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Transcript-targeted analysis reveals isoform
alterations and double-hop fusions in breast cancer
Shinichi Namba1,8, Toshihide Ueno 1, Shinya Kojima1, Kenya Kobayashi2, Katsushige Kawase 9,

Yosuke Tanaka 1, Satoshi Inoue1, Fumishi Kishigami 1, Shusuke Kawashima9, Noriko Maeda3,

Tomoko Ogawa 4, Shoichi Hazama5, Yosuke Togashi9, Mizuo Ando 6, Yuichi Shiraishi7,

Hiroyuki Mano 1 & Masahito Kawazu 1,9✉

Although transcriptome alteration is an essential driver of carcinogenesis, the effects of

chromosomal structural alterations on the cancer transcriptome are not yet fully understood.

Short-read transcript sequencing has prevented researchers from directly exploring full-

length transcripts, forcing them to focus on individual splice sites. Here, we develop a pipeline

for Multi-Sample long-read Transcriptome Assembly (MuSTA), which enables construction

of a transcriptome from long-read sequence data. Using the constructed transcriptome as a

reference, we analyze RNA extracted from 22 clinical breast cancer specimens. We identify a

comprehensive set of subtype-specific and differentially used isoforms, which extended our

knowledge of isoform regulation to unannotated isoforms including a short form TNS3. We

also find that the exon–intron structure of fusion transcripts depends on their genomic

context, and we identify double-hop fusion transcripts that are transcribed from complex

structural rearrangements. For example, a double-hop fusion results in aberrant expression of

an endogenous retroviral gene, ERVFRD-1, which is normally expressed exclusively in placenta

and is thought to protect fetus from maternal rejection; expression is elevated in several

TCGA samples with ERVFRD-1 fusions. Our analyses provide direct evidence that full-length

transcript sequencing of clinical samples can add to our understanding of cancer biology and

genomics in general.
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The transcriptome is an important determinant of cellular
phenotype1, and changes in the transcriptome are major
drivers of oncogenesis and DNA alteration2. In some cases,

aberrant splicing regulation is recurrent3 and considered as a
driver independent of somatic mutations4. Some genes have
cancer-specific splicing isoforms that underlie phenomena related
to cancer proliferation, e.g., PKM2 in the Warburg effect5, long
non-coding RNA PNUTS in the epithelial–mesenchymal
transition6, and BRAF exons 3–9 in chemo-resistance7. Because
aberrant splicing is one of the hallmarks of cancer, understanding
this phenomenon is indispensable for a better understanding of
tumorigenesis.

Several groups recently conducted comprehensive studies of
cancer-specific alternative splicing2,8–10 and showed that RNA
alteration affects cancer genes in a manner that complements
DNA alteration2. However, all of these studies depended on RNA-
seq technology, which produces relatively short reads and requires
imputation to generate full-length transcripts. Consequently, these
analyses were limited to individual splice site abnormalities and
could neither directly nor efficiently target consequent transcripts.
It is especially difficult to quantify gene expression at the transcript
level, and annotation lists based on incomplete sets of isoforms
have low estimation accuracy11. Transcript expression exhibits a
cell type-specific pattern12, and far more isoforms exist than are
registered in the reference annotation13. Therefore, unless we use a
complete catalog of transcripts in target cells, it is difficult to
correctly evaluate transcript usage.

Complex structural variations (SVs) have been reported in a
wide range of cancer types2, but because the scale of SVs is far
longer than the length of RNA-seq read fragments, only limited
aspects of RNA-seq have been captured through previous ana-
lyses. Specifically, in triple-negative breast cancer (TNBC), a
distinct subtype of breast cancer, the genome is heavily affected
by SVs due to a deficiency in homologous recombination14–16.
However, the characteristics of transcripts derived from genomic
regions affected by complex SVs remain to be analyzed.

In this study, we used single-molecule real-time (SMRT)
sequencing technology17 to sequence breast cancer clinical speci-
mens in order to directly and comprehensively investigate tran-
script regulation. SMRT sequencing can obtain far longer reads
(≥20 kbp) than short-read sequencing, making it possible to read
full-length transcripts without fragmentation (IsoSeq protocol)18.
Several groups have used this approach to capture high-resolution
transcriptomes of eukaryotes19–21 including human13, many of
which revealed transcriptome diversity and previously unde-
scribed transcript regulation22–24. However, this sequencing
method has been applied to only a few individual samples. Fur-
thermore, few studies have used it for cancer, especially for clinical
cancer specimens25,26. In this study, we constructed a cohort-wide
breast cancer transcriptome from directly sequenced transcripts
and characterized its complexity and subtype-specific regulation;
hundreds of thousands of the isoforms we identified were pre-
viously unannotated. We also detected a functional unannotated
isoform of TNS3 that was differentially regulated among subtypes.
Furthermore, we examined relationships between the exon–intron
structure of fusion transcripts and their genomic contexts, and
found functional double-hop fusion transcripts transcribed from
three distinct genomic regions involved in complex structural
alterations. Our findings show that transcript-targeted analyses
can directly capture a catalog of cancer isoforms originating from
complex structural alterations.

Results
Cohort-wide transcriptome enables more accurate inference of
transcript usage. We constructed a cohort-wide transcriptome by

merging long-read sequencing of 22 clinical breast cancer speci-
mens. Because long-read consensus sequences are sometimes
redundant and distinguished only by sequencing errors, we
combined them by focusing on their genomic structures (Fig. 1a
and Supplementary Fig. 1). The transcriptome subsequently went
through SQANTI27 filtering, and potential artifact transcripts
were removed by a random forest algorithm. We also obtained a
number of uniquely associated full-length non-chimeric (FLNC)
reads (hereafter referred to as PBcount) in each sample; PBcount
serves as a complementary measure of isoform expression. We
named this procedure Multi-Sample long-read Transcriptome
Assembly (MuSTA) and evaluated its performance using simu-
lation (Supplementary Note 1 and Supplementary Fig. 2). We also
compared the MuSTA-derived transcriptome with the GEN-
CODE reference transcriptome using differential transcript usage
(DTU) as the evaluation index, and showed that the former was
robust and outperformed the latter in the presence of unan-
notated isoforms (Fig. 1b–d). DTU is analogous to differential
gene expression (DGE), which tells us the variability in the pro-
portion of isoforms at the transcript level. Although current
inference methodologies perform poorly in DTU, our results
indicated that this might be due to inaccurate annotation at the
transcript level, suggesting that direct sequencing of full-length
transcriptome could help overcome this limitation and enable us
to evaluate transcript usage, even for unannotated isoforms.
Comparison of MuSTA with two other pipelines, ToFU18 and
FLAIR28, confirmed that MuSTA can accurately construct tran-
scriptomes with less redundancy (Supplementary Note 2 and
Supplementary Figs. 3–6).

Cohort-wide transcriptome of 22 breast cancer clinical speci-
mens. We sequenced RNA samples from eight estrogen receptor
(ER)-positive breast cancer and fourteen TNBC clinical speci-
mens, obtaining a total of 6.15 million consensus reads (median
263,378 reads per sample, Supplementary Fig. 7); these were
combined into 818,620 non-redundant isoforms. There were
344,504 isoforms that passed SQANTI (hereafter, MuSTA-tran-
scriptome), including 263,711 (76.5%) unannotated isoforms. The
median length of the isoforms was 2,936 nt (interquartile range
was 2,196). Among them, 344,429 isoforms were mapped to
autosomes or chromosome X; of those, 288,674 (83.8%) had
multiple exons. The number of isoforms that passed SQANTI in
each sample was between 29,246 and 58,756 (median 39,313)
(Supplementary Data 1).

We identified 3,081 unannotated multi-exonic genes. Most
were detected only in one sample each, but 41 were detected in
multiple samples. Ten genes were unannotated in GENCODE
v28, which we used throughout this paper, but newly annotated
in GENCODE v34. Furthermore, the MuSTA transcriptome
contained 17 translated but unannotated open reading frames
(uORFs) identified in ref. 29; the authors of that study conducted
a CRISPR-based screening to systematically identify ORFs. These
results suggested that the MuSTA transcriptome successfully
captured isoforms that were actually present but unannotated. In
addition, because SQANTI does not acknowledge genomic
variants, transcripts with splice sites created by mutation might
be deleted as artifacts. Because we could find only seven such
isoforms across all the samples, we considered this problem as
having a limited effect (Supplementary Data 2).

