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Mutant alleles differentially shape fitness and other
complex traits in cattle
Ruidong Xiang 1,2✉, Ed J. Breen2, Sunduimijid Bolormaa2, Christy J. Vander Jagt2, Amanda J. Chamberlain 2,

Iona M. Macleod2 & Michael E. Goddard1,2

Mutant alleles (MAs) that have been classically recognised have large effects on phenotype

and tend to be deleterious to traits and fitness. Is this the case for mutations with small

effects? We infer MAs for 8 million sequence variants in 113k cattle and quantify the effects

of MA on 37 complex traits. Heterozygosity for variants at genomic sites conserved across

100 vertebrate species increase fertility, stature, and milk production, positively associating

these traits with fitness. MAs decrease stature and fat and protein concentration in milk, but

increase gestation length and somatic cell count in milk (the latter indicative of mastitis).

However, the frequency of MAs decreasing stature and fat and protein concentration,

increasing gestation length and somatic cell count were lower than the frequency of MAs

with the opposite effect. These results suggest bias in the mutations direction of effect (e.g.

towards reduced protein in milk), but selection operating to reduce the frequency of these

MAs. Taken together, our results imply two classes of genomic sites subject to long-term

selection: sites conserved across vertebrates show hybrid vigour while sites subject to less

long-term selection show a bias in mutation towards undesirable alleles.
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Mutant alleles (MAs) that have been classically recognised
tend to largely decrease fitness, decrease fitness-related
traits and be partially recessive1–3. However, the

majority of the genetic variance in complex traits is due to
mutations with small effects. Do these small-effect mutations
show the same characteristics as those classical large-effect
mutations? A study in Escherichia coli showed that mutations
with small effects on fitness tend to be deleterious to protein
function4. However, how mutations affect complex traits such as
body size, health and fertility is unknown.

A better understanding of the consequence of mutations not
only updates scientific knowledge but also has practical implica-
tions. Domestic cattle support humans by providing food, labour,
clothing material and transportation. Today, there are over 4
billion cattle across the world and over ~900 million tonnes of
dairy products have been produced annually for human
consumption5. Genomic selection, which is widely used in animal
breeding6, has been demonstrated to be enhanced by fitting
variants with biological priors7,8. Therefore, it may be an
advantage to also know a priori whether mutations are more
likely to increase or decrease traits of interest.

In particular, if a trait is related to fitness, one might expect
mutations to be deleterious2,9. Therefore, the first objective of this
study is to determine whether mutations, defined as the non-
ancestral allele (also known as derived alleles) at segregating sites,
tend to increase or decrease individual complex traits and whe-
ther this depends on the trait’s association with fitness.

Traits that are related to fitness typically show inbreeding
depression and heterosis caused by directional dominance. That
is, fitness decreases with increased inbreeding due to increased
homozygosity at loci with recessive deleterious alleles10. Con-
versely, fitness generally increases with heterozygosity11. There-
fore, directional dominance can be used to link traits to fitness.
Here we introduce a test for directional dominance on traits of
cattle by estimating the heterozygosity at genomic sites and use
this method to identify traits that are associated with fitness.
Then, we classify traits showing directional dominance as ‘fitness-
related traits’.

A likely cause of directional dominance is that mutations tend
to be deleterious and partially recessive. However, not all sites in
the genome affecting a trait may show this pattern. Our second
objective was to test the hypothesis that sites, where the same
allele has been conserved across vertebrate evolution, are the most
likely to show directional dominance. Therefore, we consider
conserved sites and other polymorphic sites in this analysis.

Cattle present a unique opportunity for studying the effects of
mutation. The cattle family diverged from other artiodactyls up to
30 million years ago12. Modern cattle are derived from at least
two different subspecies of wild aurochs, i.e. Bos primigenius
primigenius (Eurasian aurochs) and Bos primigenius namadicus
(Indian aurochs), which diverged up to 0.5 million years ago13–20.
Domestication of Bos p. primigenius led to the humpless Bos
taurus subspecies, which has evolved some highly productive
breeds for agriculture, such as the Holstein breed with superior
milk productivity. Besides natural selection, dairy cattle breeds
experienced very recent and intensive selection for milk pro-
duction traits21,22 and stature23. Domestication of Bos p. nama-
dicus gave rise to the humped Bos indicus subspecies which
evolved breeds with strong resistance to hot climates, such as
Brahman and Gir cattle.

In the present study, we use yak, sheep and camel as outgroup
species to assign cattle ancestral alleles for 8 M sequence variants
(at 8 M genomic sites). For each of these variants, the alternative
to the ancestral allele is the MA. We estimate the effects of the
genotypes based on the MA at these 8M variable sites on 37 traits
of 113k cattle from 4 breeds. We also estimate the collective effect

of heterozygosity on these traits using either conserved sites or all
genomic sites.

If MAs decrease fitness we expect selection to reduce their
allele frequency compared with MAs that either have no effect or
increase fitness. Therefore, we compared the allele frequency of
MAs that increased and decreased each trait. We expanded the
analysis of MA frequency to additional breeds of ancient and
modern cattle from the 1000 Bull Genomes database24,25, which
provided validation of our results. Additional analyses of MAs
with strong effects on milk production traits26,27 suggested that
the direction of phenotypic effects of these MAs correlates with
their direction of effects on the expression of genes in milk
cells4,25.

Results
Directional dominance at sites conserved across 100 vertebrate
species. To identify traits related to fitness, we have introduced a
method to estimate the effect of heterozygosity on 37 traits
(described in Supplementary Table 1) recorded in over 100k
animals. In total, there were 16,035,443 imputed sequence var-
iants (at 16,035,443 genomic sites) with imputation accuracy
R2 > 0.4 and the minor allele frequency (MAF) > 0.005 available
for variant–trait association analysis. Approximately half of these
could be assigned with ancestral alleles and this subset was used
for analyses related to MAs (described later). For the analysis of
the effect of heterozygosity, we fitted covariates of: (1) the average
heterozygosity of sequence variants at 317,279 genomic sites
conserved across 100 vertebrate species (H0

consj
) and (2) the het-

erozygosity from variants at the remaining 15,718,164 non-
conserved sites (H0

non-consj ) simultaneously (see ‘Methods’). We

observed a significant effect of heterozygosity at conserved sites
for the yield of protein (Prot), fat (Fat) and milk (Milk), survival
(Surv), fertility performance (Fert), stature (Stat) and angularity
(related to slimness and milk yield) (Fig. 1 and Supplementary
Fig. 1). For all these traits, heterozygosity at the remaining non-
conserved sites (H0

