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Metagenome-assembled genomes and gene
catalog from the chicken gut microbiome aid in
deciphering antibiotic resistomes
Yuqing Feng 1, Yanan Wang 2, Baoli Zhu3, George Fu Gao 3, Yuming Guo1 & Yongfei Hu 1✉

Gut microbial reference genomes and gene catalogs are necessary for understanding the

chicken gut microbiome. Here, we assembled 12,339 microbial genomes and constructed a

gene catalog consisting of ~16.6 million genes by integrating 799 public chicken gut micro-

biome samples from ten countries. We found that 893 and 38 metagenome-assembled

genomes (MAGs) in our dataset were putative novel species and genera, respectively. In the

chicken gut, Lactobacillus aviarius and Lactobacillus crispatus were the most common lactic acid

bacteria, and glycoside hydrolases were the most abundant carbohydrate-active enzymes

(CAZymes). Antibiotic resistome profiling results indicated that Chinese chicken

samples harbored a higher relative abundance but less diversity of antimicrobial resistance

genes (ARGs) than European samples. We also proposed the effects of geography and host

species on the gut resistome. Our study provides the largest integrated metagenomic dataset

from the chicken gut to date and demonstrates its value in exploring chicken gut

microbial genes.
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Chickens are an important source of meat and eggs for
humans, and over 60 billion chickens are estimated to
exist worldwide1. A large number of microbes, including

bacteria and archaea, colonize the chicken gastrointestinal tract
and may play vital roles in the degradation of nutrients2, immune
system development3, pathogen exclusion4, abdominal fat mass5,
feed efficiency6, etc. Understanding the roles of the chicken gut
microbiome is essential for manipulating gut microbes to pro-
mote chicken health and increase the efficiency of chicken
production.

In recent years, culture-independent metagenomic approaches
have improved our understanding of the diversity, composition,
and gene content of gut microbiota in chickens. Similar to other
animals, chicken gut flora are dominated by four bacterial phyla,
Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria.
Although most microbial genes in the chicken gut are different
from those in humans and pigs at the gene sequence level, a large
majority of these gene functions are similar among chickens,
humans, and pigs7. The chicken caeca host the largest number of
microbes and play a critical role in chicken gut health, especially
due microbial abilities to ferment carbohydrates to produce short-
chain fatty acids8. As the major enzymes that breakdown
plant-derived fibers and degrade dietary carbohydrates and host-
derived glycans9, carbohydrate-active enzymes (CAZymes) have
received much attention in gut microbial studies in both chickens
and other animals. For example, more than 8000 CAZymes were
identified in 155 metagenome-assembled genomes (MAGs) from
the chicken gut microbiome10. A total of 442,917 genes were
predicted to be CAZymes involved in carbohydrate metabolism
in 4941 rumen microbial MAGs in cattle11.

In addition to being involved in nutrient metabolism, the
chicken gut microbiome is regarded as a reservoir for anti-
microbial resistance genes (ARGs), potentially compromising
human health due to the widespread use of antimicrobials in
chicken production12. We previously profiled regional differences
in chicken gut microbial antibiotic resistomes in China13 and
showed that the human gut shares the highest number of mobile
ARGs with the chicken gut microbiome14. Different mobile
genetic elements, such as plasmids, facilitate the spread of anti-
microbial resistance among bacteria through horizontal gene
transfer (HGT)15,16. In both the human and chicken gut micro-
bial communities, HGT-mediated ARG transfer is shaped by the
bacterial phylogeny14.