We observed strong heterogeneity of detected transcripts
between samples even within the same subtype, with more than
half of the isoforms detected only in one sample (Fig. 2a).
Furthermore, the number of detected isoforms decreased as the
number of samples sharing the isoforms increased (up to
19 samples), indicating that the majority of isoforms were not
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ubiquitous. Conversely, when the number of samples sharing the
isoforms exceeded 19, the number of isoforms increased (Fig. 2a),
suggesting that these isoforms are ubiquitous and essential house-
keeping transcripts. Next, to determine whether we had used a
sufficient number of samples, we increased the number of
analyzed samples one by one and applied MuSTA (Fig. 2b).
Although the graph did not reach a plateau, we detected a

consistent number of isoforms in more than 80% of samples,
indicating that we were able to successfully detect most essential
transcripts. However, a larger cohort will be required for the
thorough investigation of transcriptome heterogeneity. These
data indicated a biphasic distribution of isoforms, with strong
heterogeneity of minor isoforms and ubiquitous essential
transcripts.
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Fig. 1 A cohort-wide transcriptome enables more accurate inference of transcript usage. a Schematic view of the MuSTA workflow. A detailed scheme is
depicted in Supplementary Fig. 1. b, c We conducted a simulation based on the full-spliced match (FSM) and novel-in-catalog (NIC) isoforms in the breast
cancer data set. As originally described in ref. 27, FSM isoforms are isoforms for which the splice junctions completely match known isoforms, whereas NIC
isoforms contain at least one novel splicing junctions but consist of known splicing donors and acceptors. We permutated the log-averaged expression of
FSM isoforms and NIC isoforms separately, and randomly set differential gene expression (DGE) and differential transcript usage (DTU). We tested five
conditions of NIC ratio against all DTU isoforms (0, 0.25, 0.5, 0.75, and 1). Even with a value of 0 (i.e., all DTU transcripts were FSM), we observed higher
precision (b) and compatible recall (c) for DTU inference with the MuSTA-derived annotation in comparison with GENCODE. As the NIC rate increased,
the MuSTA-derived annotation increasingly outperformed GENCODE, and also exhibited stable precision and recall. The dots represent means, and the
error bars represent the standard error of three independent simulations. d Venn diagram of DTU isoforms for a representative simulation with a NIC rate
of 0.25. Exp expression, TP true positive, FP false positive, FN false negative.
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Fig. 2 Isoform distribution detected by MuSTA. a A histogram of the number of isoforms as a function of the number of samples that generated the
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SQANTI category, which represents the similarity to reference transcripts. FSM full-splice match, ISM incomplete-splice match, NIC novel in catalog, NNIC
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distribution of isoforms according to their categories defined in d. f The number of isoforms restricted to unannotated SQANTI categories. Colored bars
represent isoforms predicted to have protein-coding potential. g Bar plot representing the number of subtype-specific isoforms. P-values for the difference
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We further investigated this heterogeneity with the aid of
SQANTI, which classifies isoforms into nine categories by
comparison with reference gene annotation: full-splice match
(FSM), incomplete-splice match (ISM), novel in catalog (NIC),
novel not in catalog (NNIC), genic, genic intron, antisense,
intergenic, and fusion. The FSM and ISM categories only
contained known splicing junctions. NNIC consisted of isoforms
with novel splicing donors or acceptors. NIC isoforms were most
abundant, and the pairing of splicing donors and acceptors was
much more diverse than what we could find in GENCODE. The
second most abundant category was NNIC. Although 80% of
those NNIC were detected in only one sample, a certain number
of isoforms were recurrently detected. A total of 2765 isoforms
were found in all samples; most of these were classified as FSM.
On the contrary, almost all isoforms that were classified as genic
intron, antisense, intergenic, and fusion were detected only in one
sample (Fig. 2c).

Alternatively, we classified the isoforms into four categories
from a different point of view: those found in more than half of
the samples in both subtypes were defined as “common”; those
detected in only one sample were defined as “unique”; isoforms
were defined as “subtype-specific” if they were found in only one
subtype and the number of detected samples was significantly
different between subtypes (P < 0.05) in the two-tailed Fisher’s
exact test (i.e., more than three samples in ER-positive breast
cancer, and more than seven samples in TNBC); and “other”
(Fig. 2d). Although the number of unique isoforms varied
according to the total number of isoforms in each sample, there
was little variation in the number of common isoforms (Fig. 2e).
In each sample, 100–200 isoforms were classified as subtype-
specific (Supplementary Data 1).

Repetitive elements in unannotated isoforms. We investigated
the repetitive elements in the unannotated isoforms, especially in
the intergenic transcripts (Supplementary Notes 3–5 and Sup-
plementary Figs. 8–11). In brief, we took advantage of long-read
lengths to successfully map reads containing repetitive sequences
using long-read aligners. We detected a substantial proportion of
long interspersed nuclear elements (LINEs), long terminal repeats
(LTRs), and short interspersed nuclear elements (SINEs) in
intergenic transcripts (Supplementary Figs. 8–10). Intergenic
genes were co-expressed with their neighbor genes regardless of
the contents of repetitive sequences (Supplementary Fig. 11),
suggesting that genes originating from repetitive sequences are
also involved in cis-regulation by local genome architecture. We
also identified 154 intergenic genes predicted to encode proteins
longer than 50 aa, of which 86 were predicted to localize in the
nucleus (Supplementary Note 4).

Unannotated isoforms as a rich resource of cancer-specific neo-
junctions. We also evaluated the protein-coding potential of
unannotated isoforms (Fig. 2f). NIC isoforms included large
numbers of predicted protein-coding isoforms, but surprisingly,
the NNIC isoforms had the largest proportion of isoforms with
protein-coding potential. This may be explained by the fact that
the NIC isoforms included unspliced (or intron retention) iso-
forms, which might contain premature stop codons. The protein-
coding potential was higher in TN-specific isoforms than ER-
specific isoforms in the NNIC and intergenic categories (Fig. 2g).
The caveat is that the TN-specific isoforms tended to be expressed
at higher levels, as the larger number of TNBC samples resulted
in more stringent criteria for subtype specificity (Fig. 2h),
potentially confounding the protein-coding potential of the
subtype-specific isoforms.

We noticed that a substantial fraction of predicted protein
sequences encoded by unannotated isoforms were not registered
in databases (Fig. 2i). These isoforms were 2.15 times more
abundant in NNIC than in NIC, despite the smaller number of
isoforms with protein-coding potential in NNIC. The NNIC
transcripts, by definition, had at least one novel splice junction,
and therefore tended to encode novel protein sequences.
Importantly, 4.1% of these peptide sequences were derived from
“neo-junctions”, which were reported as tumor-specific splice
junctions in The Cancer Genome Atlas (TCGA) cohort; these
sequences are thought to bind MHC-I and act as neo-antigens10.

Thus, we identified a large number of potential protein-coding
sequences that had not been previously recorded, including a
substantial number of alternative splicing events that may
produce neo-antigens.

Subtype-specific isoforms reflect relationships between cancer
genes and subtypes. We hypothesized that subtype-specific iso-
forms encode key molecules involved in cellular pathways specific
to the corresponding subtypes. To address this, we selected the
top 100 subtype-specific isoforms with the highest fold change in
transcripts per million (TPM) (Fig. 3a). Isoforms from key
oncogenes in the ER-positive subtype, such as the ESR1 and PGR
isoforms, were present in the top 100 isoforms. Figure 3a shows
NIC isoforms from subtype-specific genes, including an AGR3
isoform in ER-positive breast cancer30 and a GABRP isoform in
TNBC31. Among the NNIC isoforms, KLK5 is a tumor sup-
pressor gene (TSG)32 and LOXL4 is involved in breast cancer
metastasis33; moreover, four isoforms of these genes were among
the top 100 subtype-specific isoforms. It is likely that the number
of subtype-specific isoforms reflected the association of genes
with the respective subtypes. In reality, ESR1 had the largest
number of subtype-specific isoforms in ER-positive breast cancer
(Fig. 3b). GABRP had the largest number of subtype-specific
isoforms in TNBC, and other oncogenes such as BCL11A and
PABPC1 also had many TNBC-specific isoforms. The results of
this analysis may lead to the identification of novel oncogenes
associated with breast cancer. For example, 17 isoforms of
unknown origin (novel genes) were among the top 100 isoforms,
and these warrant further investigation.

