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PremPLI: a machine learning model for predicting
the effects of missense mutations on protein-ligand
interactions
Tingting Sun 1,2, Yuting Chen1,2, Yuhao Wen1, Zefeng Zhu 1 & Minghui Li 1✉

Resistance to small-molecule drugs is the main cause of the failure of therapeutic drugs in

clinical practice. Missense mutations altering the binding of ligands to proteins are one of the

critical mechanisms that result in genetic disease and drug resistance. Computational

methods have made a lot of progress for predicting binding affinity changes and identifying

resistance mutations, but their prediction accuracy and speed are still not satisfied and need

to be further improved. To address these issues, we introduce a structure-based machine

learning method for quantitatively estimating the effects of single mutations on ligand binding

affinity changes (named as PremPLI). A comprehensive comparison of the predictive per-

formance of PremPLI with other available methods on two benchmark datasets confirms that

our approach performs robustly and presents similar or even higher predictive accuracy than

the approaches relying on first-principle statistical mechanics and mixed physics- and

knowledge-based potentials while requires much less computational resources. PremPLI can

be used for guiding the design of ligand-binding proteins, identifying and understanding

disease driver mutations, and finding potential resistance mutations for different drugs.

PremPLI is freely available at https://lilab.jysw.suda.edu.cn/research/PremPLI/ and allows to

do large-scale mutational scanning.
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Protein–ligand interactions are of fundamental importance
in myriad processes occurring in living organisms, trig-
gering a multitude of signal transduction processes1–3.

Many genetic diseases are caused by missense mutations through
altering binding between small-molecule ligands and proteins4,5.
For example, the association between disease-related mutations in
the type I collagen and the ligand binding sites was observed6 and
the ligand-binding-domain mutations in human androgen
receptor gene led to disrupted interaction between the N-terminal
and C-terminal domains7. Moreover, drug resistance is the main
cause of the failure of therapeutic drugs in clinical practice,
particularly for the treatment of infectious diseases and
cancer8–10, and mutation in drug target is a critical mechanism
that results in drug resistance11–13. For instance, in hormone-
resistant breast cancer, mutations in estrogen receptor 1 gene
(ESR1) are associated with acquired endocrine resistance14, and
two ESR1 ligand-binding site mutations produced partial resis-
tance to the currently available endocrine therapies15. During the
last decade, next-generation sequencing techniques have detected
vast amounts of genetic mutations in humans, leaving clinicians
and researchers without knowledge of whether these mutations
are associated with genetic diseases or the emergence of drug
resistance. Experimental methods can accurately measure the
effects of missense mutations on proteins and their complexes,
but they are time-consuming and expensive and do not have the
capability to tackle large amounts of data16. Therefore, the
development of reliable computational methods to reveal mole-
cular effects of missense mutations would pave the way for the
identification of pathogenic or drug resistance mutations and
contribute to many biomedicine related fields and drug discovery.

Some attempts to model the effects of mutations on
protein–ligand interactions have been made but with limited
success and applicability. In summary, the methods can be clas-
sified into three main categories: (i) statistical/machine learning
approaches using experimentally measured free energy data to
parameterize regression models17–19, such as mCSM-lig17, which
usually require little computational cost; (ii) simulation-based
methods that rely on mixed physics-based and knowledge-based
potentials to sample side-chain rotamers with restrained back-
bone motion, such as Rosetta20, which have proven successful in
the early stages of the discovery process21,22; (iii) alchemical free
energy calculations that introduce a series of intermediate
alchemical states in a thermodynamic cycle23–27, which have
become increasingly popular in the lead optimization stage of
small molecule drug discovery and started being used pro-
spectively by the pharmaceutical industry28,29. Several studies
have been conducted to examine the performance of these
methods on different test cases19,25,27. For instance, Aldeghi et al.
evaluated the potential of all above three kinds of computational
approaches to predict changes in binding affinity of eight dif-
ferent inhibitors with cancer target Abl kinase upon 144
mutations19. Overall, the prediction performance of Rosetta and
alchemical free energy calculations are better than the current
available machine learning approaches but they are still not
satisfied and need to be further improved in both accuracy and
speed. Alchemical calculations considering the full conforma-
tional flexibility of protein–ligand complex and the discrete nat-
ure of solvent are much more computationally expensive
compared to statistical and (semi)-empirical approaches, more-
over the workflow of which is complex, tedious, and error-prone.
Therefore, developing prediction methods with tradeoffs between
computational cost and accuracy is urgently required.