Although our knowledge of chicken and other animal gut
microbiomes was significantly expanded in the high-throughput
sequencing era, the detailed functions of gut microbiota in
host health and diseases are still difficult to determine. This is
partially due to the lack of sufficient reference genomes and genes
for gut microbes17, which impedes the interpretation of sequen-
cing data obtained by culture-independent methods. Currently,
reference gene catalogs and/or MAGs of gut microbiomes have
been reported for both humans and animals7,11,18–21. In chickens,
a gene catalog containing ~9 million genes was previously con-
structed using 495 chicken samples from seven different farms in
China7. Additionally, we built a gene catalog containing a similar
gene number (~8.5 million) using 130 poultry samples collected
from live poultry markets in China13. For MAGs, 469 draft
bacterial genomes were first assembled using the gut metagen-
omes of 24 chicken samples21. Recently, these metagenome-
assembled reference genomes were expanded to include 5595
MAGs based on 632 chicken metagenomes22. These assembled
chicken gut microbial genomes and the gene catalog provide an
overview of the chicken gut microbiota landscape. However,
along with the increased effort to profile the chicken gut micro-
biome, expanded and integrated MAGs and gene catalogs are
urgently needed.

In the current study, we combined the metagenomic data of the
chicken gut microbiome from China and European countries to
build an integrated chicken gut microbial reference genomes and
gene catalog. We annotated and analyzed the assembled genomes
and gene catalog using multiple bioinformatic tools and data-
bases. We also profiled the ARGs in the chicken gut microbiome
using the newly assembled MAGs and the gene catalog and
compared chicken and human gut antibiotic resistomes. These
integrated genomic and gene resources are essential for better
understanding the structure and functions of the chicken gut
microbiome.

Results and discussion
Assembly of 12,339 MAGs from chicken gut microbiome
sequencing data. We assembled expanded MAGs and con-
structed an integrated gene catalog using metagenomic sequen-
cing data from 799 public chicken gut microbiome samples in
China and Europe for the workflow (Fig. 1 and Supplementary
Data 1 and 2). After binning the metagenomic contigs, we gen-
erated 12,339 dereplicated MAGs (99% average nucleotide iden-
tity, ANI) and 1978 dereplicated MAGs (95% ANI) from 19,750
high-quality MAGs (completeness ≥80%, contamination ≤10%,
Fig. 2a and Supplementary Data 3). The overwhelming majority
of chicken gut microbes were bacteria (1970 genomes), and
archaea were extremely scarce (eight genomes). According to the
GTDB-Tk assignments, the most dominant phylum was Firmi-
cutes A (n= 822), followed by Bacteroidota (n= 348). When
redundant MAGs reported in two recent studies21,22 were
removed from our data, a total of 893 species-level MAGs (45.1%)
were putative novel species, and a total of 38 genera were can-
didate novel genera (Supplementary Fig. 1a–c and Supplementary
Data 4 and 5). The greatest numbers of novel species-level
(n= 20) and genus-level (n= 9) MAGs belonged to the genera
RC9/Alistipes and the order Oscillospirales, respectively. Two
MAGs (MAGs_co_3131 and MAGs_co_10417) could only be
assigned to the class level. Strains of Firmicutes A and Bacter-
oidota exhibited the highest diversity, as reflected by the Shannon
index (Supplementary Fig. 1d), suggesting their contributions to
the chicken gut microbiota composition and successful niche
occupation and niche/substrate specialization. Strains in the
Bacteroidota phylum had relatively larger genome sizes and
higher proportions of CAZymes (Supplementary Fig. 1e, f),
implying their important role in digesting complex carbohy-
drates; thus, these strains may increase feed efficiency in
chickens23. Four of the eight archaeal genomes (95% ANI) were
novel species, which all belonged to the phylum Thermo-
plasmatota (Supplementary Data 4) and were located relatively
close to Candidatus Methanomethylophilus alvus Mx-05 in the
phylogenetic tree (Supplementary Fig. 2 and Supplementary
Data 6). Ca. M. alvus Mx-05 was recently isolated from the
human gut and demonstrated to have the ability to convert tri-
methylamine into methane24.