To validate the existence of isoforms detected in MuSTA, we
focused on SOX9-AS1, a long non-coding RNA on the antisense
strand of the transcription factor gene SOX9. In our data, two
isoforms were expressed strongly in TNBC (Fig. 3a), and 42
isoforms including four TNBC-specific isoforms were detected
(Fig. 3b). We also detected readthrough transcripts spanning
SOX9-AS1 and its adjacent gene, AC005152.3. Using nested PCR,
we validated the existence of these isoforms (Supplementary
Fig. 12).

Differential transcript usage analysis with MuSTA-
transcriptome captured previously reported isoform switch-
ing. As another approach to capture subtype-related isoforms, we
conducted DTU tests with the transcriptome obtained by
MuSTA, assuming that those genes have functional relevance to
breast cancer biology. We detected 465 DTU genes (FDR < 0.01),
including 46 cancer-related genes and 10 genes specifically related
to breast cancer, including ESR1 and BCL11A (Fig. 4 and Sup-
plementary Figs. 13a–c).

Among DTU genes, MED24 has canonical and short isoforms;
the former is expressed ubiquitously, whereas expression of the
latter is specific to a highly metastatic mouse breast cancer cell
line (4T1)34. We confirmed the ubiquitous expression of the
canonical isoform and found that the short isoform was
selectively suppressed in TNBC (Supplementary Fig. 14a), but
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we failed to replicate this finding by PCR. However, the isoform
expression in mouse was validated by PCR in the original article.
The differences in our PCR results might be due to the difficulty
of designing PCR primers for MED24, as all of the exons of
MED24 short isoform are present in the long isoform. Given that
the 4T1 cell line is a triple-negative cell line, escape from the
regulation of short-form MED24 might be associated with
metastasis.

Another DTU gene, TPD52, which has a short isoform encoding
PrLZ, is a biomarker of prostate cancer and has an anti-apoptotic
function35,36. This isoform exhibits androgen-dependent expression

in prostate cancer37. We observed expression of the short isoform
specific to ER-positive cancers through our analysis (Supplementary
Fig. 14b).

IQCG intronic TSS induces the overexpression of exons 9–12,
and Bjørklund et al. pointed out that deregulated expression in
this region might be oncogenic38. Using MuSTA and an additional
RT-qPCR experiment, we confirmed that PB.7746.9 (matched to
ENST00000478903.5) was overrepresented relative to other
isoforms in TNBC, and that this matched the reported intronic-
start transcript (Fig. 4b). Based on these findings, we conclude that
MuSTA successfully captured known isoform-switching events.

CT83: PB.32239.18
FOXCUT: PB.11111.1
GABRP: PB.10144.91

KLK5: PB.29218.38
MKRN3: PB.23936.9
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BCL11A: PB.4641.5
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ELF5: PB.19757.62
Novel gene: PB.4942.10

LOXL4: PB.18621.57
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Next, we conducted Gene Ontology and KEGG pathway
enrichment analysis for the DGE and DTU genes (Supplementary
Fig. 13d, e). In DGE genes, pathways related to peptidase
processing, ectodermal development, and the cell cycle were
enriched. Curiously, eight out of the top ten biological processes
enriched in DTU genes were associated with molecular binding.
mRNA metabolic process, cell division, and RNA processing were
among the molecular functions enriched in DTU genes. The two
significantly enriched KEGG pathways were the spliceosome and
the cell cycle. Therefore, isoform switching is implicated in the
regulation of the cell cycle and RNA processing. Notably,

although DTU genes (and in particular, DTU isoforms) were
not identical between the MuSTA and GENCODE transcrip-
tomes, these findings remained true (Supplementary Fig. 13f, g).

The short form of TNS3 has a different function from cano-
nical TNS3. Given the recapitulation of known isoform switching
by MuSTA, we focused on a DTU event of TNS3 (Tensin3), which
included an unannotated short NNIC isoform (PB.14110.56)
(Fig. 4c). Tensin3, a protein with an SH2 domain and a C2
domain, contributes to cell migration, anchorage-independent
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growth, and metastasis in several types of cancer, including breast
cancer39–41. Although the functional differences in TNS3 isoforms
have not been extensively studied, several single-nucleotide poly-
morphisms in 7p12.3 have been reported as pleiotropic cancer
susceptibility loci42 and coincide with splicing quantitative trait
loci (sQTLs) of TNS343, suggesting that alternative transcription of
TNS3 plays an important role in cancer.

The TNS3 short form had an unannotated first exon whose
genomic sequence is conserved among vertebrates. In addition,
this first exon was associated with peaks of chromatin modifica-
tions associated with promoter or enhancer elements in TNBC
cell lines and normal breast epithelial cells, whereas these peaks
were not observed in ER-positive cell lines (Supplementary
Fig. 14c). These findings support the existence of the unannotated
isoform and suggest that it is under epigenetic control.

To investigate the function of the TNS3 short form, we
conducted RNA-seq and analyzed the gene expression profiles of
MCF10A immortalized mammary epithelial cells into which viral
vectors expressing canonical TNS3 or the TNS3 short form had
been introduced. DGE analysis revealed that the TNS3 short form
had an impact on gene expression similar to that of canonical
TNS3, but with larger effect sizes (Fig. 4d, e and Supplementary
Data 3). In addition, more genes (881) were affected specifically
by the TNS3 short form (Supplementary Fig. 14d). Gene
Ontology analysis suggested that TNS3 altered several features
related to cellular adhesion, and that the TNS3 short form had a
larger impact than canonical TNS3 (Supplementary Fig. 14e, f).
“Regulation of extracellular matrix” was one of the gene
ontologies enriched in cells expressing short-form TNS3,
suggesting its association with metastasis. The formation of actin
filament stress fibers was indeed enhanced in cells expressing the
TNS3 short form (Fig. 4f). We also found that expression of
NOTCH1, NOTCH3, and FGFR3, important drivers of TNBC,
was higher in MCF10A cells expressing the TNS3 short form
(Fig. 4e). Together, these data showed that the TNS3 short form
has a function distinct from that of canonical TNS3, and may
drive tumor initiation or progression. We also noticed that
expression of the TNS3 short form, but not that of canonical
TNS3, in MCF10A cells was induced by TGFβ (Supplementary
Fig. 14e). These observations strongly indicated that isoform
switching of TNS3 has important functional implication for
cancer cell phenotype, although further investigation is required
to delineate the functional significance and mechanistic basis.

Next, we verified the expression of the TNS3 short form in
TCGA by calculating percent-spliced-in (PSI) of its first intron.
We confirmed that PSI was higher in basal breast cancer than
luminal A or luminal B breast cancer; surprisingly, high PSI was
also observed in a broad range of cancer types, specifically in
glioblastoma multiforme, brain lower-grade glioma, and chro-
mophobe renal cell carcinoma (Supplementary Fig. 15). To

examine the association of the TNS3 short form with prognosis,
we conducted regression analyses under Cox proportional
hazards models (Supplementary Data 4 and “Methods” section).
Higher PSI was associated with significantly worse prognosis for
OS, DSS, and DFI in kidney renal papillary cell carcinoma
(Benjamini–Hochberg adjusted FDR < 0.05) and for OS and DSS
in stomach adenocarcinoma. Nominal significance (unadjusted
P < 0.05) was observed for OS of head and neck squamous cell
carcinoma; DSS of lung adenocarcinoma; DFI of lung squamous
cell carcinoma; and PFI of glioblastoma multiforme, stomach
adenocarcinoma, bladder urothelial carcinoma, and chromo-
phobe renal cell carcinoma. On the other hand, the association
was not significant for breast cancer. This might be because the
effect of TNS3 was canceled out by the dependence of the TNS3
isoform switch on the breast cancer subtype. Therefore, we
restricted the analysis to the basal subtype and observed a hazard
ratio greater than one, although it was not significant, probably
due to the small sample size (n= 148). Overall, these data
indicated that the TNS3 short isoform was associated with poor
prognosis in a wide range of cancer types, although confirmation
of this association will require additional investigation in a larger
cohort.

