It is essential to identify the uneven distribution of
the mutations in the mutation-supporting reads for discriminating between the
MICR-derived errors and true mutations. Here we have introduced the concept of
support lengths, which are the base lengths from the mutated bases (excluding the
mutated bases) to the furthest mapped bases in each read, based on the CIGAR
strings in BAM files (Fig. 3). When a mutation is a substitution of a number (N)
of nucleotides, and the read length is another number (L) of nucleotides, the 3′- or
5′-supporting lengths are distributed between zero and L−N. When a mutation is
an N-nucleotide deletion or insertion, the possibility of the mutation being the part
of a repeated sequence should be considered, because the mutation-supporting
reads must contain all the repetitive sequence to determine the presence or absence
of small insertions/deletions (indels).

Furthermore, we need to consider the penalties by Burrows–Wheeler Aligner
for mapping. Since the penalty due to an N-base mutation is N+ 6, the soft-
clipping penalty is 5, and the point for mapped M bases is M, a sequence
supporting the mutation would be soft-clipped if there are no more than N+ 1
matching sequences outside the gap (Supplementary Fig. 5a). Given the 5′ and
3′ repetitive sequences around the mutation of lengths R5′ and R3′, the supporting
lengths can be distributed between max(R3′ or 5′, N+ 1) and L−max(R5′ or 3′,
N+ 1) for deletions or between max(R3′ or 5′, N+ 1) and L−N−max(R5′ or 3′,
N+ 1) for insertions, with max(X, Y) denoting the larger value of X and Y
(Supplementary Fig. 5b).

We also have introduced the concept of the shorter support length, which is the
shorter of the 3′- and 5′-supporting lengths in each read. The theoretical
distributions are between zero and [(L−N)/2], between min(max(R3′, N+ 1),
max(R5′, N+ 1)) and [L/2], and between min(max(R3′, N+ 1), max(R5′, N+ 1))
and [(L−N)/2], for substitutions, deletions, and insertions, respectively. [X]
represents the greatest integer ≤X, with min(X, Y) denoting the smaller value of X
and Y.

Suppose the actual supporting length distribution is between A and B, the
theoretical distribution is between C and D, and the coverage depth of the
mutation-supporting reads is E. In that case, the probability p is calculated based
on the multinomial distribution by the following equations:

p ¼ ∑
B

m¼A
f ðmÞ= ∑

D

n¼C
f ðnÞ

� �E

ð1Þ

f xð Þ ¼ ½The number of reads of which the supporting length is x:� ð2Þ

We regard mutations with p < 10−6 as errors in principle. During deep
sequencing, however, p becomes too small with large E, leading to the overfiltering
of the mutations. Thus, the filter is not applied to the mutations if B− A+ 1 is
>75% of D− C+ 1 or ∑m¼B

m¼A f ðmÞ is >75% of ∑n¼D
n¼C f ðnÞ.

When multiple mutations are close to each other, the minimum required
supporting length will increase because of the cumulative mismatch penalties of the
mutations. Overfiltering can be avoided by fixing the minimum supporting length
to zero if there are more than three mismatched bases in the ten bases surrounding
the mutation.

Hairpin structure detection. A sequence of at least 15 consecutive bases, with the
mutated bases at the center, was extracted from each read. If the sequence was
present on the opposite strand and within 200 bases of the neighboring sequence,
the mutation was suspected to be derived from a hairpin structure. If >50% of the
reads had such sequences, the mutation would be considered an error.

Homologous region detection. We extracted a sequence comprising the mutated
bases and the surrounding repetitive sequences if available from each read. Four
upstream or downstream bases were added to that sequence, and a sequence
further from the sequence with the mutation was added on the opposite side to
create 2 sequences with a total of 40 bases. We searched the entire genome for
regions matching exactly to one of the two sequences. If >15% of the reads had
such homologous sequences, the mutation would be considered an artifact.

Random sampling. From the library obtained by capture-based sequencing of each
sample, random sampling was performed 3 times each to obtain average coverages
of 400, 300, 200, 100, 50, and 30 using SAMtools. The artifact detection rate was
calculated as the average of the results of the three random sampling.

SOBDetector. SOBDetector (v1.0.2) was applied to 74 SNVs detected in frozen
breast tumor samples and 1351 SNVs were detected in FFPE normal breast tissue
samples with default settings.

Statistics and reproducibility. Statistical analyses were performed with R version
4.0.5. The local regression curve in Fig. 4 and kernel density plots in Fig. 5b were
drawn by ggplot2 package version 3.3.3. Sensitivity and specificity of MicroSEC was
estimated with epiR package version 2.0.19.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data underlying all the figures and tables in the manuscript are available in
Supplementary Data 1 and Supplementary Data 2. We have deposited the raw
sequencing data of the breast tissue samples and primary cancer samples examined in
this study under the accession number JGAS000368 and JGAS000377, respectively, in the
Japanese Genotype-Phenotype Archive (http://trace.ddbj.nig.ac.jp/jga) hosted by the
DNA Data Bank of Japan. The target sequencing data of 54 cancer specimens are
available for download at the Japanese Genotype-Phenotype Archive under the accession
number JGAS000164. All other data are available from the corresponding author on
reasonable request.

Code availability
All the source code written in R for MicroSEC is publicly available at Zenodo28 and
https://github.com/MANO-B/MicroSEC.
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