non-consj ) was not significant when fitted toge-

ther with H0
consj

. This directional dominance implies that milk

production, fertility, survival and stature showed inbreeding
depression and heterosis. Therefore, we classified them as fitness-
related traits and this directional dominance for these traits was

t value (beta/se) of fixed effects

Fig. 1 Directional dominance at conserved sites (H’) for traits of 104k
cows. The beta values and standard errors for each trait were generated
using a mixed linear model, fitting a covariate representing H’ from 317,279
conserved sites (left panel) and another covariate representing H’ from the
remaining 15,718,164 non-conserved sites (right panel) together with other
fixed effects (e.g. breed). Blue dashed lines indicate t value of −1.96 and
1.96 commonly used to indicate the significance.
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predominantly explained by genomic sites conserved across ver-
tebrate species. To be conserved across vertebrate species,
mutations at these sites must be deleterious, implying extremely
long-term consistent selection for the ancestral allele at these
sites.

Assignment of bovine ancestral and MAs. To assign the MAs in
cattle, we first determined the alternative, ancestral alleles using
artiodactyls, including cattle as the focal species (98 global cattle
breeds from the 1000 Bull Genomes Project24,25, Supplementary
Table 2) and yak, sheep and camel as outgroup ancestor species
(Ensembl 46-mammal sequence data). A probabilistic method28 was
used to assign an ancestral allele for each site mappable between 4
artiodactyl species (see ‘Methods’). Out of 42,573,455 equivalent sites
between the 4 species, 39,998,084 sites had the ancestral allele
assigned with high confidence (probability >0.8). We compared our
results with a previous study using different methods29. Of the
1,925,328 sites that were assigned ancestral alleles with high con-
fidence in both studies, 1,904,598 (98.7%) sites agreed. However, we
assigned ancestral alleles with high confidence to ~10 times more
sites than the previous study due to the use of a large sample size and
whole-genome sequence data. The full results are publicly available
at https://melbourne.figshare.com/articles/dataset/The_assignment_
of_cattle_ancestral_alleles/13546472.

Biases in trait effects between ancestral and MAs. We con-
ducted genome-wide association study (GWAS) of 37 traits using
over 16 million imputed sequence variants in bulls (N ~ 9k) and
cows (N ~ 104k) separately (see ‘Methods’). For 7,910,190 var-
iants where the ancestral allele was assigned, we compared the
direction (increase or decrease) of the effect of the MAs on the
trait (Supplementary Figs. 2 and 3). The same comparison was
also performed for variants at the 202,530 out of 317,279 con-
served sites where the ancestral alleles could be assigned. We
focus the description of effects on MAs, but a MA that increased
the trait is identical to an ancestral allele that decreased the trait.

When analysing all variants and the conserved variants only,
for each trait we considered the following three variant categories
for systematic comparison: (1) large-effect variants, i.e. GWAS p
values (pgwas) < 5e−8 where the effect direction agreed in both
sexes; (2) medium-effect variants, i.e. 5e−8 <= pgwas < 5e−5
where the effect direction agreed in both sexes; and (3) small-
effect variants, i.e. 5e−5 <= pgwas < 0.05 where the effect direction
agreed in both sexes. Here the effect size refers to the amount of
variance explained by variants which is inversely related to the p
value. We used different effect sizes because mutations of small
and large effects may be different in their direction of effect.
Selecting variants that have the same effect direction between
different GWAS populations30, such as bulls and cows, helped to
eliminate variants with spurious trait associations from the
comparison. Based on a previous method30, the True Discovery
Rate by Effect Direction (TDRed) of GWAS was calculated
between the two sexes across 37 analysed traits for the small-,
medium- and large-effect variants resulting in scores of 0.8, 0.98
and 0.99, respectively. On average, each variant from the large,
medium and small-effect category explained 0.31% (±0.043%),
0.07% (±0.009%) and 0.015% (±0.0004%) of the variance in cow
traits, respectively (Supplementary Table 3).

Based on GWAS results of each trait, we calculated the ratio of
the number of variants where the MA increased the trait (positive
effect) to the number of variants where the MA decreased the
trait (negative effect). Across 37 traits and the three effect-size
groups, MAs showed diverse trait effect patterns (Supplementary
Fig. 3). Results observed from GWAS were confirmed by BayesR
analysis31, which jointly fitted on average 4.3 million variants per

trait (see ‘Methods’ and Supplementary Fig. 3). Based on jointly
estimated effects for a given set of variants, the significance of the
effect direction bias was tested using Kolmogorov–Smirnov to
estimate the p value (pks) of the difference in the effect
distribution between ancestral and MAs (see ‘Methods’). We also
tested the significance of bias using linkage disequilibrium (LD)-
clumped (r2 < 0.3)32 variants to calculate the standard error
(Supplementary Fig. 4).

In addition, we checked the direction of effects of MAs that had
large positive effects and large negative effects on protein yield, fat
yield, milk yield, protein% and fat% on the expression of genes
within ±1Mb of these MAs (cis expression quantitative trait locus
(eQTL) genes, see ‘Methods’) in milk cells26,27. For four out of
five sets of variants where the MA decreased the trait, we found
the MA tended to decrease the expression of cis eQTL genes. For
another four out of five sets of variants where MAs increased the
trait, the MA tended to increase the expression of cis eQTL genes
(Supplementary Table 4). These results suggest a correlation
between the direction of effects of MAs on milk production traits
and the expression of genes in milk cells.

In the following text, we focus on (1) MAs within the large-
and small-effect categories for milk production traits as these two
sets of MAs showed distinct effect direction patterns (Fig. 2a, b),
and (2) MAs associated with other traits, including those with
medium or small effects on somatic cell count (Scc, indicative of
mastitis, medium effect), survival (Surv, small effect), fertility
(Fert, frequency of pregnancy, small effect), gestation length (Gl,
medium effect), temperament (Temp, docility, small effect) and
stature (Stat, medium effect) (Fig. 2a, b).

The classical model1–3 predicts that the majority of MAs, or
mutations, are deleterious or slightly deleterious. In our study,
MAs consistently showed biases towards decreasing protein and
fat concentration (Fig. 2a, b and Supplementary Figs. 3 and 4),
docility and stature and towards increasing somatic cell count (an
indicator of mastitis) and gestation length. Among these traits,
only stature showed a significant effect of heterozygosity. For milk
yield and protein yield, both of which were classified as fitness-
related traits (Fig. 1), the bias in the direction of MA depends on
the size of the MA effect. Large-effect MAs tended to decrease
milk and protein yield whereas small-effect MAs tended to
increase them. A possible explanation is that mutation seldom has
a large positive effect on milk protein yield or fertility but small
positive effect mutations occur and are increased in frequency by
natural or artificial selection.