With a large amount of experimental data available, many
data-driven machine learning methods have been developed
to assess the impact of mutations on protein stability30–36

and protein–protein interactions37–47, including PremPS30,
MutaBind39, and MutaBind240 introduced by us. In addition, we
also proposed PremPDI48 and PremPRI49 to evaluate the effects
of mutations on binding between protein and nucleic acid. These
approaches have achieved relatively high predictive accuracy with
low computational cost. However, very few machine learning
methods were proposed to assess the impact of mutations on
protein–ligand binding and their prediction accuracy is very
limited17–19. One reason hindering the development is due to the
complexity of small molecule chemistry and binding interaction.
Another major limitation is the availability of high-quality
experimental data that can be used for training. Recently, a
manually curated database Platinum was created50, which
associates experimentally measured effects of mutations on
protein-small molecule binding with three-dimension structures
of the corresponding complexes, allowing us to propose a
structure-guided computational method to estimate the affinity
changes upon mutations quantitatively.

Therefore, we developed a machine learning computational
method, PremPLI, to estimate the effects of single point muta-
tions on protein–ligand interactions by calculating the binding
affinity changes quantitatively. PremPLI uses a random forest
regression scoring function and consists of 11 sequence-based
and structure-based features. It performs well across different
types of cross-validation and independent tests, with similar
predictive accuracy to Rosetta and alchemical free energy calcu-
lations but much lower computational costs. PremPLI can be
used to aid in the development of new drugs to combat rising
drug resistance, finding disease-causing or cancer driver missense
mutations, and the design of proteins with novel ligand-binding
functionalities and specificities.

Results and discussion
Currently, the majority of studies for estimating the effects of
mutations on protein–ligand binding are based on alchemical free
energy calculations and Rosetta protocols. The prediction accu-
racy, especially the speed, are still not satisfied. Hence, we develop
the machine-learning approach PremPLI (a flowchart high-
lighting the important steps in the methodology is provided in
Fig. 1), which greatly improves the predictive speed without
compromising the accuracy.

PremPLI predictive model is composed of 11 features and built
using Breiman’s random forest regression algorithm implemented
in the R randomForest package. Hyperparameter tuning in a
balanced 5-fold cross validation determined that the optimal
settings for the number of decision trees and the number of
features considered by each tree when splitting a node are 300
and 3, respectively. As described in the Methods section, we
compiled two datasets of S859 and S796 (Fig. 2 and Supple-
mentary Fig. 1 and Supplementary Table 1), and the difference
between them is using all values or only one selected binding
affinity change for these mutations with multiple ΔΔGexp. The
performance trained and tested on S859 and S796 are shown in
Supplementary Table 2 and no significant differences were
observed. However, when tested on the blind set of S144 (Fig. 2
and Supplementary Fig. 2), the Pearson correlation coefficients
using the models trained by S796 and S859 are 0.46 and 0.36,
respectively, the difference is statistically significant (p-value <
0.01, Hittner et al.51 test). Therefore, the unique single mutation
dataset of S796 was used to parameterize PremPLI model. The
Pearson correlation coefficient between experimental and calcu-
lated changes in binding affinity is 0.70 and the corresponding
RMSE is 1.08 kcal mol−1 when trained and tested on S796
(Fig. 3a). Besides, we also tried three other popular learning
algorithms of support vector machine (SVM), eXtreme Gradient
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Boosting (XGBoost), and extremely randomized trees (Extra-
Trees) to build the PremPLI model. Although the Leave-one-
complex-out results provided in Supplementary Table 3 show
that RF, XGBoost, and ExtraTrees are comparable in perfor-
mance, the best performance is achieved by random forest when
tested on the datasets of S144, S129, and S99 (Supplementary
Table 4).

Performance on four types of cross-validation. In supervised
machine learning, overfitting is a common problem in which the
model performs well on the training data but poorly on the new
and unseen data. To prevent overfitting, cross-validation has been
used to tune the PremPLI model, and in addition, only 11 features
with remarkable contributions were selected. Here, we further
performed four different types of cross-validation to identify how

Fig. 1 A flowchart highlighting important steps in the methodology. (1) Collecting and processing experimental data used for training, (2) Producing and
optimizing 3D structures of wild-type and mutant protein-ligand complexes used for calculating structure-based features, (3) calculating around 400
features and selecting distinct features with remarkable contribution to the quality of the model, and (4) building PremPLI machine learning model using
random forest algorithm and trained on experimental data.