After mapping reads to the dereplicated MAGs at the strain
level, over 85.0% of reads were mapped in most samples
(Supplementary Fig. 3a and Supplementary Data 7), demonstrat-
ing that our MAGs well represented the chicken gut microbiome.
There were 705 samples harboring more than 100 strains, while
other samples appeared to contain fewer strains, which may have
been due to the limited sequencing depth (Supplementary
Fig. 3b). We removed samples with less than 15 million paired
reads for most of the downstream analyses, and 477 samples
remained (Supplementary Data 8). Variations were observed
between samples. At ≥1× coverage, 10,657 MAGs existed in less
than 50 gut samples, while only 43 MAGs were present in more
than 300 samples (Fig. 2b). Two strains of Lactobacillus aviarius
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and Lactobacillus crispatus were very common in the chicken gut
microbiota, presenting in over half of the samples (Supplemen-
tary Fig. 3c). This implies the importance of these two
autochthonous lactic acid bacteria in chickens. A total of 535
MAGs were shared among samples from the ten countries
(Supplementary Data 9), most of which belonged to Limosilacto-
bacillus (n= 153), followed by Escherichia (n= 101) and
Lactobacillus (n= 78) (Supplementary Fig. 3d and Supplemen-
tary Data 10). Among the 535 shared MAGs, 71.2% (381/535)
were novel strains, but no novel genera were shared. The novel
strains were mainly from the three genera mentioned above:
Limosilactobacillus (n= 92), Escherichia (n= 81), and Lactoba-
cillus (n= 67). Due to the strain-specific properties of Escherichia
and lactic acid bacteria25,26, strain-level characterization of
chicken gut microbes deserves more attention.

An integrated gene catalog consisting of ~16.6 million genes.
We next built an integrated chicken gut microbial gene catalog
(GG-IGC) containing 16.6 million nonredundant genes, which
was 1.8 times larger than the previous reference gene catalog of
the chicken gut microbiome (CGM-RGC, 9 million)7. The lengths
of genes in the GG-IGC ranged from 102 bp to 91,812 bp, with a
median value of 1083 bp, and more than 63.1% of these genes
were complete open reading frames. There were 4,987,193 genes
in GG-IGC assigned to 10,665 different KEGG orthologs, com-
pared with 2,611,763 genes assigned to 10,046 KEGG orthologs in
CGM-RGC. In addition, 11,290,604 (68.2%) and 6,960,807

(77.0%) genes were annotated with COG functional categories in
the GG-IGC and CGM-RGC, respectively (Fig. 2c and Supple-
mentary Data 11). The GG-IGC contained 1.9 and 2.5 times
more genes with unknown functions [S] and no-hit results,
respectively, than the CGM-RGC (Supplementary Fig. 4 and
Supplementary Data 12). These results suggested that the GG-
IGC expanded the current chicken gut gene catalog in both
microbial gene number and gene function, facilitating better
characterization of the roles of the chicken gut microbial com-
munity in future multiomics studies. In addition, our results,
together with gut microbiome gene catalogs in different hosts
from previous studies18,19,27,28, demonstrated many genes in gut
microbial gene catalogs have unknown functions or even lack
matches in any database. Therefore, a large number of gut
microbes and their functions have not been recognized, which
warrants further investigation.

We further annotated the GG-IGC with the databases
dbCAN2, virulence factor database (VFDB) and PlasmidFinder
to profile CAZymes, virulence factors and plasmid patterns in the
chicken gut microbiome. A total of 565,262 CAZyme-encoding
genes were annotated in the GG-IGC, corresponding to 371
CAZyme subclasses. The glycoside hydrolase (GH) class was the
most abundant in the chicken gut, followed by glycosyltransferase
(GT) and carbohydrate-binding module (CBM). The relative
proportions of the six CAZyme categories were nearly the same
among samples from different countries, but the relative
abundance of the CAZyme genes was higher in samples from