Also, there was a slight majority of small-effect MAs which
tended to increase fertility and survival, both of which were
positively related to fitness (Fig. 1). The effects of these sets of
MAs is partially due to pleiotropy, i.e. the effect of these MAs on
multiple traits (Supplementary Data 1). For instance, while small-
effect MAs increasing milk yield decreased fat yield, protein% and
fat%, they also increased protein yield. Also, while small-effect
MAs increasing fertility increased gestation length, they also
increased stature.

The simplest explanation for the bias in the direction of MA
effects is that it is due to a bias in the direction of mutation. For
instance, that mutation more often leads to a decrease in fat%
rather than an increase. However, it is also possible that
mutations that decrease fat% are selected and therefore more
likely to be discovered than mutations that increase fat%. Below
we exclude this possibility by comparing the allele frequency at
variants where the MA increased or decreased the trait.

Allele frequency of MAs in modern and ancient cattle. Across
all variable sites, the allele frequency of MAs was lower than the
allele frequency of ancestral alleles (Supplementary Fig. 5). Also,
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the frequency of MAs at conserved sites (0.27) was lower than the
frequency of MAs across all sites (0.32). This is consistent with
selection for the ancestral allele which is necessary to maintain
conservation of the same allele across vertebrates.

We grouped variants based on their MA reducing (MA−) or
increasing the trait (MA+) and compared their allele frequency
in over 110k Holstein, Jersey, crossbreds and Australian Red bulls
and cows (Fig. 3a, b). To account for LD, we estimated the error
of MA frequency based on LD-clumped (r2 < 0.3)32 variants. As
an external validation, we also considered this analysis in a
selection of 7 subspecies/breeds of 1720 ancient and modern
cattle from the 1000 Bull Genomes Project24,25 (Fig. 3c, d).

For fat%, protein%, docility and stature MAs that increased the
trait had higher allele frequency than MAs that decreased the
trait. For somatic cell count and gestation length, the reverse was
true. That is, MAs increasing somatic cell count and gestation
length had lower allele frequency than MAs that decreased the
trait (Fig. 3b, d). Thus, although MAs more commonly decreased
fat% than increased it, the allele frequency was higher at sites
where the MAs increased fat%. This implies that selection has
acted against MAs that decreased fat% or favoured MAs that
increased fat%. Consequently, the higher incidence of MAs that
decreased fat% cannot be due to selection favouring them but
must be due to the mutation more often resulting in an allele that
decreased fat% than increased it. Comparing results in Figs. 2 and
3 shows that this is the usual pattern—the more common
direction of effects of mutation generated alleles that were
selected against and hence had a reduced allele frequency.

For other traits, the results were less clear-cut. For milk yield,
the majority of MAs of large effect tended to decrease the trait
(Fig. 2b). Interestingly, these large-effect milk-decreasing MAs,
which were deleterious, had a higher frequency than those MAs
increasing milk yield (Fig. 3a, c). On the other hand, the majority
of MAs of small effect tended to increase milk yield (Fig. 2b). Yet,
these small-effect MAs that increased milk yield were at a lower
frequency than MAs that decreased milk yield (Fig. 3a, c). Note

that milk yield is negatively correlated with fat% and protein%
(r=−0.83 and −0.78, respectively).

Selection of trait-associated MAs in modern and ancient cattle.
The above results for MA frequency at trait-associated variants
imply selection. The selection could have been consistent across
breeds which would limit the divergence of allele frequency
between breeds or it could have been different between breeds
leading to divergence in allele frequency. We compared the
average of Wright’s fixation index (FST), for MA+ variants and
MA− variants calculated using dairy cattle (Fig. 4a, b) and
ancient and modern cattle (Fig. 4c, d). To account for LD, we
estimated the error of FST based on LD-clumped (r2 < 0.3)32

variants.
In general, variants associated with milk production traits

(including somatic cell count, Fig. 4a) showed higher than
average FST among dairy breeds implying divergent selection,
while variants associated with other traits, including survival and
fertility, tended to have below-average FST indicating convergent
selection (Fig. 4b). FST for gestation length was below average
especially for MA+, probably due to selection against mutations
that increased gestation length in all breeds (Fig. 4d).

Among ancient and modern cattle, FST was high for both MA
+ and MA− variants for stature indicating divergent selection for
height (Fig. 4b). The allele frequency of MAs that decreased
height was the least frequent in Holstein cattle and was most
frequent in Tibetan cattle living at high altitudes and Angus cattle
selected for beef production (Fig. 3d). This suggests that the
direction of selection could vary across cattle breeds under
different environmental conditions and/or artificial selection.

Discussion
For some traits (e.g. survival, fertility), we expect that an increase
in the trait leads to an increase in fitness. It is these traits that
typically show heterosis and inbreeding depression due to

Fig. 2 The ratio (y-axis) between the number of variants with mutant alleles increasing the trait (+) and the number of variants with mutant alleles
decreasing the trait (−). GWAS effects of mutant alleles are shown for all variants (a). BayesR joint effects of mutant alleles from the same variants in a
are shown for all variants (b). Pink colour: the majority of variants with mutant alleles tend to increase the trait (taller than the blue-dashed line). Dark grey:
the majority of variants with mutant alleles tend to decrease the trait (shorter than the blue-dashed line). Numbers in bars: total number of variants
significant at the given threshold. Stars: p value for the significance of the difference in the distribution of BayesR effects between ancestral and mutant
alleles, *p < 0.05, **p < 0.01, ***p < 0.001. For somatic cell count (Scc), gestation length (Gl) and stature (Stat), the results are from medium-effect (M)
variants and the full results are shown in Supplementary Fig. 3.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02874-9

4 COMMUNICATIONS BIOLOGY |          (2021) 4:1353 | https://doi.org/10.1038/s42003-021-02874-9 | www.nature.com/commsbio

www.nature.com/commsbio


directional dominance. The simplest explanation for these
observations is that mutations at sites affecting the trait tend to
reduce the trait and be partially recessive. However, our results
show that it was not all sites affecting these traits that showed
directional dominance but only those where the same allele was
highly conserved across vertebrates. This result explains why the
mutations tend to lead to a decrease in the trait—long-term
selection has nearly fixed the favourable allele and so any muta-
tion will cause a decrease in the trait and in fitness. We partially
confirm this explanation by finding that mutations for these traits
(milk and protein yield, stature but not fertility and survival) do
tend to decrease the trait although, for milk and protein yield, it
was only mutations of large effect for which the effects tended to
be negative. This long term selection cannot be directly on traits
involving lactation since the same allele was conserved in verte-
brates other than mammals.