Fig. 2 Overview of the data sets used. S796: visualization of four types of protein–ligand complex structures and distribution of the number of complexes
and unique ligands across different number of mutations are presented. Majority of complexes contain only one single mutation; S144: 3D structure of
human Abl kinase with axitinib bound (PDB ID: 4WA9, mutation sites are shown in red), names and chemical structures of eight tyrosine kinase inhibitors
(TKIs), and the number of mutations for each type of inhibitor are provided; S99: the number of complexes and mutations for each type of complex
structure, statistics of the types of mutations (see Supplementary Fig. 1 for the definition), and distribution of molecular weight and number of rotatable
bonds for the ligands in S796 and S99 are shown. See Supplementary Figs. 1 and 2 for more information about the data sets.
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well our model performs on the unseen data (see “Methods”
section for more details). Figure 3b shows the distribution of
Pearson correlation coefficients for ten times 5-fold (CV1) and
10-fold (CV2) cross-validations. The PCC of each cross-
validation round exceeds 0.56 with an average value of ~0.70
for both CV1 and CV2 (Supplementary Table 2). Upon the
“leave-one-complex-out” procedure, the Pearson correlation
coefficient between experimental and computed binding affinity
changes reach the value of 0.55 and the corresponding RMSE is
1.26 kcal mol−1 (Fig. 3c). Last, we performed a validation by
leaving all complexes with the same type of ligand out of the
training set (“leave-one-type-ligand-out” validation), and the
correlation coefficient is 0.53, remaining statistically significant
(Fig. 3d).

In addition, we analyzed 5% outliers to better understand
strengths and limitations of PremPLI. Studentized residuals were
used in detecting outliers. The performance after removing
outliers is presented in Supplementary Fig. 3a, showing
significantly improved PCC after removing 5% outliers. Through
the analysis (Supplementary Fig. 3b, c), we found that the outliers
are more likely to occur in complexes with lower-affinity ligand
binding and at sites with higher number of proximal atoms and
hydrogen bonds. Consistent with the observation from the study
of ref. 17, outliers correspond to mutations with extreme
experimental values (highly decreasing or increasing affinity).
PremPLI could relatively correctly classify the highly decreasing
mutations as decreasing but lose the ability to classify highly
increasing mutations (Supplementary Fig. 3d).

Validation on independent test sets and comparison with other
methods. First, the benchmark dataset of S144 (Fig. 2 and Sup-
plementary Fig. 2) was used to assess the predictive performance
of PremPLI and compare with other computational approaches.
Hauser et al. calculated relative changes in free energy for these
144 mutations using MD simulations combined with the solution
of the Generalized Born equation calculated by Prime and
alchemical free-energy perturbation calculations using FEP+,
respectively25. More recently, Aldeghi et al. also used this dataset
and tested performance of different methodologies including MD
simulations with a free energy calculation protocol, Rosetta, and
machine learning (named as ML1 and ML2)19. For different
prediction results of MD calculations under different force fields
or Rosetta using different scoring functions, only the one showing
the best performance was presented in our study. Table 1 pro-
vides the performance of six approaches tested on S144, which are
PremPLI, FEP+ (MD calculation under the OPLS3 force field),
R15 (Rosetta using the standard REF15 scoring function), Prime,
and two machine learning methods of ML1 and mCSM-lig. The
ML1 model trained on 484 single mutations from the Platinum
database. mCSM-lig used a combination of different statistical
potentials to predict ΔΔG values and was parameterized on
763 single mutations from Platinum database17. The uncertainties
in the measures of PCC, RMSE, MCC, and the area under the
ROC and PR curves evaluated by bootstrap are provided in
Supplementary Table 5. The PCC and RMSE values shown in the
Table 1, Supplementary Fig. 4a and Supplementary Table 5
indicate that R15 has the best performance, followed by PremPLI

Fig. 3 Pearson correlation coefficients between experimental and calculated changes in binding affinity. a PremPLI trained and tested on S796 dataset,
b ten times 5-fold and 10-fold cross-validations (CV1 and CV2), c leave-one-complex-out validation (CV3), and d leave-one-type-ligand-out validation
(CV4). PCC Pearson correlation coefficient, RMSE (kcal mol−1) root-mean-square error.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02826-3

4 COMMUNICATIONS BIOLOGY |          (2021) 4:1311 | https://doi.org/10.1038/s42003-021-02826-3 | www.nature.com/commsbio

www.nature.com/commsbio


and FEP+ methods, and ML1 performs the worst. In addition,
Aldeghi et al. built a model of ML2 using ExtraTrees algorithm
and training on the S144, and the PCC and RMSE are 0.57 and
0.68 kcal mol−1, respectively, upon 8-fold nested cross-validation
(similar to the leave-one-complex-out validation used in our
study). To compare with ML2, we also used S144 as the training
set and the ExtraTrees algorithm to build a new model. The PCC
reaches 0.72 and RMSE is 0.60 kcal mol−1 upon leave-one-
complex-out validation, outperforming ML2 (Supplementary
Table 6). Given that the two models used the same training set
and algorithm, the main improvements come from the features
being used.