Fig. 1 Flowchart of the steps and bioinformatic tools applied in assembling, constructing, annotating, and analyzing the reference genomes and
microbial gene catalog. Metagenomic sequencing data from the 799 chicken gut microbiome samples from ten countries were integrated. The MAGs
(more than 80% completeness and less than 10% contamination) were clustered to strain-level and species-level genome bins at 99% and 95% ANI,
respectively. The phylogenetic tree, CAZymes, ARGs, and HGT of the MAGs were analyzed further. The complete genes were clustered to generate the
16.6-million nonredundant gene catalog. Functions of the genes were annotated to profile CAZymes, virulence factors, and plasmid patterns in the chicken
gut microbiome.
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Fig. 2 Metagenome-assembled 12,339 reference genomes and 16,565,684 nonredundant genes from 799 chicken gut microbiomes. a Phylogenetic tree
of 1970 bacterial and eight archaeal species. The taxonomies of the MAGs were assigned by GTDB-Tk. From the inner to outer rings, the first ring
represents the phyla, the second ring represents the novel species (n= 893), the third ring represents the novel genera (n= 38), and the height of each bar
in the fourth ring represents the number of strain-level genomes in each species. b Distribution of the 12,339 MAGs among gut samples with the criteria of
over 1× coverage. For example, 919 MAGs were present in samples with counts between 50 and 100. c Number of genes annotated by eggNOG and KEGG
in the CGM-RGC and GG-IGC. The CGM-RGC is a previously published microbial gene catalog of the chicken gut microbiome7. The GG-IGC is the
integrated microbial gene catalog produced in the present study.
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China than in those from European countries (P < 0.05,
Supplementary Fig. 5). A total of 212 CAZyme subclasses were
present in more than 95% of the samples, with average relative
abundances ranging from 9.1 × 10−7 to 3.2 × 10−3 (Fig. 3a),
suggesting that most CAZymes were widely distributed among
chicken individuals. CAZymes from the GT and GH classes were
the most dominant in the chicken gut, with GT2 and GH13
displaying the highest abundance among chickens (Fig. 3b).
Additionally, the CAZymes GT2 and GH13 were the top two
CAZymes with greatest abundance among samples from different
countries. According to the whole CAZyme abundance profile,
enzymes with different abundances among samples from the ten
countries were mainly in the GH class, such as GH13, GH23,
GH25, GH1, GH2, and GH3 (Fig. 3c), and are closely related to
cellulose and starch degradation10. Notably, GT2, which is a
glycosyltransferase, is known to be highly interconnected with
other enzymes and may drive temporal changes in the chicken
gut microbiota10. These results may indicate differential abilities
of the chicken gut microbiome in carbohydrate metabolism,
probably due to the different chicken lines, raising conditions,

and diet compositions, resulting in different chicken gut
microbiota in different countries.

Plasmid typing results showed that 27 types (total 145) of
plasmids were present in more than 60% of samples. The top
three plasmid types in the chicken gut were repUS43, repUS64
and rep22 (Supplementary Fig. 6a, b and Supplementary Data 13).
The commonly present repUS43 may be a carrier of the
tetracycline resistance gene tet(M) in the chicken gut microbiome,
as reported previously29,30. Plasmid patterns in samples from
China were different from those from the other countries, and
they included fewer IncX3, IncX1, p0111, and IncI1 plasmid types
(Supplementary Fig. 6c, d). IncX3 plasmids have been described
to carry various carbapenemase genes in carbapenemase-
producing Enterobacteriaceae worldwide31. The common VF
genes in the chicken gut were carried by bacteria of the
Enterobacteriaceae family, including arcB, entB, entE, entF,
rhs/PAAR, and vgrG/tssI (Supplementary Fig. 7 and Supplemen-
tary Data 14), highlighting the pathogenic role of Enterobacter-
iaceae. Plasmid patterns and virulence gene profiles are highly
associated with HGT events32, and more efforts are needed to

Fig. 3 Distribution of CAZymes in chicken gut samples. a Median relative abundance and prevalence of the 371 CAZyme subclasses found in chicken gut
samples. b The top ten most abundant CAZyme subclasses found in the chicken gut microbiome. The height of each bar is the median value of the relative
abundance of each CAZyme subclass. c The top 40 CAZyme subclasses with abundance variations among the ten countries. Color: Z-scores of the median
values of the relative abundance.
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accurately identify the mobile genetic elements involved by using
metagenomic methods in gut microbiome studies.