For other traits, we expected that an intermediate value leads to
the highest fitness. For instance, too high or too low a fat% in
milk might be detrimental to the fitness of the mother or the
infant or both. These traits do not typically show inbreeding
depression or heterosis. The fittest allele might vary between
species and environments. Therefore, one might expect that
mutations are equally likely to increase or decrease the trait.
However, that is not what we found: for fat% and protein%
mutations tended to decrease the trait whereas for SCC and
gestation length they tended to increase the trait. We hypothesise

that at some of the genomic sites affecting these traits selection
has been consistent enough in mammals, or at least in cattle so
that mutations cause a decrease in fat% and protein% and an
increase in mastitis or SCC and gestation length (leading to dif-
ficulty calving). This hypothesis was supported by our finding
that selection decreased the allele frequency of these mutations.
This low allele frequency was not only seen in dairy cattle but in
beef breeds and B. indicus breeds.

The findings on individual traits can be unexpected due to
pleiotropy. That is, mutations affect multiple traits. There are
mutations at DGAT1 and GHR loci that increase milk yield but
decrease fat% and protein% (Supplementary Fig. 6). These are
only at appreciable frequency in domesticated cattle, especially
breeds artificially selected for milk volume. Their low allele fre-
quency in other breeds and species suggest that natural selection
acts against the mutation thus increasing fat% and protein% but
decreasing milk yield. Similarly, there is a negative genetic cor-
relation between milk yield and fertility so mutations that
increase milk yield might be favoured despite their negative effect
on fertility. MAs decreasing fertility tended to be most frequent in
the Holstein breed (Fig. 3d), perhaps because these alleles tended
to increase milk yield and stature.

For milk, fat and protein yield, the results differed between
mutations of large and small effects. Mutations with a large effect
on milk protein yield more often decreased protein yield than
increased it perhaps because the physiology supporting milk

Fig. 3 The allele frequency of mutant alleles (MAs) in cattle. The average frequency of variants associated with different traits is shown with standard
error bars based on LD-clumped variants. All variants included the 7.9M variants where mutant alleles were assigned. The red dashed line represents the
frequency of 0.5. In the dairy cattle section (a, b), 90,627 Holstein, 13,465 Jersey, 3358 Australian Red (AusRed) and 4649 crossbreds were used. In the
ancient and modern cattle (c, d), 210 Brahman, 25 Tibetan, 10 Eurasian Aurochs, 242 Simmental, 95 Jersey, 840 Holstein and 287 Angus were used. For b,
d, results for survival (Surv), fertility (Fert) and temperament (Temp) were from small-effect MAs while results for somatic cell count (Scc), gestation
length (Gl) and stature (Stat) were from medium-effect MAs.
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protein synthesis has been optimised in part at least. Mutations
with a small effect on protein yield were almost equally likely to
increase or decrease yield perhaps because natural selection
favours an intermediate level of milk protein yield because too
high a yield drains the cow of nutrients needed for maintenance
and reproduction.

Effects of MAs on phenotypes might be mediated by their
effects on gene expression. Based on cis eQTL data26, we found
that MAs with large effects on milk production traits had direc-
tion of effects that were correlated with their direction of effects
on gene expression in milk cells. This result shows that the effect
direction of MAs on gene expression may also have systematic
biases and this may be related to their effects on phenotypic traits.
Future studies with larger sample size and more tissues for eQTL
mapping may update our understanding of the MA effects on
molecular phenotypes.

The selection which we have observed affecting the frequency
of mutations of positive and negative effect could be both natural
selection acting over a long period before and since the domes-
tication of cattle, and artificial selection acting over the past
10,000 years and, more intensely, over the past ~100 years in
dairy cattle. Artificial selection may differ between breeds and
generate high FST between breeds. For fat%, protein% and stature
at least one class of mutation was more common than random
mutations and the overall FST between breeds tended to be high.
Our analysis also highlighted some specific breeds. For example,
the selection of variants associated with somatic cell count led to

high FST among dairy cattle but low FST in our other breeds.
Holstein cattle have been selected to be tall23 and this is reflected
in the low frequency of MAs decreasing stature in Holstein. On
the other hand, the high frequency of MAs decreasing stature in
Tibetan cattle (Fig. 4d) may be due to its adaptation to high
altitude33.

Although mutation was biased in its effect on some traits, the
bias was small for most traits. That is, mutations decreasing
protein yield were only slightly more common than mutations
that increased protein yield. Also, although conserved sites
explain directional dominance and are enriched for polymorph-
isms affecting complex traits34, they do not explain the majority
of the genetic variance. That is, there are many sites affecting
traits, such as milk yield and stature, at which the allele carried
varies between species implying that the fittest allele varies
depending on the environment and the background genotype of
the species.

The sequence variants associated with a complex trait are not
necessarily causal but likely to be in high LD with the causal
variants. This tends to dilute the signal that might be discovered if
causal variants were used. However, variants in high LD may
share a similar evolutionary history and therefore show some of
the same characteristics. We used BayesR which jointly fitted
variants and LD-clumping to account for LD. However, we
acknowledge that we cannot completely remove the effects of LD
on our results. Therefore, future studies with even larger sample
sizes, e.g. ~1 million, may update our results.