Structure of fusion transcripts reflects the genomic context.
Although short-read sequencing makes it possible to detect the
breakpoints of structural variation with high sensitivity and
accuracy, long-read sequencing enables us to see the structure of
resultant transcripts accurately to an extent that could not be
achieved with short-read sequencing.

Of the chimeric IsoSeq cluster reads found in nine TNBC
samples, we identified 402 reads with corresponding breakpoints
in whole-genome sequencing (WGS) data (Supplementary
Fig. 16a). When the transcript fragments 5′ and 3′ of the fusion
points were multi-exonic, almost all were mapped to genic
regions. By contrast, when they were mono-exonic, more than
half were mapped onto non-genic regions (intergenic, genic
intron, or antisense regions) (Fig. 5a, b). Almost all transcript
fragments containing TSSs were mapped to genic regions, versus
only half of the downstream fragments, suggesting that
transcriptional initiation has a stringent requirement for a known
TSS.

Next, in order to characterize the aberrant transcription caused
by chromosomal rearrangement, we examined fusion-specific
splicing junctions. We defined fusion-specific splicing junctions
as splicing junctions that exist on neither GENCODE transcripts
nor non-chimeric MuSTA isoforms. Most of them were located 3′
of the fusion points (Fig. 5c). A total of 49 (68%) fusion-specific
splice junctions were found in non-genic regions, whereas others
were detected in genic regions. The motif of fusion-specific
splicing junctions was similar to that of ordinary canonical

Fig. 4 Differential transcript usage in the MuSTA transcriptome. a −Log10 P-value of differential transcript usage (DTU) inference in isoforms with
P < 0.01 when using the MuSTA transcriptome. P-values were corrected in a stage-wise manner described in ref. 56. −log10 P-values for GENCODE
annotation are shown for isoforms that are annotated in GENCODE. We sorted genes in the ascending order of DTU P-values corresponding to the MuSTA
transcriptome. The gene symbols with the smallest P-values are labeled according to whether they are oncogenes or TSGs. Two genes were validated by
qRT-PCR, and are labeled with boxes. b, c qRT-PCR validation of IQCG (b) and TNS3 (c). Shown are SQANTI classifications, transcript structures, predicted
protein domains of two DTU isoforms with the smallest P-values, and expression of DTU isoforms. Three types of expression data are shown [transcript
per million (TPM) aligned to the MuSTA transcriptome, PBcount, and relative qPCR expression against GAPDH]. Relative qPCR expression has two y-axes
along with DTU isoforms, because qPCR was conducted separately for each isoform. Error bars in the qPCR graphs indicate the standard deviation of three
replicates. P-values for relative expression of DTU isoforms were calculated by a two-tailed Mann–Whitney U test. d Log2 fold changes of gene expression
in TNS3-expressing MCF10A cells against MCF10A cells transduced with mock vector. The definitions of “short only” and “common” genes are visualized
in Supplementary Fig. 14d. e Log2 fold changes of NOTCH1, NOTCH3, and FGFR3 expression between MCF10A cells expressing TNS3 short form, canonical
TNS3, and mock vector. Error bars represent the standard error. f MCF10A cells, into which viral vectors were introduced, were stained with Alexa Fluor
594-labeled phalloidin to visualize actin organization. Nuclei were counterstained with Hoechst 33258.
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junctions (Fig. 5d), with the caveat that the first two intronic
bases were intentionally chosen because we removed chimeric
reads with non-canonical junctions (other than GT-AG, GC-AG,
and AT-AC) that were not detected in the GENCODE or MuSTA
transcriptome.

Next, we examined the genomic DNA sequences of fusion
points in association with the fusion-specific splice junction.
When we sorted reads according to genomic contexts of fusion
points (Fig. 5e), the 5′ ends of fusion points were found mostly
within introns or downstream of the genes to which the fusion
transcript fragments were assigned. When both sides of genomic
DNA fusion points were located at introns or downstream of
genes, transcribed and spliced sequences matched the canonical
splicing motif in all cases (75/75), indicating that novel exons or
splice junctions concordant with splicing rules were indeed
generated in association with chromosomal rearrangements. In
addition, there were a few reads that matched the splicing motif
even when the 5′ ends or 3′ ends of the fusion points were on
constitutive exons. Thus, it is reasonable to speculate that the
exon–intron structures in these reads changed based on structural
context.

Double-hop fusion transcripts originated from complex
genomic structural variations. The concordance of splicing rules
in fusion transcripts raised further questions. Do complex structural
variations (SV) produce transcripts that undergo splicing regulation?
Are they functional, possibly even acting as oncogenic drivers? In
recent years, long-read genomic sequencing has been used to
identify complex SVs that were impossible to detect with next-
generation sequencing44,45; however, these questions are yet to be

answered. Of the chimeric IsoSeq reads, we have identified five non-
redundant reads that were mapped to three regions and had
breakpoints that were detected in WGS data (Fig. 6a, b and Sup-
plementary Figs. 16b, c, Supplementary Data 5). We have confirmed
the fusion transcripts of HIST1H2AG–NonGenic–ERVFRD-1,
OGG1–NonGenic–NonGenic, and SLC12A2–NonGenic–SLC12A2 by
Sanger sequencing of PCR amplicons. Note that two fusion reads,
HIST1H2AG–NonGenic–ERVFRD-1 and SMIM13–NonGenic–
NonGenic, were transcribed from the sense and antisense strands of
the same rearranged locus, although we could not PCR-amplify the
latter fusion transcript. Very recently, the Pan-Cancer Analysis of
Whole Genomes consortium found several bridged fusion tran-
scripts that mapped to two genomic regions connected by a non-
transcribed genomic fragment2. However, the double-hop fusions
we found had internal genomic regions of thousands of base pairs,
and some fusions were even spliced in these regions (Fig. 6a). This
type of fusion transcripts cannot be found without long-read tran-
scriptome sequencing.

Because HIST1H2AG–NonGenic–ERVFRD-1 contains the full
CDS of ERVFRD-1, full-length ERVFRD-1 protein might be
translated from the fusion transcript. ERVFRD-1 was specifically
expressed in samples carrying the fusion transcript. Expression of
ERVFRD-1 is generally suppressed across all tissues, except in the
placenta43. Furthermore, considering the chromatin modification
status, it is quite possible that this double-hop fusion transcript
utilized the cis-regulatory region of HIST1H2AG observed in one
normal breast epithelial cell line and two breast cancer cell lines
(Supplementary Figs. 17a–c), suggesting the existence of a
mechanism similar to enhancer hijacking46. The most important
difference between this case and enhancer hijacking is that the
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Fig. 6 Double-hop fusion. a Schematic image of difference between bridged fusion transcript and double-hop fusion transcript. b Structure of double-hop
fusion transcripts from HIST1H2AG–NonGenic–ERVFRD-1. The genomic axes represent three original genomic regions; below them are chimeric IsoSeq
cluster reads. Curves correspond to structural variants detected with whole-genome sequencing data. The category “GENCODE” shows annotated
transcripts. Outside regions of structural variants are shaded. To ensure visibility, exon–intron structures do not necessarily reflect accurate length. TPM
denotes transcript per million. c, d Growth of MC38 tumor cells expressing ERVFRD-1 in C57BL/6J mice (c) and in BALBc/nu-nu mice (d). Error bars
represent standard error. e Structure of double-hop fusion transcripts from MYB–PCCA–NFIB. Representative transcripts are shown for the GENCODE
transcriptome.
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promoter and enhancer region of HIST1H2AG was located 50 kb
upstream of ERVFRD-1 even in a rearranged chromosome, and
HIST1H2AG–NonGenic–ERVFRD-1 used the region by forming
the readthrough transcript that spanned two breakpoints.