Second, since most users using machine learning methods,
such as PremPLI or mCSM-lig, will not or will not be able to
process complex structures as Hauser et al. did for performing
alchemical free-energy calculations, the workflow of which is
relatively complex and tedious, we also calculated binding affinity
changes of PremPLI and mCSM-lig using structures obtained
from the Protein Data Bank directly (S129, 129 mutations from
six Abl-TKI complexes). The results presented in Table 1 and
Supplementary Table 5 demonstrate that PremPLI has signifi-
cantly better performance than mCSM-lig and is not very
sensitive to the initial input structures. Moreover, to further
compare with mCSM-lig, we also retrained our model on S763
dataset (a training set of mCSM-lig, Supplementary Table 1).
Even though our features selected were not based on this dataset,
we still obtained a significantly higher correlation coefficient
(PCC= 0.73 and RMSE= 1.07 kcal mol−1) than mCSM-lig
(PCC= 0.63 and RMSE= 2.06 kcal mol−1)17, both of which were
upon 10-fold cross-validation.

Third, we assessed the predictive performance of PremPLI on S99
dataset. Since S99 is a subset of S796, we retrained the model after
removing all mutations in the overlapped complexes with S99 from
the training dataset, and then tested it on S99 (named as PremPLIC,
trained on 671 mutations from 318 complexes). Binding affinity
changes for S99 calculated by 11 Rosetta protocols, first-principles
statistical mechanics in which MD simulations used six different
force fields, and their combinations were available from the study of

ref. 27. The results of the best performing Rosetta protocol (R14) and
MD calculation (A14), and their combination (RMD) were provided
in Table 1 and Supplementary Table 5 and Supplementary Fig. 4b.
The correlation coefficient of PremPLIC is 0.69, significantly higher
than other methods (p-value < 0.01, Hitter et al.51 test). On the S99, a
diverse and challenging benchmark set, Rosetta did not perform as
well as on the S144. In addition, we found that the prediction values
of Rosetta for half of mutations from the S144 and S99 are around
zero (Supplementary Fig. 4).

Last, it is important to put the performances of approaches in the
context of their computational cost. The running time of PremPLI
for a single mutation per protein with ~400 residues is about ten
minutes on a single CPU core, and it requires ~20 s for each
additional mutation introduced in the same complex. For instance,
calculating 44GPremPLI for a mutation and 26 mutations in Abl-
axitinib complex takes ~10 and 20min, respectively. In addition, the
computation time required for each feature is provided in
Supplementary Table 7, and we could find that the calculation of
PSSM takes up most of the stated time (9min 30 s) since it performs
PSI-BLAST52 searches of protein sequences, but it does not need to
be calculated again for each additional mutation. However, each ΔΔG
estimate takes up to 32 h on a single CPU core and 72 h on a single
GPU core for Rosetta (R15) and FEP+ calculations, respectively
(Supplementary Table 8).

Performance on predicting resistance mutations. Generally,
resistance can be defined according to the resistance fold (RF):
RF ≤ 1, no resistance; 1<RF ≤ 10, low resistance; RF > 10,
resistance19,25. Following the equation of 44Gexp ¼ RTlnRF; no
resistance, low resistance and resistance mutations correspond to
ΔΔGexp ≤ 0, 0 <ΔΔGexp ≤ 1.36 and ΔΔGexp>1.36 kcal mol−1,
respectively. Here we examined the potential for PremPLI and other
methods to predict resistance mutations. ROC and PR curves using
different approaches to distinguish resistance from no and low
resistance mutations are shown in Fig. 4. The values of area under the
receiver operating characteristics curve (AUC-ROC) and precision-
recall curve (AUC-PR) and maximal MCC values are provided in
Table 1 and Supplementary Table 5, which are the most relevant
performance measures to examine when the objective is to identify
resistance mutations rather than assessing their impact on ligand
binding quantitatively. The maximal MCC value was calculated for
each method through calculating the MCC across a range of
thresholds. Given the fraction of resistance mutations in the datasets
of S144 and S99, a random classifier would return an AUC-PR of
0.13 and 0.19, respectively. In terms of the results provided in Table 1
and Fig. 4 and Supplementary Table 5, the best classifiers are Pre-
mPLI, Rosetta, and MD calculations.

As are shown in Supplementary Fig. 5, mutations located on
binding interface have on average larger effects on protein–ligand
interactions than non-interface mutations. The interface residues
were defined if any heavy atoms of them are within 5 Å distance
from any heavy atoms in ligands. Rosetta and MD calculations
perform well on interface mutations but lose the ability to predict
non-interface mutations, while PremPLI yields statistically
significant positive correlations in predicting both interface and
non-interface mutations (Table 2 and Supplementary Fig. 5). For
instance, in S144 and S99, there are five non-interface resistance
mutations, and the ΔΔG values of them are in the ranges of −0.06
to 0.13, −0.83 to 0.43, and 0.53 to 1.95 kcal mol−1 predicted by
Rosetta, MD calculations, and PremPLI, respectively.

Performance on predicting different types of ligands. Previous
studies have demonstrated that the impacts of mutations on
different types of ligands cannot be equally well predicted19,25.

Table 1 Comparison of methods’ performances on the
datasets of S144, S129, and S99.