Fig. 4 Selection (average Wright’s fixation index FST) of variants with mutant allele that increases or decreases the trait in dairy cattle and ancient
and modern cattle. The FST is shown as dots with its standard error bars estimated using LD-clumped variants. The blue line represents the FST for 7.9M
variants analysed (0.1 ± 4.3e−05) in dairy cattle in a, b; and FST = 0.157 ± 5e−05 in ancient and modern cattle in c, d). In the dairy cattle section (a, b),
90,627 Holstein, 13,465 Jersey, 3358 Australian Red (AusRed) and 4649 crossbreds were used. In the ancient and modern cattle (c, d), 210 Brahman, 25
Tibetan, 10 Eurasian Aurochs, 242 Simmental, 95 Jersey, 840 Holstein and 287 Angus were used. For b, d, results for survival (Surv), fertility (Fert) and
temperament (Temp) were from small-effect MAs, while results for somatic cell count (Scc), gestation length (Gl) and stature (Stat) were from medium-
effect variants.
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Genomic selection35, used in the breeding of livestock and
crops, estimates the genetic value of individuals for traits of
interest from the alleles they carry at genetic markers, such as
single-nucleotide polymorphisms (SNPs). The equation predict-
ing genetic value uses the effect of each SNP on the trait estimated
in a training population. The best methods treat the SNP effects
as random variables drawn from a prior distribution. To date it
has been assumed that the effects of a mutation are equally likely
to be positive or negative on the trait but, if it was known that one
direction of effect was more likely, this could be built into the
prior distribution resulting in an increase in the accuracy with
which genetic value is predicted.

In conclusion, our results support a hypothesis which provides
a new picture of the effects of mutation and selection on mam-
malian complex traits. Directional dominance, which causes
heterosis and inbreeding depression, is characteristic of loci where
mutations decrease the trait and fitness and this pattern has been
consistent over the evolution of vertebrates. More recent selec-
tion, although not causing directional dominance, leads to a bias
in the direction of mutation because the mutation results in an
allele which is less fit than the ancestral allele and tends to affect a
complex trait in a consistent direction. This hypothesis, if sup-
ported by future research, adds to our understanding of the
evolution of complex traits and has practical value in the artificial
selection of livestock and other species.

Methods
Data preparation for calling bovine ancestral alleles. The assignment of bovine
ancestral alleles was based on a model comparison of alleles from cattle with alleles
from outgroups of yak (Bos grunniens), sheep (Ovis aries) and camel (Camelus
dromedarius). According to the evolutionary relationships reported previously12,
among ruminants, yak is an outgroup species closely related to cattle, while sheep is
less closely related to cattle than yak. Goat is equivalent to sheep in its relationship
to cattle, but we chose sheep in the current study. Camel without a rumen is
distantly related to ruminant cattle, as they are artiodactyls. For the cattle species,
we used whole-genome sequence data of 98 breeds, one individual per breed, from
Run 7 of the 1000 Bull Genomes Project24,25. Only those whole-genome sequence
samples with coverage >10× were selected and if multiple individuals were found
for a breed, the whole-genome sequence sample with the highest coverage was
chosen. Both B. taurus and B. indicus subspecies were included (Supplementary
Table 2). The pre-processing of sequence reads and alignment of sequence data was
done by project partners using the standard 1000 Bull Genomes Project
pipeline25,36. Only BAM files from 1000 Bull Genomes partners are collected and
processed by the consortium. The latest published data from the 1000 Bull Gen-
omes Project (1832 samples) can be found at https://www.ebi.ac.uk/eva/?eva-
study=PRJEB42783. The details of variant calling can be found in ref. 37. Briefly,
Genome Analysis Toolkit (GATK v.3.8)38 was used for variant calling. Variants
from the GATK VQSR (Variant Quality Score Recalibration) 99.90 to 100.00
Tranche for SNP and INDEL were excluded, and Beagle v.4.039 was used to impute
variants with sporadic missing genotypes. Whole-genome sequence data in VCF
format for these 98 cattle, as a subset from the 1000 Bull Genomes Project database,
was generated for further analysis.

For the outgroup species (to determine ancestral alleles), we used whole-
genome sequence data of 46 mammals stored in the Multiple Alignment File
generated by Ensembl EPO pipeline40. The 46-mammal EPO Multiple Alignment
File was downloaded. Then the software WGAbed41 was used to retrieve sequence
data for cattle, yak, sheep and camel in bed file format. Only sites with sequence
data available in at least one outgroup species were kept. Using the cattle
coordinates in the 4-species WGAbed files, the sequence data of the outgroup
species were matched with the 98 cattle. As a result, 42,573,455 sites found in the
98 cattle and in at least one outgroup species were found. Sequence data on these
42,573,455 sites across 4 species were used to determine the bovine ancestral alleles.

Probabilistic determination of bovine ancestral alleles. We used the method
proposed by Keightley et al.28 with the model choice of the Kimura two-parameter
(K2), which accounts for allele frequency of the focal species to determine the
probability of an allele being ancestral at each available site. The method was
implemented in estsfs28 and the K2 model was chosen due to its equivalent
accuracy to other models but better computation efficiency. As described above, the
sequence data of three outgroup species were used. The order of phylogenetic tree
topology was cattle→ yak→ sheep→ camel. As required by the software, allele
counts of A, C, G and T were determined for the focal species (cattle) and for out
species at each available site. For cattle, the total allele count for each site was 196

(98 × 2). For each outgroup species, the total allele count for genome sequences at
each site was up to 1. Missing sequence data in the outgroup species were treated as
0 counts. For each site, estsfs produced a probability (Pancs) of the major allele in
the focal species being ancestral. We then determined alleles which were major at a
site with Pancs > 0.8 or those alleles that were minor at a site with Pancs < 0.2 to be
ancestral. For those sites where the major or minor alleles could not be determined
but the Pancs > 0.8 or <0.2, the cattle allele with the highest frequency in the 3 out
species was assigned ancestral. The rest of the sites were determined as ambiguous
as no clear ancestral alleles could be determined. The detailed results of ancestral
alleles for those 42,573,455 sites across 4 species and the probability of the alleles
being ancestral or ambiguous is publicly available at: https://melbourne.figshare.
com/articles/dataset/The_assignment_of_cattle_ancestral_alleles/13546472.

Sequence variants under conserved sites across 100 vertebrate species. The
variant selection followed previous procedures34. Briefly, conservation was deter-
mined by the criteria of PhastCon score42 >0.9 based on the sequence data of those
100 species. The choice of 0.9 as the cutoff was arbitrary. However, since PhastCons
score ranges from 0 to 1, this cutoff kept relatively highly conserved sites. Also, in a
previous study34, cattle variants from sites with PhastCon score >0.9 were highly
enriched for the heritability of cattle traits (occupying 2% of the genome to explain
up to 42% heritability of traits). The conserved sites were primarily determined
using the human genome coordinates (hg38) and were lifted over to the bovine
genome ARS-UCD1.2 using the LiftOver software43 with a lift-over rate >92%. In
total, 317,279 variants in the current study were assigned as the conserved variants.