We also noticed that ERVFRD-1 was highly expressed in four
samples from TCGA that carry ERVFRD-1 fusions
(ABHD12–ERVFRD-1, ELOVL2–ERVFRD-1, NEDD9–ERVFRD-1,
and NOL7–ERVFRD-1, respectively, according to FusionGBD47)
(Supplementary Fig. 17d). Because ERVFRD-1 inhibits antitumor
immunity in an allogeneic mouse tumor model48, we measured the
growth of tumor cells expressing ERVFRD-1 in a syngeneic mouse
model using MC38 murine colon cancer cells derived from a
C57BL/6J mouse. MC38 cells expressing ERVFRD-1 generated
larger tumors in C57BL/6J mice than control MC38 cells infected
with empty vector (Fig. 6c). By contrast, MC38 cells expressing
ERVFRD-1 and control MC38 cells formed tumors of similar sizes
in BALBc/nu-nu mice (Fig. 6d). Similar results were obtained using
the murine mammary carcinoma cell line EMT6, although the
results were marginally significant (Supplementary Fig. 18). These
results indicated that ERVFRD-1 promoted tumor growth by
inhibiting the antitumor immune response of the host mice, and
that enhanced expression of ERVFRD-1 in human cancer cells
might contribute to the growth of tumors as well.

The identification of functional double-hop fusion genes
prompted us to search for other examples. In a literature search,
we noticed that adenoid cystic carcinoma (ACC) occasionally
carries cryptic MYB–NFIB fusion genes in which an intervening
sequence is inserted between the MYB and NFIB transcript
fragments, although the genomic configurations of the cryptic
fusion genes were not determined49. Coincidentally, we
identified double-hop fusion gene MYB–PCCA–NFIB among
ACC tumors, which we are now investigating in another project
independent of this study. To confirm the existence of the
fusion gene, the entire coding sequence of the fusion gene was
amplified by PCR. By cloning the PCR amplicons, we identified
two variants of the fusion genes (Fig. 6e). One of them (the
lower variant in the figure) was an in-frame fusion, suggesting
that it was a driver fusion event. Although we did not determine
the genomic configuration of the fusion gene, it was very likely
that the fusion gene was transcribed from three parts of the
rearranged genome, as there were at least two splicing variants
corresponding to the PCCA transcript, and one of the variants
was spliced within the PCCA locus. Thus, we identified another
example of a double-hop fusion gene.

Discussion
Here, we have described the diversity and heterogeneity of breast
cancer transcripts at both the inter-subtype and intra-subtype
levels. The transcriptome we determined allowed us to conduct
comprehensive analyses of subtype specificity and DTU using
isoforms expressed in target sample groups. These analyses
recapitulated known transcript-level regulation of cancer-related
genes and also revealed an unannotated isoform of TNS3 as a
novel driver of breast cancer.

TNS3 is known for its contribution to metastasis; its SH2 and
C2 domains promote cell migration and metastasis by binding
other molecules in the epidermal growth factor receptor (EGFR)
signal transduction pathway39–41. Epidermal growth factors
simultaneously regulate TNS3 and TNS4, also known as
C-terminal tensin-like protein (CTEN), to promote mammary
cell migration41. Although further investigation is required to
obtain mechanistic insights, it is clear that the protein encoded by
the TNS3 short form lacks the N-terminal C2 domain and a
structure similar to that of CTEN, which might result in

functional differences between the TNS3 short form and cano-
nical TNS3.

Furthermore, we used the full-length sequencing capability of
IsoSeq to reveal several features of the exon–intron structures of
fusion transcripts and fusion-specific splice sites. In addition, we
detected double-hop fusion transcripts. Double-hop fusions can
be detected by RNA-seq if their central exons are small enough. A
few studies have reported sporadic cases50–52. Our discovery and
PCR validation of multiple double-hop fusions that underwent
canonical splicing establishes the concept of double-hop fusions
and indicates that they are prevalent in cancer. The putative
driver fusion (MYB–PCCA–NFIB) and the enhancer hijacking-
like mechanism (HIST1H2AG–NonGenic–ERVFRD-1) shed new
light on the role of complex SVs and splicing in cancer tran-
scriptomics. We believe that further research will reveal unknown
functions of double-hop fusions, giving us insights into new
mechanisms of tumorigenesis.

To summarize, full-length transcript sequencing in multiple
samples provides a transcript-level analysis that complements
conventional RNA-seq approaches, enabling us to focus on iso-
forms from target cells and apply pre-existing analytical methods
such as clustering, DGE, DTU, and Gene Ontology analysis. In
addition to long-read RNA sequencing data, MuSTA requires
reference genomic sequence and transcriptome data as manda-
tory inputs; these are available for human and several other
species. There are two major long-read sequencing techniques,
SMRT sequencing from Pacific Biosciences and nanopore
sequencing from Oxford Nanopore Technologies (ONT).
Although we used SMRT sequencing reads in this paper, MuSTA
could theoretically be applied to ONT reads as well.

Our methods have the potential for a variety of uses. In light of
the emerging evidence that gene isoforms are responsible for
cancer survival53 and drug response54, elucidating cancer profiles
at the isoform level might provide further druggable targets or
previously undiscovered biomarkers. In future work, we will
investigate cancer-specific isoforms as sources of neo-antigens.
Beyond cancer, there is increasing evidence that variant-induced
splice alteration leads to a wide range of diseases such as auto-
immune and neurological disorders. With a larger cohort, it
might be possible to perform QTL analysis at the isoform level;
we predict that such an approach would have a more direct
impact on the study of gene functions than sQTLs.

Our analysis had several limitations. First, the most important
limitation was the lack of sufficient sample numbers to detect
isoforms expressed at low levels. Also, because it is difficult to
efficiently amplify long (>6 kb) transcripts, long transcripts might
be only partially read. Currently, technologies for long-read
sequencing are developing rapidly. For example, according to
Pacific Biosciences, the newly developed Sequel II generates at
least 8-fold more data and far longer raw reads than the con-
ventional Sequel, (https://www.pacb.com/blog/award-winning-
sequel-ii-system). The advance of SMRT sequencing will
improve the comprehensiveness of isoform detection, and
transcript-level expression analysis can be expected to increase in
accuracy. Second, although we mainly targeted the isoforms
shared across several samples, each sample contained a sub-
stantial number of unique isoforms that deserve further evalua-
tion. These isoforms may reflect sample-specific states including
somatic mutation and epigenetic alteration55, or may simply be
the result of aberrant splicing coupled with an elevation of gene
expression. Third, our procedure was not fully annotation-free
because we used SQANTI filtering, although this approach pro-
vides a cohort-wide transcriptome that contains a large number
of unannotated isoforms.

Despite these limitations, our findings revealed functional
unannotated isoforms that contribute to carcinogenesis. In this
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report, we have shown that cohort-wide full-length transcriptome
sequencing is a unique and useful tool, unveiling complex aspects
of gene regulation in the cancer transcriptome that could not be
directly evaluated by short-read RNA-seq. Hence, we believe that
the approach described here will play an essential role in
advancing cancer biology.

Methods
Tumor samples. Surgically resected breast tumors were obtained from patients
treated at the Yamaguchi University and Mie University Hospital. The patients
gave informed consent prior to their participation in the study. The study was
approved by the Ethics Committee of the National Cancer Center Research
Institute (#2015-202).

Reference genome and annotation files. We used hg38 as the reference genome
and the GENCODE version 28 comprehensive gene annotation as the annotation
file, unless otherwise noted. We focused on isoforms mapped to autosome or
chromosome X after we applied our pipeline.

Definition of oncogenes and tumor suppressor genes (TSGs). We defined
oncogenes as those identified in at least one of three curated oncogene databases:
Cancer Gene Census57 (version 90), ONGene58, and OncoKB59 (version 1.23).
Because ONGene collected only oncogenes, we used the other two repositories
for TSGs.