Dataset Method PCC RMSE AUC-
ROC

AUC-
PR

MCC

S144 PremPLI 0.46 0.77 0.78 0.36 0.40
mCSM-
lig17

0.41 0.91 0.75 0.31 0.33

ML119 0.12a** 0.87 0.61* 0.20 0.20
R1519 0.67** 0.72 0.77 0.50 0.52
Prime25 0.29 1.81 0.67 0.27 0.35
FEP+25 0.49 1.07 0.76 0.53 0.52

S129 PremPLI 0.48 0.78 0.81 0.35 0.39
mCSM-
lig17

0.20b* 1.06 0.55* 0.28 0.40

S99 PremPLIC 0.69 1.09 0.84 0.71 0.69
A1427 0.44** 1.35 0.78 0.55 0.54
R1427 0.33** 1.35 0.68 0.40 0.37
RMD27 0.48* 1.23 0.77 0.59 0.58

* and ** indicate statistically significant difference between PremPLI and other methods in terms
of PCC (Hitter et al.51 test) and AUC-ROC (DeLong test) with p-value < 0.05 and p-value < 0.01,
respectively. PremPLIC: PremPLI was retrained after removing all mutations in the overlapped
complexes with S99 from the training dataset. R15: Rosetta using the flex_ddg protocol and
REF2015 scoring function. R14: Rosetta using the flex_ddg protocol and talaris2014 scoring
function. A14: Amber14sb and GAFF(v2.1)/AM1-BCC force fields were used for proteins and
ligands, respectively. RMD: the combination of R14 and A14. The results of more combinations
are shown in Supplementary Fig. 7.
All correlation coefficients are statistically significantly different from zero (p-value < 0.01, t-
test) except ap-value = 0.14 and bp-value = 0.02.
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Here we further analyzed the predictive performance of PremPLI
on each type of ligand. The S144 dataset is composed of eight
TKIs, six of which have co-crystal structures and each has more
than 20 mutations, and inhibitors of erlotinib and gefitinib

adapted docking complex structures and each has less than ten
mutations (Fig. 2 and Supplementary Fig. 2). Performance for
each inhibitor calculated by six methods is shown in Fig. 5a and
Supplementary Fig. 6. PremPLI and FEP+ perform well on four
TIKs with statistically significant PCC values, and Rosetta pro-
duces statistically significant PCCs for six TKIs including two
using docking models. All approaches lose the ability to predict
the effects of mutations on ponatinib binding. By observing
experimental and predicted values (Supplementary Fig. 6), we
found that three mutations increasing Abl and axitinib binding
are predicted by PremPLI as decreasing mutations. After
excluding these three mutations, the correlation coefficients
increase up to 0.43 for PremPLI (p-value < 0.05, t-test) but
decrease for all other methods (Fig. 5b). Overall, Rosetta, FEP+,
and PremPLI alternately present the best performance on dif-
ferent types of ligands, so it is necessary to develop new com-
putational methods to complement each other.

In summary, Rosetta performs well on S144 dataset—with
strong correlation, low absolute errors, and good classification
performance, while it performs poorly on S99 dataset. MD
calculations with a free energy calculation protocol perform
robustly on different data with moderate prediction accuracy.
However, for Rosetta or MD calculations, different scoring
functions or force fields will present different prediction
accuracies, and here we only chose and provided the results of
the best performing protocols, so it would be an issue for applying

Fig. 4 Receiver operating characteristics (ROC) and precision recall (PR) curves for different methods to distinguish resistance from other mutations.
The number of resistance mutations is 19 for both S144 (a) and S99 (b) datasets.

Table 2 Pearson correlation coefficients between
experimental and calculated ΔΔG values for interface and
non-interface mutations.

Dataset Method Interface Non-interface

PCC RMSE PCC RMSE

S144 PremPLI 0.45 0.92 0.28 0.56
mCSM-lig17 0.41 1.11 — 0.61
ML119 — 1.05 — 0.61
R1519 0.74** 0.82 — 0.59
Prime25 0.25 2.40 — 0.76
FEP+25 0.64* 1.15 −0.26** 0.97

S99 PremPLIC 0.70 1.22 0.67 0.75
A1427 0.57 1.31 — 1.44
R1427 0.36** 1.48 — 1.02
RMD27 0.59 1.25 −0.36** 1.19

Only correlation coefficients statistically significantly different from zero are shown (p-value <
0.05, t-test). * and ** indicate statistically significant difference between PremPLI and other
methods in terms of PCC (Hitter et al.51 test) with p-value < 0.05 and p-value < 0.01,
respectively.
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them to unseen data. In addition, both approaches lose the ability
to predict non-interface mutations and require heavy computa-
tional resources, especially for MD calculations. However,
PremPLI presents similar predictive accuracy with the best
performing Rosetta and MD calculation protocols while requiring
much less computational resources. Therefore, a potentially
integrated protocol might be PremPLI calculations for an initial
large-scale mutational scan, followed by refinement of the most
promising results via the combination of free energy calculations
by Rosetta or MD simulations, which would allow for higher
predictive power and provide dynamic insight into the impact of
mutations.