Animals and phenotypes for variant–trait association analysis. Data were
collected by farmers and processed by DataGene Australia (http://
www.datagene.com.au/) for the official May 2020 release of National breeding
values. No live animal experimentation was required. DataGene provided the bull
and cow phenotypes as de-regressed breeding values or trait deviations for cows
and daughter trait deviations for bulls (i.e. progeny test data for bulls). DataGene
corrected the phenotypes for herd, year, season and lactation following the pro-
cedures used for routine genetic evaluations in Australian dairy cattle. Phenotype
data included a total of 8,949 bulls and 103,350 cows from DataGene, including
Holstein (6886♂/87,003♀), Jersey (1562♂/13,353♀), cross-breed (36♂/5037♀) and
Australian Red dairy (265♂/3379♀) breeds. In total, 37 traits were studied that
related to milk production, mastitis, fertility, temperament and body conformation
(Supplementary Table 1). Larger trait values of fertility (Fert), ease of birth (Ease),
temperament (Temp), milking speed (MSpeed) and likeability (Like) meant poor
performances in the farmer evaluation of these traits. Therefore, to assist the
interpretability of the study, we have reversed the trait scale so that higher values of
Fert, Ease, Temp, MSpeed and Like indicate increased fertility performance (cal-
ving frequency), labour ease, docility, milking speed and the overall preference as a
dairy cow (Supplementary Table 1). This correction only affected the reported
effect direction of the MA.

Genotype data for association analysis. The genotypes used in the current study
included a total of 16,035,443 imputed bi-allelic sequence variants with
Minimac344,45 imputation accuracy R2 > 0.4 and the MAF > 0.005 in both sexes.
Most bulls were genotyped with a medium-density SNP array (50 K: BovineSNP50
Beadchip, Illumina Inc.) or a high-density SNP array (HD: BovineHD BeadChip,
Illumina Inc.) and most cows were genotyped with a low-density panel of
approximately 6.9k SNPs overlapping with the standard-50K panel. The low-
density genotypes were first imputed to the Standard-50K panel and then all 50 K
genotypes were imputed to the HD panel using Fimpute v334,46. Prior to sequence
imputation, the HD genotypes were converted to forward sequence format. Then
all HD genotypes were imputed to sequence using Minimac3 with Eagle (v2) to
pre-phase genotypes45,47. The reference set for imputation included sequences of
3090 B. taurus animals from Run7 of the 1000 Bull Genomes Project24 aligned to
the ARS-UCD1.2 reference bovine genome25,48. The accuracy of the sequence data
for individual animals in the 1000 Bull Genomes Project is routinely checked
against their own high-density SNP array genotypes and the concordance has been
>95%37. The empirical accuracy of imputation to sequence using the 1000 Bull
Genomes project has been routinely tested for dairy breeds: for example, in Hol-
steins, the average correlation between imputed and real sequence variants was 0.92
to 0.95 using Run5 of the 1000 Bull Genomes project (N= 1577)49. Therefore, we
believe our imputed data are more accurate: first, because the number of reference
animals has almost doubled and second because in our study we impose a Mini-
mac3 R2 filter to remove poorly imputed variants. A Minimac3 R2 threshold of 0.4
was used because our in-house tests demonstrate that this is approximately
equivalent to an empirical imputation accuracy (correlation) of 0.85.

Genome-wide association studies. The above-mentioned traits were analysed
one trait at a time in each sex with linear mixed models using GCTA50:

y ¼ meanþ breedþ bx þ aþ error ð1Þ
where y= vector of phenotypes for bulls or cows, breed= three breeds for bulls,
Holstein, Jersey and Australian Red and four breeds for cows (Holstein, Jersey,
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Australian Red and MIX); bx= regression coefficient b on variant genotypes x;
a= random polygenic effects ~N(0, Gσg2) where G= genomic relatedness matrix
based on all variants and σg2= random polygenic variance; error= the vector of
random residual effects ∼N(0, Iσe2), where I= the identity matrix and σe2 the
residual variance. The purpose of fitting breeds as fixed effects together with the
GRM in the model was to have strong control of the population structure which
may cause spurious associations between variants and phenotype. The construction
of GRM followed the default setting (--make-grm) in GCTA50. In the results of
GWAS (the same for results from BayesR described below), we matched the allele
with which the beta was estimated to the MA. Then this effect is defined as the
effects of the MA. Note that, for a variant, the effect of a MA is identical to −1× the
effect of the ancestral allele.

Bayesian mixture model analysis. In the above-described GWAS, sequence
variants, many of which are in high LD, were analysed one at a time. In order to
assess variant effects and account for LD, we fitted selected variants jointly in
BayesR31. For each trait, variants that showed the same sign between bulls and
cows (regardless of p value) and could be assigned with an ancestral allele were
analysed with BayesR. Across 37 traits, the number of variants analysed ranged
from 3,961,180 to 4,737,492. To reduce the computational burden of BayesR, we
estimated the joint effects of these variants for each trait in bulls. BayesR models
the variant effects as mixture distribution of four normal distributions including a
null distribution, Nð0; 0:0σ2gÞ, and three others: Nð0; 0:0001σ2gÞ, Nð0; 0:001σ2gÞ,
Nð0; 0:01σ2gÞ, where σ2g was the additive genetic variance for the trait. The starting
value of σ2g for each trait was estimated using GREML implemented in MTG251

with a single genomic relationship matrix made of all 16 M sequence variants. The
statistical model used in the single-trait BayesR was:

y ¼ Wv þ Xbþ e ð2Þ
where y was a vector of phenotypic records; W was the design matrix of marker
genotypes; centred and standardised to have a unit variance; v was the vector of
variant effects, distributed as a mixture of the four distributions as described above;
X was the design matrix allocating phenotypes to fixed effects; b was the vector of
fixed effects of breeds; e= vector of residual errors. As a result, the effect v for each
variant jointly estimated with other variants were obtained for further analysis.

The difference in effect distribution between ancestral and MAs. For an
analysed variant, one allele is ancestral and then the other is mutant. If there is a
bias in effect direction in ancestral alleles or MAs in a given set of variants, the
effect distribution of the ancestral and MAs would be different. For example, for a
given set of variants, if their MAs had a bias in effect direction towards increasing
the trait, their ancestral alleles would have a bias in effect direction towards
decreasing the trait. This then would create a difference in effect distribution
between mutant and ancestral alleles. We tested if the distribution of the effect of
ancestral alleles estimated from BayesR was significantly different from that of MAs
using the two-sample Kolmogorov–Smirnov test implemented by ks.test() in R
v3.6.1. The coding was ks.test(a,m) where a was the vector of variant effects based
on the ancestral alleles and m was a vector of variant effects based on the MAs. To
be more conservative, we also tested the significance of biases using LD-clumped
(r2 < 0.3 within 1Mb windows) variants with small, medium and large effects using
default settings in plink1.932.