Whole-genome sequencing (WGS). WGS was conducted as described previously15.
The original data are publicly available (https://humandbs.biosciencedbc.jp/en/
hum0094-v3#WGS). In this study, we re-analyzed the data as follows. We detected
mutations and structural variants (SV) in two ways and combined them together. First,
as shown in our previous research15, we used in-house pipeline for analysis. Because we
worked with hg19 for our pipeline, the results were transferred to hg38 using the liftover
tool. Next, to detect short structural variants (SVs), we used Genomon60, an analytic
pipeline for next-generation sequencing data, which carries out mapping using STAR61,
annotation, and additional functions including detection of SVs for DNA and intron
retention for RNA.

RNA-seq. Transcriptome sequencing (RNA-seq) was conducted as reported
previously15. The original data are publicly available (https://humandbs.
biosciencedbc.jp/en/hum0094-v3#RNA-seq). RNA-seq was performed with 100 bp
paired-end reads using the NEBNext Ultra Directional RNA Library Prep Kit for
Illumina (New England BioLabs, Ipswich, MA, USA). In this study, we re-analyzed
the data as follows. RNA-seq reads were mapped to the hg38 reference assembly,
and expression data were calculated as transcripts per million (TPM) in two ways:
by the quasi-mapping-based mode of Salmon62 and the STAR-RSEM protocol61,63.
The Salmon index was used with the ‘–keepDuplicates’ option, and Salmon quant
was performed with ‘-l A –gcBias –seqBias –validateMappings’ options. RSEM was
performed with the following commands:

● rsem-prepare-reference –gtf –star
● rsem-calculate-expression –star –paired-end <short-1.fastq><short-

2.fastq>

We detected splice junctions and intron retention using Genomon, which ran
STAR internally for mapping to the reference genome.

For the Annotation file, we used GENCODE version 28 or a set of transcripts
retrieved from our SMRT analysis pipeline.

BRCAness. We defined the triple-negative breast cancers with defective homo-
logous recombination (BRCAness) based on profiles of structural variations,
mutational signatures, germline mutational status of BRCA1, expression of BRCA1
and RAD51C, and promoter methylation of BRCA1 and RAD51C as described
previously15.

SMRT sequencing. Long-read sequencing was performed using the Pacific Bios-
ciences Single-Molecule Real-Time (SMRT) sequencing technology with SMRT cell
chemistry (SMRTbell Template Prep Kit 1.0, Sequel Binding Kit 2.0, Sequel
Sequencing Kit 2.0, all from Pacific Biosciences, Menlo Park, CA, USA). Full-length
cDNA libraries were constructed from 1 µg of total RNA using the SMARTer
cDNA synthesis kit (Takara Bio, Kusatsu, Japan), utilizing the switching
mechanism at the 5′ end of RNA template (SMART) technology coupled with PCR
amplification. PCR amplification was performed with PrimeSTAR GXL DNA
Polymerase (Takara Bio). The sequencing templates used for SMRT sequencing on
the Sequel platform (SMRTbell) were constructed from 1 µg of PCR products. After
DNA damage and end repair, the SMRTbell adapters were ligated onto the PCR
amplicons, followed by purification with 0.6 volumes of Agencourt AMPure PB
(Pacific Biosciences) with 10-minute incubation on a vortex mixer. Primer
annealing and DNA polymerase binding were carried out according to the

manufacturer’s instructions. Briefly, sequencing primers were annealed to the
template at a final concentration of 0.833 nM by denaturing the primer at 80 °C for
2 min and cooling to 4 °C before incubation with the library at 20 °C for 30 min.
Distributions of SMRTbell size are presented in Supplementary Fig. 7.

This library underwent sequential DNA replication, with DNA polymerase
detachment as replication limitation, and was analyzed by IsoSeq2 pipeline using
SMRTlink18 with the following settings: maximum dropped fraction, 0.8;
maximum subread length, 15,000; minimum subread length, 50; minimum number
of passes, 1; minimum predicted accuracy, 0.8; minimum read score, 0.65;
minimum SNR, 3.75; minimum Z score, −9999; minimum quiver, 0.99; trim QVs
3′, 30; trim QVs 5′, 100; minimum sequence length, 200; polish CCS, false; emit
individual QVs, false; and required polyA, true. In IsoSeq, consensus reads “Read of
Insert (RoI)” were obtained. RoIs with both cDNA primers and poly(A) were
defined as full-length (FL) reads, and others were defined as non–full-length reads.
IsoSeq clustered these reads into isoform sequences using an algorithm called ICE.
“Polished” reads from the algorithm (IsoSeq2 output files polished_hq.fastq and
polished_lq.fastq) were subjected to further analyses. Note that those reads do not
necessarily represent non-redundant isoforms due to the characteristics of ICE and
natural 5′ degradation of RNA.

Hybrid error correction. We used LoRDEC64 for hybrid error correction of IsoSeq
reads with RNA-seq data. LoRDEC was executed with following commands:

● lordec-build-SR-graph -T 3 -2 <RNA-seq_interleaved.fastq>-k 19 -s 3 -g
● lordec-correct -T 8 -i <Isoseq_reads.fastq>-k 19 -s 3 -2 <RNA-

seq_interleaved.fastq>-o <corrected_Isoseq.fastq>

Mapping of corrected IsoSeq reads. Next, IsoSeq reads were mapped to the hg38
reference assembly by Minimap265 using two similar commands to retrieve results
as both SAM and PAF formats under the same conditions:

● minimap2 -ax splice -uf -C5 –secondary=no <GRCh38.mmi><corrected_
Isoseq.fastq>

● minimap2 -cx splice -uf -C5 –cs –secondary=no <GRCh38.mmi><corrected_
Isoseq.fastq>

We filtered IsoSeq reads with mapping quality greater than 50.

Intra-/inter-sample collapsing IsoSeq reads. Intra-sample integration of map-
ped IsoSeq reads, followed by inter-sample integration, was performed using our R
code. For multi-exon transcripts, we merged IsoSeq reads with the same splice
junctions. The most upstream TSS and the most downstream TTS of original
transcripts of merged isoforms were defined as the TSS and TTS of the merged
isoforms, respectively, with all the original TSS and TTS information linked and
retained. We combined 5´ truncated multi-exon isoforms with longer and com-
patible isoforms for each sample separately (meaning, we treated them as frag-
ments of longer transcripts.) On the other hand, in order to detect correct
exon–intron structures from transcripts expressed in target cells, we considered
those truncated transcripts as independent transcripts of longer transcripts from
other samples unless they shared all splice junctions. For single-exon transcripts,
we consolidated reads with other single-exon transcripts if the genomic range of
the former overlapped with the latter read. We did not combine single-exon
transcripts with longer multi-exon transcripts. Both intra-sample and inter-sample
integrations were performed according to this procedure.

We considered that an isoform was detected in a particular sample only when
there were non-truncated IsoSeq reads in the sample (i.e., multi-exon IsoSeq reads
of which all splice junctions matched, or mono-exon IsoSeq reads with genomic
range within the integrated isoform).

Isoform count was defined as the sum of IsoSeq read FL counts that were linked
to a specific isoform but not to any other isoforms; we referred to this value as
PBcount.

Classification and filtering with SQANTI. We classified and filtered curated
isoforms with SQANTI27. For classification, we used the genomic range of isoforms
in GTF format, TPM of RNA-seq yielded by Salmon, and the number of FL reads
summed in the last section. SQANTI uses random forest to determine whether an
isoform is an artifact. As in the primary setting, isoforms with all splicing junctions
matching those in annotated transcripts (full-splice match) were set as true posi-
tives in the training data; true negatives were defined as those transcripts with at
least one novel and non-canonical splicing junction. We used isoforms that passed
the SQANTI filter as our full-length transcript library for downstream analyses.