Overall, in this work, we developed a machine learning
approach for estimating protein–ligand binding affinity changes
upon single mutations trained on a data set of 796 ΔΔGexp values
across 117 proteins and 168 ligands. As we know, three
important aspects determine the prediction performance of a

machine learning method: the data used for training, the feature
engineering, and the algorithm used to build the model. First, we
handled the data obtained from the Platinum database very
carefully (see Experimental datasets used for training PremPLI).
Second, we calculated ~400 features and selected only 11 that
have remarkable contributions to the quality of the model and
can be explained from statistical and biological perspectives. Last,
we tried four popular learning algorithms of random forest,
Support Vector Machine, eXtreme Gradient Boosting, and
Extremely Randomized Trees to build the PremPLI model, and
selected the RF not only based on the performance on the
training set but also on all three test sets. Through performing
four types of cross-validation on the training set and the
comprehensive validation on three independent diverse and
challenging test sets (S144, S129, and S99), we believe the results
presented provide a representative picture of the average
performance for PremPLI.

Fig. 5 Performance for different methods tested on tyrosine kinase inhibitors. a Pearson correlation coefficient for each tyrosine kinase inhibitor. * and **
indicate statistically significant difference from zero in terms of PCC with p-value < 0.05 and p-value < 0.01 (t-test), respectively. b Performance of six
different methods tested on Abl-axitinib complex. PCC and RMSE in red: all 26 mutations; PCC and RMSE in black: mutations with three red dots removed.
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Online webserver. The 3D structure of a protein–ligand complex
is required by the webserver, and the user could input Protein
Data Bank (PDB) code or upload the coordinate file in the
standard PDB format. Biological assemblies or asymmetric unit
can be chosen and retrieved from the Protein Data Bank when the
user inputs the PDB code (Fig. 6). Next, the server will display a
3D view colored by protein chains and types of ligands and
provide the corresponding protein and ligand names (Fig. 6).
Given that PremPLI only calculates the impact of mutations on
the interaction between a protein and one type of ligand, one or
multiple chains that must belong to one protein and one or
multiple ligands that must belong to one type can be assigned to
the following calculation. The last step is to select mutations and
three options are provided: “Specify One or More Mutations”, in
this option, users can not only perform calculations for the spe-
cified single mutations but also be allowed to view the mutated

residue in the complex 3D structure; “Upload Mutation List”,
allows users to upload a file including a list of mutations for
performing large-scale mutational scans; “Alanine Scanning”,
allows users to perform alanine scanning for the selected protein
chain (Fig. 6).

For each mutation, the PremPLI server provides ΔΔG (kcal
mol−1), predicted binding affinity change induced by this
mutation (positive and negative sign corresponds to mutations
decreasing and increasing affinity, respectively), and location of
the mutation (interface/non-interface).

Methods
Experimental datasets used for training PremPLI. Platinum50, a manually
curated database, includes experimentally measured effects of mutations (binding
affinity changes) on structurally defined protein-ligand complexes. Binding affinity
is calculated as 4G ¼ RTln KD

� � ¼ RTln K i

� � ¼ RTln Km

� �
, and the binding

Fig. 6 PremPLI server. Three steps, (a) input Protein Data Bank (PDB) code or upload coordinate file, (b) select interaction partners and (c) assign
mutations, and results pages (d) are provided. “Processing time” refers to the running time of a job without counting the waiting time in the queue.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02826-3

8 COMMUNICATIONS BIOLOGY |          (2021) 4:1311 | https://doi.org/10.1038/s42003-021-02826-3 | www.nature.com/commsbio

www.nature.com/commsbio


affinity change upon mutation is defined as 44G ¼ 4Gmutant �4Gwild�type. The
positive and negative values of ΔΔG correspond to the mutations decreasing and
increasing binding affinity, respectively. A total of 797 single mutations with
experimentally determined complex structures and binding affinity changes were
included in the Platinum database, among which 151 mutations had both wild-type
and mutant structures. Following the anti-symmetric property, that is, Gibbs free
energy change introduced by a forward mutation (wildtype ! mutant) plus the
change induced by its reverse mutation (mutant ! wildtype) should be equal to
zero, so we took the mutant complex as being the “wild type” and inverted the sign
of the affinity change, resulting in 948 mutations.