Heterozygosity of individuals at conserved sites. It is widely accepted that
higher genomic heterozygosity is linked to gene diversity, therefore, fitness.
However, it is not clear at which set of genes or variants heterozygosity is more
related to fitness. Also, the simple estimation of heterozygosity, i.e. assigning allele
counts of 0 or 2 as homozygous and 1 as heterozygous, leads to biases as the
estimation is not independent of additive effects (illustrated later). Our previous
work showed that conserved sites across 100 vertebrate species significantly con-
tribute to trait variation7,34 and it is also logical to assume that mutations at
conserved sites tend to have strong effects on fitness. Therefore, we first partitioned
the genome into 317,279 conserved and 15,718,164 non-conserved variants. Then
we re-parameterised the genotype allele count for each variant commonly used to
model the dominance deviation, so that the estimation of dominance deviation is
independent of the additive effects. We focussed on cows because their traits were
largely measured on themselves, contrasting to bull traits that were based on their
daughters’ traits. We estimated the variant-wise sum of the re-parameterised allele
count value for dominance deviation, which was later termed as z0Di

for each
variant i in cows. The sum was averaged by the number of variants and this average
value based on re-parameterised dominance allele count for the individual j was
termed as H0

j to represent the individual heterozygosity. We estimated the indi-
vidual heterozygosity from conserved sites (H0

consj
) and non-conserved sites

(H0
non-consj ) and these computations are specified in the following text.

According to quantitative genetics theory52–54, the genetic value (G′) of an
individual can be partitioned into the mean (µ), additive genetic value (A) arising
from additive effect (a) and dominance genetic value (D) arising from dominance
deviation (d). At a single locus, let the allele frequency of the three genotype classes

of AA, AB and BB be p2, 2pq and q2, respectively. In a simple genetic model, the
genetic value can be decomposed as:

G0 ¼ μþ Aþ Dþ e ¼ μþ xAi
aþ zDi

d þ e ð3Þ
where xAi

was the allele count for genotype AA, AB and BB for locus or variant i,
which were usually coded as 0, 1 and 2, respectively, to represent the additive
component, and zDi

was usually coded as 0, 1 and 0, for genotype AA, AB and BB
for variant i, respectively, which differentiates the homozygous and heterozygous to
represent the dominance component. Therefore, in the simplest form, the genome-
wide heterozygosity of the individual j can be calculated as:

Hj ¼ ∑
N

i
zDi

=N ð4Þ

where Hj is the simple genome-wide heterozygosity of individual j and N is the
total number of variants. Note that such calculation of Hj can also be used to derive
inbreeding coefficient, where Ij ¼ ð∑N

i 2piqiÞ ´Hj . Ij was the inbreeding coefficient
for the jth individual.

In Eq. 3, however, due to the non-zero correlation between xA and zD under
Hardy–Weinberg equilibrium (HWE), the estimation of a and d is not
independent, i.e. covðxA; zDÞ ¼ 2pð1� pÞð1� 2pÞ≠0 under HWE. This then
resulted in the estimation of Hj not being independent of the additive components.
Therefore, we proposed to re-parameterise this model to estimate a and d
independently.

According to Falconer53 at this locus, the additive effects can be derived using
the regression of genetic value on the number of A alleles, where A0

AA ¼ 2q ´ α,
A0
AB ¼ ðp� qÞ ´ α and A0

BB ¼ �2p ´ α. A0 is the re-parameterised additive genetic
value and α is the allele substitution effect: α ¼ aþ ðp� qÞd. Because the
dominance deviation is the difference between the genetic value and the mean plus
the additive value, the dominance effects can be derived as D0

AA ¼ �2p2 ´ d,
DD0

AB ¼ 2pq ´ d and D0
BB ¼ �2q2 ´ d. D0 is the re-parameterised dominance

genetic value. Therefore, Eq. 3 can be re-parameterised as:

G0 ¼ μþ A0 þ D0 þ e ¼ μþ x0Ai
αþ z0Di

d þ e ð5Þ
where x0A was coded as 2q, p− q and −2p for genotype of AA, AB and BB of
variant i, respectively, to represent the additive component and z0D was coded as
�2p2, 2pq, �2q2 for genotype of AA, AB and BB of variant i, respectively, to
represent the dominance component. Such re-parametrisation has the following
features: (1) The covariance between the additive and dominance effects is zero; (2)
the variance of the additive effects gives the additive variance; and (3) The variance
of the dominance deviations gives the dominance variance. Equation 5 then leads
to:

H0
j ¼ ∑

N

i
z0Di

=N ð6Þ

where H0
j was the re-parameterised genome-wide heterozygosity for individual j, z0D

was �2p2, 2pq and �2q2 for the genotype of AA, AB and BB of variant i and N was
the total number of variants. We then applied Eq. 6 to conserved and non-
conserved variants to estimate individual heterozygosity from conserved sites
(H0

consj
) and non-conserved sites (H0

non-consj ). We then fitted H0
consj

and H 0
non-consj as

fixed effects together with the fixed effects of breed jointly in GREML similar to
Eq. 1. The difference was that there is no fixed effect of variants but more fixed
effects due to the fitting of H 0

consj
and H0

non-consj . The GREML analysis used the

implementation with MTG251.

MA frequency and FST in different breeds/subspecies. Two sets of data were
used for this analysis. The first data set was the Australian dairy cattle (8949 bulls
and 103,350 cows, Holstein, Jersey, Australian Red and crossbreds) used for GWAS
as described above. The second data set used for the analysis of MA frequency and
FST was the curated whole-genome sequence data of 1720 cattle from the 1000 Bull
Genomes database (Run 7)24,25, which we refer to as modern and ancient cattle.
Samples that met the quality criteria of the 1000 Bull Genomes project were
selected and they included 210 Brahman, 25 Tibetan, 10 Eurasian Aurochs, 242
Simmental, 95 Jersey, 843 Holstein and 295 Angus. Genome sequences from 6 Gir
and 12 Nellore cattle from the 1000 Bull Genomes database were also analysed to
support the results of MA frequency of B. indicus. Additional information on these
1720 animals including related accession numbers (if available) can be found in
Supplementary Data 2. The ancient genome data were part of the project of
Verdugo et al.18 who processed and published the original data (PRJEB31621 at
European Nucleotide Archive). These data were collected by Run 7 of the 1000 Bull
Genomes Project and processed by its standard pipeline36.