Country-specific chicken gut antibiotic resistomes and com-
parison with that in humans. We used the expanded MAGs and
the GG-IGC to explore the antibiotic resistome in the chicken gut
microbiome. We first analyzed the ARGs in the MAGs and found
that 1388 of the 12,339 (11.2%) strain-level MAGs harbored 235
ARG types. The common ARGs in the MAGs were lnu(C)
(n= 201), mdf(A) (n= 120), and ant(6)-Ia (n= 90) (Supple-
mentary Fig. 8a and Supplementary Data 15). Escherichia, Rom-
boutsia, and Enterococcus were the top three genera containing
the greatest number of ARGs in each genome (≥5 genomes were
considered in each genus) (Fig. 4a). HGT prediction analysis
indicated that HGT events occurred frequently among Lachnos-
piraceae, Bacteroidaceae, Oscillospiraceae, Ruminococcaceae, and
Acutalibacteraceae but rarely among Lactobacillaceae and other
families (Supplementary Fig. 8b). Concerning HGT between gut
bacteria, this result reinforces the general notion of lactobacilli as
safe. Among the 20,694 genes that may be subjected to horizontal
gene transfer, only 17 were ARGs (Supplementary Fig. 9 and
Supplementary Data 16). The low positive rate for ARGs in
MAGs may have been affected by the plasmid recovery rate and
genomic islands during the process of genome binning33. Con-
sistent with a previous study, tetracycline and macrolide AMR
were most abundant in the chicken gut microbiome at the gen-
ome level34.

We then examined ARGs in our gene catalog. The proportions
of each category of ARGs were similar among samples from the
ten countries, except for the higher ratio of tetracycline-resistance
genes in UK samples (Supplementary Fig. 10a). Chinese samples
harbored a higher relative abundance of ARGs than those from
Italy, France, the Netherlands, Germany, and the UK (P < 0.05),
but the ARG diversity in Chinese samples was not high and was
even lower than that in samples from Poland, Spain, Italy, and
Germany (P < 0.05, Fig. 4b, c). The high ARG diversity in samples
from these four European countries may be related to the high
burden of plasmids in the chicken gut microbiomes in these
countries (Supplementary Fig. 6c). Both the abundance and
diversity of ARGs were the lowest in the UK samples (P < 0.05).
Among the 304 ARG types found in GG-IGC, 40 were more
abundant in Chinese samples, while 77 were more abundant in
European samples (Supplementary Fig. 10b). Chinese samples
harbored more ARGs of tetracycline [tet(W), tet(40), tet(O/W/32/
O)] and aminoglycoside [aph(3′)-III, ant(6)-Ia, aac(6′)-aph(2′′)],
but European samples contained more ARGs of macrolide
[lnu(C), lnu(A)] (Supplementary Fig. 10c). The mobile colistin
resistance gene mcr-1 was found in 5.8% (16/275) of Chinese
samples and 7.4% (15/202) of European samples. One Belgian
sample was positive for the mcr-9 gene. By further mapping the
original sequencing reads in each sample to all mcr gene variants
known to date, six mcr gene variants, including mcr-1, mcr-3,
mcr-5, mcr-7, mcr-9, and mcr-10, were found to be present in the
chicken gut microbiome (Supplementary Data 17). The antibiotic
resistome in the chicken gut was more related to the plasmid
composition than the microbial composition [correlations: 0.201
(microbiota) vs. 0.617 (plasmid), P < 0.001, Fig. 4d, e], as
confirmed by the residuals between these two comparisons
(P < 0.05, Fig. 4f).

We then annotated ARGs in the 9.9 million gene catalog of the
human gut35 and compared resistomes between humans and
chickens. We showed that 1) the chicken gut contained more
ARG types than humans (304 vs. 179), and both human samples
and chicken samples from China harbored higher abundances of
ARGs than European samples. 2) Gut samples from the same

host, either chicken or human, shared a higher number of ARGs
(87.8% between Chinese and European chicken samples and
89.4% between Chinese and European human samples). 3)
Chinese human and chicken samples shared a slightly higher
number of ARGs than that shared between European samples
(42.3% vs. 40.8%). 4) Additionally, the effect of geography on the
antibiotic resistome was lower than that of the host species
(Fig. 4g–i and Supplementary Fig. 11).