Next, we removed following entries from the Platinum database: (a) ligands or
mutations cannot be found in the given complex structures; (b) complexes with
modified residues at protein-ligand binding interface. If any heavy atom of a
residue was located within 5 Å from any heavy atom of ligands, we defined this
residue as an interface residue; (c) mutations with missing coordinates; (d)
mutations occurring at metal coordination sites; (e) structures with only Cα atomic
coordinates; (f) structures with a resolution lower than 3 Å. Besides, we only
retained the interactions between one protein and one type of ligand. For
mutations with multiple 44Gexp, we first preserved all values, resulting in
859 single mutations (it will be referred to as S859). Second, only one 44Gexp

value is chosen according to the following criteria in the order specified below: (1)
pH is closest to neutral and/or the temperature (T) is closest to room temperature;
(2) the value of 44Gexp calculated by KD has the highest priority, followed by K i ;
(3) the experimental method of fluorimetry is preferred over other measurements.
As a result, 796 unique single mutations from 360 complex structures were retained
(it will be referred to as S796). The majority of complexes contain only one
mutation (Fig. 2). More information about the training set of S796 is shown in
Supplementary Fig. 1 and Supplementary Table 1.

The last step is to process PDB coordinate files of complexes, which were
obtained from the Protein Data Bank (PDB)53. First, the biological assembly was
used for each complex. Second, only coordinates of proteins and ligands studied
were retained. Third, the ligand was further removed from the PDB file when the
ratio of the number of its contact heavy atoms to total heavy atoms is less than 0.5.
We defined an atom in ligand as a contact atom when it is located within 6 Å from
any heavy atom in protein. That is, only ligands that bind relatively strongly to
protein were retained. As a result, four types of protein–ligand complex structures
were included in the training set: monomer with one ligand; monomer with two or
more ligands; homomer with one ligand; homomer with two or more ligands
(Fig. 2). Please note, we only study the interactions between one protein and one
type of ligand, but they may have multiple chains or multiple ligands.

Experimental datasets used for testing. Recently, Hauser et al. compiled a
benchmark dataset consisting of reliable inhibitor 4pIC50 data for 144 clinically
identified mutants of human kinase Abl and examined the potential for alchemical
free-energy calculations to predict resistance of these mutations to eight FDA-
approved tyrosine kinase inhibitors (TKIs)25. None of the mutations or
protein–ligand complexes in this benchmark dataset were included in our training
dataset. The binding free energy change (44Gexp) can be derived from the fol-
lowing equation:

44Gexp ¼ RTln
K i;mut

K i;WT
� RTln

IC50;mut

IC50;WT
ð1Þ

Names, chemical structures, and the distibution of experimental 44Gexp for
each inhibitor are provided in Fig. 2 and Supplementary Fig. 2. In addition, Hauser
et al. also provided eight processed co mplex structures (such as adding missing
residues and loops) including two docking models, which were used to evaluate our
method and perform comparisons with other methods (this dataset will be referred
to as S144 including 144 mutations and eight processed complex structures). Since
most users using our method will not or will not be able to produce the structures
as Hauser et al. did for performing alchemical free-energy calculations in which the
workflow is relatively complex and tedious, we also tested the performance of
PremPLI on structures obtained from the Protein Data Bank directly (129
mutations from six Abl-TKI complexes, it will be referred to as S129). This can also
check the sensitivity of our method to the initial input structures. The criteria for
processing the training dataset have been applied in checking the test sets.

Another dataset proposed by Aldeghi et al.27 includes 134 single and multiple
mutations across 17 proteins and 27 ligands from the Platinum database. Only
affinities determined by isothermal titration calorimetry and surface plasmon
resonance were selected and proline mutations were excluded. Moreover, it is a
diverse and challenging benchmark set, which includes large and flexible ligands,
proteins with different folds, and many small-to-large/large-to-small and charge-
changing mutations. Aldeghi et al. performed free energy calculations on these 134
mutations using first-principles statistical mechanics and Rosetta protocols,
respectively. In our study, 25 multiple mutations were first removed from this
benchmark. Then, ten single mutations for which ligand cannot be found in the
given complex structures and protein interacts with multiple types of ligands were
further removed. As a result, 99 single mutations from 42 complexes were retained
(it will be referred to as S99, Fig. 2), which is a subset of S796.

The 3D structures of protein–ligand complexes were either taken from Hauser
et al. study25 (S144 dataset) or from the PDB (S796, S129, and S99 datasets).
Mutant structures were produced using the BuildModel module of FoldX34.
Missing heavy side-chain and hydrogen atoms in proteins were added via VMD
program54 using the topology parameters of CHARMM36 force field55. Hydrogen
atoms of ligands were added via Chimera56.

The model of PremPLI. PremPLI employs Random Forest (RF) regression scoring
function. Around 400 features were calculated and considered in the model
selection (Supplementary Table 9), and only 11 distinct features were found to
contribute remarkably to the quality of the model (Supplementary Table 10).

● PSSM; a Position-Specific Scoring Matrix (PSSM) score for wild-type
residue type at mutated site. PSSMs was calculated from PSI-BLAST52

searches of protein sequences in NCBI non-redundant database and the
resulting profile was constructed using the default parameters. ΔCS
represents the change in conservation induced by a single mutation, which
was calculated by PROVEAN program57.