Sequence data at 7,910,190 variants assigned with MAs were retrieved for these
animals to make a plink (v1.9) binary genotype file. The A1 allele of the plink
genotypes was set to the MA and its frequency was calculated using the ‘--freq’
function for different selections of populations and variant sets. Average MA
frequency and the standard error were calculated for different selections of
variants, e.g. variants with MAs increasing or decreasing traits. Standard errors for
frequency and FST (described below) were all estimated using LD-clumped variants
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in the same procedure in plink32 as described above. For variants associated with
milk production traits, i.e. the yield of milk protein, fat and milk and percentage of
protein and fat, we selected variants with large (GWAS p value < 5e−8 in both
sexes) and small (GWAS p value < 5e−2 and p value > 5e−5 in both sexes) effects
to focus on. For other trait-associated variants, the group with the largest effects
available were selected for this comparison. For example, for stature, there were no
variants with p value < 5e−8 in both sexes, we then selected the medium-effect
variants (GWAS p value < 5e−5 and p value > 5e−8 in both sexes). For fertility,
there was no variants with p value < 5e−5 in both sexes, we then selected the small-
effect variants (GWAS p value < 5e−2 and p value > 5e−5 in both sexes) for the
comparison. Average MA frequency and the standard error were also calculated for
all 7.9 M variants analysed as the baseline. The analysis procedure for allele
frequency on the Australian dairy cattle was applied to these 1000 Bull Genomes
individuals.

To quantify the trait variance explained by variants with large-, medium- and
small-effect from GWAS results, the following formula was used:

Vpi ¼ χ2i =N ¼ t2i =N ¼ bi
se

� �2

=N ð7Þ

where Vpi was the proportion of phenotypic variance explained by varianti, χ
2
i was

the chi-square value of the effect of varianti that equals to the square of t value (bi/
se), t2i , of the effect of varianti from GWAS; N was the sample size of the GWAS; bi
was the GWAS beta of varianti and se is the standard error of bi. Equation 7 equals
the formula Vp ¼ 2pið1� piÞ*b2i , where pi was the MAF of varianti. However, Eq. 7

is not affected by the MAF of the variant. Then the average Vpi , or Vpi , for variants
with large-, medium- and small-effect, was estimated for each trait.

With the same plink binary genotype file described above and the population
structure for dairy cattle (four dairy breeds) and for ancient and modern cattle
(seven breeds/subspecies), GCTA50 was used to calculate the FST value with the
method described in Weir55 with the option of ‘--fst’ and ‘--sub-pop’. The average
FST value with standard errors was then calculated for different selections of
variants in the same fashion for selecting variant groups to compare the MA
frequency as described above.

cis eQTL in milk cells. This analysis was based on 105 Holstein cattle that had
RNA-seq data in milk cells described and published previously (NCBI SRA
SRP111067)26,27. The raw reads of these data were aligned to the ARS-UCD1.2
reference bovine genome using STAR56. Qualimap 257 and RseQC58 were used to
check data quality. FeatureCount59 was used to extract gene counts and the voom60

normalised counts were used in the following analyses. The normalised gene
expression was analysed as phenotypes in the same GWAS model as Eq. 1 using
GCTA, except that there were no breed effects (all animals are Holstein) but were
other fixed effects of Experiment, Days in Milk, first PC and second PC extracted
from the expression count matrix. Variants analysed were those that had large
positive effects and large negative effects (pgwas < 5e−8) on protein yield, fat yield,
milk yield, protein% and fat%. For these variants, the normalised expression of
genes within ±1Mb distance to them were analysed as phenotype. In other words,
the analysis focussed on cis eQTL genes for these large-effect variants were ana-
lysed. When GWAS results of gene expression were obtained (cis eQTL), the effect
allele was mapped to the ancestral allele to determine the effects of MAs. For
quantifying the number of eQTL for each effect direction of MAs, only the SNPs
with the smallest p value were considered.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Our predictions of cattle ancestral alleles for those 42,573,455 sites have been made
publicly available at https://melbourne.figshare.com/articles/dataset/The_assignment_of_
cattle_ancestral_alleles/13546472. Multiple alignment data used to determine cattle
ancestral alleles are publicly available via Ensembl EPO pipeline (http://asia.ensembl.org/
info/genome/compara/multiple_genome_alignments.html). Australian farmers and
DataGene Australia (http://www.datagene.com.au/) are owners and custodians of the raw
phenotype and genotype data of Australian dairy animals. Access to these data for
research requires permission from DataGene under a Data Use Agreement. The DNA
sequence data as part of the 1000 Bull Genomes Consortium23–25 are available to
consortium members and the membership is open. Sequence data of 1832 samples from
the 1000 Bull Genome Project have been made publicly available at https://
www.ebi.ac.uk/eva/?eva-study=PRJEB42783. The gene expression data are publicly
available (NCBI SRA SRP111067). In addition: (1) The summary data of the effect
direction and effect category of those 7.9 M sequence variants for which the ancestral
alleles can be assigned are published at https://melbourne.figshare.com/articles/dataset/
Summary_of_the_direction_and_category_of_effects_of_analysed_variants_on_
37_traits/15170916; (2) The allele frequency of mutant alleles of those 7.9 M sequence
variants for which the ancestral alleles can be assigned for the Holstein and Jersey cattle
from the 1000 Bull Genome Project are published at https://melbourne.figshare.com/
articles/dataset/Allele_frequency_of_mutant_alleles_in_Holstein_and_Jersey_from_the_

1000_Bull_Genomes/15170922; (3) The coordinates of conserved sites analysed in the
manuscript are published at https://melbourne.figshare.com/articles/dataset/
Coordinates_of_cattle_conserved_sites/15170928. Other supporting data are shown in
the Supplementary Materials of the current manuscript. Source data of figures can be
found at https://melbourne.figshare.com/articles/dataset/Source_data_for_Mutant_
alleles_differentially_shape_fitness_and_other_complex_traits_in_cattle/16869957.

Code availability
The probability of ancestral allele assignment was estimated using the software estsfs
published by Keightley et al.28. The linear mixed model used GCTA50 and MTG251. The
Bayesian analysis used BayesR61. The R code of estimating heterozygosity across variants
at conserved sites is at https://github.com/rxiangr/Genome-wide-heterozygosity.
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