Conclusions
By integrating metagenomic data of the chicken gut microbiome,
we expanded the reference microbial genomes in the chicken gut
and constructed an integrated gut microbial gene catalog. These
data provide a foundation for further functional characterizations
and taxonomic assignments of chicken gut microbes. We profiled
the antibiotic resistome in the chicken gut using an integrated
dataset and revealed the role of plasmids in shaping ARG patterns
in the gut microbiome and the host specificity of ARGs in chicken
and human gut microbial communities.

Methods
Metagenomic data collection. We collected metagenomic data from four publicly
available chicken gut microbiome sequencing projects from China and nine Eur-
opean countries in this study, including PRJEB33338 (n= 24)21, PRJEB22062
(n= 178)34, PRJNA417359 (n= 495)7 and PRJNA408020 (n= 102), the latter of
which we generated previously13. An integrated catalog of 9.9 million reference
genes in the human gut microbiome35 was included for the comparison of gut
antibiotic resistomes.

Metagenome assembly and binning. Before assembly, low-quality bases (Phred
score < 20) and residual Illumina adapter contaminations were excluded using
fastp (v0.19.4)36 and Cutadapt (v1.18)37, respectively, and reads mapped to
chicken, maize, soybean, wheat and zebrafish genomes by BMTagger (v1.1.0) were
filtered out. The clean reads of each metagenome were assembled independently
using MEGAHIT (v1.1.3)38. To increase the generated number of MAGs, coas-
sembly was further performed by dividing all 799 samples into 29 groups using
MEGAHIT. The criteria for the grouping of metagenomes were based on various
projects and the size of the sequencing data. For metagenomic binning, three
methods, i.e., MetaBAT2 (v2.12.1)39, Maxbin2 (v2.2.6)40 and Concoct (v1.0.0)41,
were used. A superior bin set from multiple original binning predictions was
produced with the Binning_refiner module42 of MetaWRAP43. The completeness
and contamination of each bin from the superior bin set were evaluated using
CheckM (v1.0.12)44. Afterward, bins with ≥80% completeness and ≤10% con-
tamination were retained. To improve the bin quality, bins were reassembled with
SPAdes (v3.13.0)45 in the Reassemble_bins module of MetaWRAP (v1.2.1)43. All
MAGs were dereplicated at 99% ANI (equivalent to the strain level) and 95% ANI
(equivalent to the species level) using dRep (v2.6.2)46. GTDB-Tk47 was used to
assign taxonomy to the MAGs. CompareM (v0.1.2, http://github.com/dparks1134/
CompareM) was used to calculate the average amino acid identity (AAI) among
the MAGs. Genomes were defined as novel strains if the ANI output by GTDB-Tk
was <99%. Genomes were determined as novel species if the ANI output by GTDB-
Tk was <95%. Genera were defined as novel if all MAGs clustered at 60% AAI were
not assigned a genus by GTDB-Tk47. We also compared the MAGs with those
reported in chicken gut microbiomes in previous studies21,22 to avoid redundancy.
Phylogenetic trees were reconstructed using PhyloPhlAn (v3.0.60)48. The phylo-
genetic tree was based on 400 universal markers defined in PhyloPhlAn and built
using the following set of parameters: “-diversity high -fast -remove_fragmentar-
y_entries –subsample fivehundred –min_num_markers 50”. The coverage of
MAGs at the strain level was calculated as previously described11. The standalone
run_dbCAN2 (v2.0.11)49 was used to detect the presence of CAZyme genes in the
MAGs. Mass screening of the MAGs for acquired ARGs was performed using
ABRicate software (https://github.com/tseemann/abricate), which integrates the
Resfinder database50, VFDB51, and PlasmidFinder database52. All phylogenetic
trees were visualized using iTOL (v6.1.1)53. Taxonomic classification of the chicken
gut microbiome was performed using Kraken 2 (v2.0.9-beta)54, and we estimated
the abundance of each species using Bracken (v2.6)55.