● Proxwt and Proxmut are the number of contacts between mutated site and
ligands in wild-type and mutant structure, respectively. If the distance
between two atoms is more than the Van der Waals interaction distance
and within 5 angstroms, they were defined in contact. These terms were
calculated by Arpeggio58.

● MWt presents the molecular weight of ligand which was calculated using
XLOGP359. NNO is the number of nitrogen and oxygen atoms of ligand.

● H term accounts for the hydrophobicity of mutated site. The hydro-
phobicity for each type of amino acid residue was obtained from ref. 38.

● PRKDE is the fraction of charged residues (R, K, D, and E) in the wild-type
structure. PRKDE ¼ NR þNK þND þNE

NAll
, for instance, NR is the number of all

arginine residues, and Nall is the total number of amino acids. PQ ¼ NQ

NAll
,

NQ is the number of glutamine residues buried in the protein core. A
residue is defined as buried if the ratio of solvent accessible surface area of
this residue in the protein and in the extended tripeptide is less than 0.260.

● MAA1 is the matrix of single residue interchanges derived from spatially
conserved motifs61 and MAA2 is the matrix of amino acid substitutions
produced by superposition of homologous protein structures62. They
represent the more/less favorable trends of residue exchange in protein
structures, obtained from Amino Acid Index Database with identifiers of
AZAE970102 and RISJ880101 (AAindex, https://www.genome.jp/aaindex/).

Cross-validation procedures. We first performed ten times 5-fold and 10-fold
cross-validations on the training dataset (named as CV1 and CV2, the folds were
randomly split and clustered by mutations), and then evaluated the performance of
our approach on two low redundancy sets; low redundant at (i) complex (named as
leave-one-complex-out validation, CV3) and (ii) ligand (named as leave-one-type-
ligand-out validation, CV4). There are 360 complexes and 168 types of ligands in
the training dataset (Fig. 2). Namely, we leave all mutations from one complex
(CV3) or from the complexes having the same type of ligand (CV4) out as a test set
and use the remaining complexes/mutations to train the model, repeating this
procedure for each complex or each type of ligand.

Statistical analysis and evaluation of performance. Pearson correlation coeffi-
cient (PCC) and root-mean-square error (RMSE) were used to measure the agree-
ment between experimentally determined and predicted values of changes in binding
affinity. Two-tailed t-test was used to assess whether the correlation coefficient is
statistically significant from zero. Hittner et al.51 and Fisher 192563 tests (two-sided)
implemented in the R package cocor64 were used to check whether the difference in
correlation coefficients between PremPLI and other methods is significant. Hittner
et al.51 and Fisher 1925 tests are based on dependent groups with overlapping variable
and independent groups respectively. RMSE (kcal mol−1) is the standard deviation of
the prediction errors, calculated by taking the square root of the average squared
difference between predicted and experimental estimates of ΔΔG.

To quantify the performance of PremPLI and other approaches in distinguishing
resistance from other mutations, we performed receiver operating characteristics (ROC)
and precision-recall (PR) analyses. True positive rate/recall is defined as TPR=TP/
(TP+ FN), false positive rate is defined as FPR= FP/(FP+TN), and precision is
defined as PPV=TP/(TP+ FP) (TP: true positive; TN: true negative; FP: false positive;
FN: false negative). In addition, we also calculated Matthews correlation coefficient
(MCC) that accounts for imbalances in the labeled dataset.

MCC ¼ TP � TN� FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þ

p ð2Þ

In addition, the uncertainties in these measures of PCC, RMSE, MCC, and the
area under the ROC and PR curves were evaluated by bootstrap. Pairs of
experimental and calculated ΔΔG were resampled with replacement 1000 times.
From these 1000 bootstrap samples, 95% confidence interval was calculated and
presented in the form of xupperlower , where x is the mean statistic and the lower and
upper bounds are the 2.5th and 97.5th percentiles. P-values for the differences
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between PremPLI and other methods were also obtained from the bootstrap
procedure. In each bootstrap sample, ΔΔG values from experiment, PremPLI and
other methods to be compared were resampled together, and the difference in the
performance metric of interest (e.g., 4PCC) between PremPLI and the approach to
be compared was stored. A two-tailed t-test was used to test whether the difference
(e.g., 4PCC) is statistically significant from zero.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Compiled experimental datasets and computational results that support our findings are
publicly available on GitHub (https://github.com/minghuilab/PremPLI). Source data for
graphs and charts are available at figshare65.

Code availability
Source code of PremPLI is available on GitHub (https://github.com/minghuilab/
PremPLI)66. The PremPLI prediction model is available as a web-server tool at https://
lilab.jysw.suda.edu.cn/research/PremPLI/.
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