Chimeric reads. Chimeric reads are mapped onto more than two genomic regions;
however, because long reads yield a certain amount of sequencing error, there
might be an uncertainty of several bp about the fusion sites. Therefore, when we
found only one position with canonical splice junctions, as long as it was within the
uncertainty range of the fusion sites, we selected the position as a fusion point. For
reads with splice junctions as fusion points, we set an additional requirement that
they have genomic breakpoints within 100,000 bp of the fusion points. For reads
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that were not confirmed, assuming that they had breakpoints on exonic regions, we
set the requirement that there be genomic breakpoints within 100 bp of the fusion
points. Of the three-piece fusion transcripts with two fusion points, we selected
those with one linked to a genomic breakpoint, and the other one unlinked. Fol-
lowing that, we used blastn to manually search for possible genomic breakpoints
that correspond with unlinked fusion points66.

A simulator for long-read RNA sequencing. Although multiple long-read genomic
sequence generators have been developed for simulation67–69, none were designed for
cDNA sequencing. Therefore, we created a simulator for long-read RNA sequencing,
simlady (SIMulator for Long-read transcriptome Analysis with RNA DecaY model). In
contrast to long-read genomic sequencing, in which reads are generated from the
distribution of read length, reads are generated from template transcripts in long-read
RNA sequencing. The lengths of generated reads could be different from the original
template transcripts; we have focused on RNA 5′ degradation and sequencing error as
the main reason for this. RNA decay is a major reason why transcript start sites (TSS) of
IsoSeq reads can be inaccurate70. On the other hand, for the positions of transcript
termination sites, it has been reported that there are only a few amounts of error24.
RNA decay was fitted by gamma distribution. The ‘pelgam’ function implemented in
‘lmom’ R package was used for fitting. A public dataset that uses MCF-7 cell lines for
IsoSeq (https://github.com/PacificBiosciences/DevNet/wiki/IsoSeq-Human-MCF7-
Transcriptome) is often used in simulator evaluation68; we also used this dataset for
evaluation. Universal Human Reference (brain, liver, and heart) IsoSeq data (https://
github.com/PacificBiosciences/DevNet/wiki/Sequel-II-System-Data-Release:-Universal-
Human-Reference-(UHR)-Iso-Seq), another public dataset, was used for validation. We
investigated how much the TSS of FLNC reads were shortened according to the nearest
upstream TSS in GENCODE. Using the gamma distribution, the shortened length
matched well below 10,000 bp (Supplementary Figs. 2a–d). This distribution was
extremely heavy-tailed, and barely matched the fitted curve above 10,000 bp. One
possible explanation for this is that because the GENCODE TSS annotation was
imperfect, there were FLNC reads that incorrectly linked to distant reference TSSs. As of
sequence error model, we used the SimLoRD68 model. SimLoRD inserts errors in order
not to change the read length, but the read length changes actively according to the
error inserted. Because SMRT sequencing data has a transcript length–dependent dis-
tribution, each read is sampled according to the probability derived from fold change
and transcript length in order to reconstitute this distribution.

Simulations with different settings. We generated two groups of short-read and
long-read RNA-seq data from the GENCODE annotation, with the following
parameters: number of samples per group, 8; fold change for DTU, 4; short-read
length, 100 bp; short-read depth, 50,000,000 reads; and number of FLNC reads,
250,000. We changed these values one by one to investigate the effect on DTU
inference (Supplementary Fig. 2). In detail, we defined the relative expression of all
isoforms as 1 except for a randomly selected 10% of genes, for which we randomly
selected 2 isoforms for DTU and assigned the pre-defined fold change value to one
isoform in the first group and the other isoform in the second group. The
‘simulate_experiment_countmat’ function in the polyester R package71 was used
for simulating short-read RNA-seq data; subsequently, the reads were shuffled
because the reads were written out for each transcript. To simulate FLNC reads
without specifying read length distribution, we used simlady, which generated
reads under the log-normal distribution inherited from SimLoRD68. The FLNC
reads were then processed to cluster reads by ‘isoseq3 cluster’ with the ‘–singletons’
option. Although IsoSeq3 discards singletons, we determined the number of FLNC
read suitable for IsoSeq2, which additionally uses non-full-length reads and tol-
erates clusters with only one FLNC read. Therefore, we combined singletons with
clustered reads and used them as input for MuSTA.

Simulations based on the breast cancer dataset. We generated two groups of
short-read and long-read RNA-seq data from the FSM and NIC isoforms in the
MuSTA-derived transcriptome generated from 22 breast cancer specimens. The
number of samples per group was 8 (short-read) and 14 (long-read), as in the
original data. We permutated the log-averaged expression of FSM isoforms and
NIC isoforms separately. We randomly assigned DGE for 25% of all genes, and
DTU for 10% of all genes so that 4% of genes would be assigned as both DGE and
DTU. These values were approximately the same as the original breast cancer data
at an FDR threshold of 0.05. The expression fold change between groups was set to
4 for all isoforms of DGE genes, such that the log-averaged expression remained
the same. As for DTU genes, we shuffled all genes and tried to select two DTU
isoforms for which one isoform had higher expression in the first group and the
other had higher expression in the second group. That is, we selected two isoforms
with the highest expression randomly from the following so that the NIC rate
against all DTU isoforms reached the pre-defined value: (i) two FSM isoforms, (ii)
one FSM isoform and one NIC isoform, or (iii) two NIC isoforms. Again, we set
the expression fold change between groups to 4 for DTU isoforms so that the log-
averaged expression remained the same. Short-read and long-read RNA-seq reads
were simulated as described above, with the exception that the length distributions
of polished reads in breast cancer data were permuted and used for the FLNC read-
length distribution.

Differential gene expression. Differential gene expression was investigated with
DESeq272 as described in ref. 73. Isoform expression data obtained using Salmon
were imported into R and summarized at the gene level using tximport74.

Differential transcript usage. A comparison of state-of-the-art methods by
Soneson et al.11 revealed that DEXSeq75 was most accurate. Therefore, we chose
DEXSeq as the inference engine for differential transcript usage as described
previously73. In brief, each isoform was treated as an exon, and a log-likelihood
ratio test was performed under the setting with “~ sample + exon + subtype *
exon” as the full model and “~ sample + exon” as the null model. To combine
short-read RNA-seq data and full-length PBcount data, we concatenated both
datasets and set “~ sample + exon + subtype * exon + data type * exon” as the full
model and “~ sample + exon + data type * exon” as the null model. Note that this
setting treated RNA-seq data and PBcount data derived from the same sample as
biological replicates, whereas DEXSeq does not have a proper method for com-
bining two technically replicated datasets with large batch effects, and we did
observe a substantial difference between RNA-seq data and PBcount data.
Although this could lead to an artificial increase in power, we obtained more
conservative results from the concatenated data than from RNA-seq data in
simulations (Fig. 1 and Supplementary Fig. 2). Gene-level and transcript-level false
discovery rates were calculated with stageR56.

Prefiltering of transcriptome. For pre-alignment prefiltering, we only retained
those isoforms that had the first or second largest number of PBcount per gene in
at least one sample and had PBcount ≥ 5 in all samples. Among these isoforms, up
to 10 were chosen in descending order of PBcount. To avoid mis-mapping of RNA-
seq, for each gene with no selected isoforms, we also retained one isoform with the
largest PBcount. We defined the selected isoforms as “major” isoforms. For post-
alignment prefiltering, we used the DRIMSeq76 filter and removed transcripts if
their relative expression compared to the total expression of the related genes was
lower than 0.1.

Overlap between MuSTA-transcriptome and unannotated open reading
frames. The list of high-confidence translated open reading frames identified in
human induced pluripotent stem cells and human foreskin fibroblast was obtained
from ref. 29. We lifted the positions from Hg19 to Hg38, and retained those that
were uniquely lifted. We counted the number of open reading frames whose
genomic ranges did not overlap with any GENCODE genes and were completely
covered by MuSTA-transcriptome.

Alternative splicing. We explored alternative splicing events of exon skipping/
inclusion, alternative 5′, alternative 3′, mutually exclusive exons, and intron
retention using the ‘generateEvents’ function of SUPPA277. Next, we used the
‘performPCA’ function implemented in psichomics78 for principle component
analysis of splicing events as described in the vignettes of the psichomics software
(https://www.bioconductor.org/packages/release/bioc/vignettes/psichomics/inst/
doc/CLI_tutorial.html).