Construction of the gene catalog GG-IGC. Gene prediction of the contigs from
each sample was performed by Prodigal (v2.6.3)56 with the parameter “-p meta”.
The predicted genes were filtered to remove genes shorter than 100 bp. A non-
redundant gene catalog was constructed from the predicted genes by MMseq257

with the parameter “easy-cluster -min-seq-id 0.95 -c 0.9” to cluster the genes with
the criteria of identity ≥95% and overlap ≥90%. To calculate relative gene abun-
dances, clean reads from each sample were aligned against the gene catalog by
BWA-MEM2 (v2.1)58. The outputs were converted to the BAM format by
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Fig. 4 Profiling the antibiotic resistome in the chicken gut microbiome. a Number of ARGs in MAGs at different taxonomic levels. The inner to outer
portions represent the phylum level to the genus level. The color represents the mean values of ARGs in specific taxa. b Relative abundance of ARGs in
samples from different countries. c Shannon index of ARGs in samples from different countries. d Procrustes analyses of the correlation between the
microbial abundances and the ARG abundances. Red dots: ARG abundances; blue dots: microbial abundances. e Procrustes analysis of the correlation
between the plasmid and ARG abundances. Red dots: ARG abundances; green dots: plasmid abundances. f Violin plot of the residuals from the Procrustes
analyses in d, e. g Proportion of ARGs shared among microbiomes. C[CN], C[EU], H[CN], and H[EU] denote Chinese chicken samples, European chicken
samples, Chinese human samples, and European human samples, respectively. h Relative abundance of ARGs in the chicken and human gut microbiomes.
i Principal coordinate analysis (PCoA) based on the Bray–Curtis distance of the ARG abundance in chickens and humans from China and Europe. CN China,
UK United Kingdom, DE Germany, BG Bulgaria, IT Italy, FR France, ES Spain, PL Poland, BE Belgium, NL Netherlands.
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SAMtools (v1.11)59. Then, the BAM files were translated to abundances using the
“jgi_summarize_bam_contig_depth” script from MetaBAT 239. The nonredundant
gene catalog was annotated with KofamKOALA (v1.3.0)60 to assign KEGG
Orthology. eggNOG-mapper (v2.0.1b)61 was used to assign clusters of orthologous
groups (COG) functional categories. The presence of CAZyme genes, acquired
antimicrobial resistance genes, virulence genes and plasmid replicon genes in the
gene catalog was analyzed by the method described above. To explore colistin-
resistance genes with low copy numbers that were not included in the gene catalog,
clean reads of each sample were aligned to colistin-resistance genes in the
ResFinder database50 using BWA-MEM258.

Identification of horizontal gene transfer. To identify HGT within chicken gut
communities, HGT analysis was performed using MetaCHIP (v1.10.0) on all
dereplicated MAGs (clustered with 95% ANI) at the family level. The identification
of HGT was performed by the combination of best-match and phylogenetic
approaches. The predicted gene flows were visualized using the circlize package in
R62. The identified HGT genes were further screened against the ResFinder data-
base to identify ARGs using the software ABRicate, as described above.

Statistics and reproducibility. The Shannon index and Bray–Curtis distance were
calculated by the vegan (v2.5–7) package in R. Differential abundance analysis was
performed by a two-tailed Wilcoxon rank sum test. When multiple hypotheses
were considered simultaneously, P-values were adjusted to control the false dis-
covery rate in R with the method described previously63. To determine the effect of
the microbiota and the plasmids on the antibiotic resistome, we used Procrustes
analysis to determine correlations based on abundance profile Bray–Curtis dis-
tances. The correlation between the two datasets was determined by using the
“protest” function in R.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The gene catalog and MAGs generated in the present study are available in the National
Microbiology Data Center (NMDC, https://nmdc.cn/icrggc/) and the Figshare repository
with the identifiers “https://doi.org/10.6084/m9.figshare.15982089” and “https://doi.org/
10.6084/m9.figshare.15911964”)64,65. The source data used to create the box plots in the
main figures were deposited in Figshare repository (“https://doi.org/10.6084/
m9.figshare.16871887”)66. Any remaining information can be obtained from the
corresponding author upon reasonable request.

Code availability
All R code is available from the corresponding author upon reasonable request. The
versions of the software used in the study are described in the “Methods” section.
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