Domain prediction. We used HMMER79 to detect domains collected in Pfam80

(version 32.0) with the following command: - hmmscan –domtblout –noali -E 0.1
–domE 0.01 Pfam-A.hmm.

Quantitative PCR and sequencing of fusion points. RNA was extracted from cells
using the RNeasy Mini kit (Qiagen). Total cellular RNA was converted into cDNA
by reverse transcription (SuperScript IV VILO Master Mix; Thermo Fisher) using
random primers. Quantitative real-time PCR was performed using Power SYBR
Green qPCR SuperMix-UDG with ROX (Thermo Fisher) on an Applied Biosystems
PRISM 7900 Sequence Detection System. PCR conditions were as follows: 40 cycles
of 95 °C for 15 s and 60 °C for 60 s. Complementary DNAs for fusion points were
amplified by reverse-transcription PCR (RT-PCR) from RNA samples and subjected
to Sanger sequencing. Primer sequences used in this study were as follows: IQCG-9-
chr3-197892650-S: TGTGCTAAGTCACTGGCCTTTGTG; IQCG-9-chr3-1979128
10-AS: TGAGAACTTCTGATTCCCAGCCCT; IQCG-11-chr3-197892723-S: ATTT
CTCCATCCAGAACTCCAGCC; IQCG-11-chr3-197914024-AS: GCTAACCTCAA
GGACCAACTGCAA; TNS3-56-chr7-47304877-S: GAAGCAAAAGCCTGCTGAA
AGGAG; TNS3-56-chr7-47328056-AS: AGCCCAAGGAGTTCCCTCTGTCT; TN
S3-67-chr7-47304877-S: GAAGCAAAAGCCTGCTGAAAGGAG; TNS3-67-chr7-
47344975-AS: GAGTCCATGTGTTCAACTCCAGCA; OGG1-Novel-Novel-S: AGA
GGTGGCTCAGAAATTCCAAGG; OGG1-Novel-Novel-AS: CTTCCTTTCCCAG
GCTCTTACCAA; SLC12A2_novel_SLC12A2-S: TTGGGGTATGGAGAGGAGCG
TAAT; SLC12A2_novel_SLC12A2-AS: TGGCCACATTCCTATGATGAGC; HIS-
T1H2AG_novel_ERVFRD-1-S: TGGAGTACAATGGTGTGATCTCGG; HIST1H
2AG_novel_ERVFRD-1-AS: GTTCAGCCCTTGACTTGGGGTTTT.

Chromatin modifications in breast normal/cancer cell lines. ChIP-seq of
chromatin modifications for MCF-7, MDA-MB-468, and MCF-10A were carried
out by Franco HL et al.55, and subsequently collected, mapped to hg19, and peak-
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called using ChIP-Atlas81. We used the mapped data and the peak data with a
threshold of q < 10−5 and lifted them to hg38.

Cell lines. Human embryonic kidney (HEK) 293T cells and the murine mammary
carcinoma cell line EMT6 were obtained from the American Type Culture Col-
lection (ATCC) and maintained in Dulbecco’s modified Eagle’s medium (DMEM)-
F12 supplemented with 10% fetal bovine serum (FBS) (both from Life Technolo-
gies, Carlsbad, CA, USA). The human mammary gland epithelial cell line MCF10A
was obtained from ATCC and maintained in DMEM-F12 supplemented with 5%
(vol/vol) horse serum (Biowest, Nuaillé, France), recombinant human epidermal
growth factor (20 ng/mL) (Peprotech, Cranbury, NJ, USA), bovine insulin (10 μg/
mL) (Sigma-Aldrich, St. Louis, MO, USA), hydrocortisone (0.5 μg/mL) (Sigma-
Aldrich), and cholera toxin (100 ng/mL) (Sigma-Aldrich). MC38 (mouse colon
carcinoma) cell line was obtained from Kerafast (Boston, MA, USA) and main-
tained in DMEM (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan)
supplemented with 10% FBS (Life Technologies). All cell lines were authenticated
by the providers using karyotype, isoenzmes, and/or microsatellite profiling (short
tandem repeat or simple sequence length polymorphism). Cultured cells were
tested for mycoplasma contamination using the MycoAlert Mycoplasma Detection
Kit (Lonza).

Gene transduction. The coding sequences of genes were amplified by RT-PCR and
inserted into the retroviral vector pMXs-ires-bsr. All cDNAs were verified by
Sanger sequencing. To produce infectious viral particles, HEK293T cells were co-
transfected with the indicated plasmids along with the packaging plasmids (Takara
Bio, Kusatsu, Japan).

In vivo mouse studies. Female C57BL/6J, BALB/c, and BALB/c-nu/nu mice
(5–7 weeks of age) were purchased from Charles River Laboratories Japan
(Yokohama, Japan) and used at 6–9 weeks of age. MC38 cells or EMT6 cells
(1 × 106 cells) infected with retroviral vector expressing ERVFRD-1 or mock vector
were subcutaneously inoculated into the flanks of the mice, and tumor size was
monitored every 3 days. Tumor diameter was measured using calipers, and tumor
volume was determined by calculating the volume of an ellipsoid using the fol-
lowing formula: length × width2 × 0.5. All mouse experiments were approved by
the Animals Committee for Animal Experimentation of the National Cancer
Center Japan. All experiments met the United States Public Health Service Policy
on Humane Care and Use of Laboratory Animals.

Statistics and reproducibility. Differential gene expression (DGE) was inferred
using the Wald test under a negative binomial distribution implemented in
DESeq272. Differential transcript usage (DTU) was calculated by the log-likelihood
ratio test implemented in DEXSeq75. Enrichment of gene ontologies was calculated
by the hypergeometric test. Student’s t-test was used for testing the difference of
tumor weight in mouse models. To test the association between percent-spliced-in
of TNS3 and prognosis, regression analyses under Cox proportional hazards
models were performed for four indicators, overall survival (OS), disease-specific
survival (DSS), disease-free interval (DFI), and progression-free interval (PFI)82,
with race, sex, age at diagnosis, subtype, and TNS3 expression (Z-score normalized)
as covariates. For DGE and DTU in breast cancer data, a two-tailed P < 0.01 was
considered statistically significant, based on our observations in the simulation
studies. For DGE in TNS3-expressing MCF10A cells, genes with two-tailed P < 0.1
were used for the subsequent hypergeometric test. Otherwise, a two-tailed P < 0.05
was considered statistically significant. In situations involving multiple tests, the
false discovery rate was calculated using the Benjamini and Hochberg method,
except that stage-wise correction was applied for DTU with StageR56.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw sequencing data have been deposited in the Japanese Genotype-Phenotype
Archive (https://www.ddbj.nig.ac.jp/jga/index-e.html) under accession number
JGAS000095. The data set ID for the whole-genome sequence and RNA-seq is
JGAD000095, and the dataset ID for Iso-seq is JGAD000457. Supplementary Data (the
annotation of the MuSTA-derived transcriptome generated from 22 breast cancer
specimens, the annotation of the novel predicted proteins, and the correlations of gene
expression between intergenic genes and their neighbor genes) are available at Figshare83.
TCGA data were obtained via cBioPortal (https://www.cbioportal.org/).

Code availability
MuSTA and simlady are freely available at https://github.com/shinichinamba/MuSTA
and https://github.com/shinichinamba/simlady, respectively, under the MIT License. The
other bioinformatic tools used in this study are freely available and listed below:
Genomon60 (version 2.6.0), STAR61 (version 2.5.2a), RSEM63 (version 1.3.1), Salmon62

(version 0.12.0), SMRTlink18 (version 5.1.0.26412), LoRDEC64 (version 0.9),
Minimap265 (version 2.12-r847-dirty), SQANTI27 (version 1.2), DRIMSeq76 (version

1.10.1), DESeq272 (version 1.22.2), DEXSeq75 (version 1.28.3), tximport74 (version
1.10.1), stageR56 (version 1.4.0), HMMER79 (version 3.1b2), SUPPA277 (version 2.3),
psichomics78 (version 1.8.2), and BLAST66 (version 2.9.0+).
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