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Emergence of perceptuomotor relationships during
paleolithic stone toolmaking learning: intersections
of observation and practice
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Stone toolmaking is a human motor skill which provides the earliest archeological evidence

motor skill and social learning. Intentionally shaping a stone into a functional tool relies on the

interaction of action observation and practice to support motor skill acquisition. The emer-

gence of adaptive and efficient visuomotor processes during motor learning of such a novel

motor skill requiring complex semantic understanding, like stone toolmaking, is not under-

stood. Through the examination of eye movements and motor skill, the current study sought

to evaluate the changes and relationship in perceptuomotor processes during motor learning

and performance over 90 h of training. Participants’ gaze and motor performance were

assessed before, during and following training. Gaze patterns reveal a transition from initially

high gaze variability during initial observation to lower gaze variability after training. Per-

ceptual changes were strongly associated with motor performance improvements suggesting

a coupling of perceptual and motor processes during motor learning.
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Linnaeus chose to name our species “wise,” but it may be the
ability to learn from others that makes Homo sapiens
unique1. Humans live in a cultural niche of artificial land-

scapes, structures, artifacts, skills, practices, and beliefs con-
structed over generations and far exceeding the understanding or
creative potential of any individual. Paleolithic stone tools provide
our earliest evidence of this emerging niche and the social
learning of increasingly complex skills and knowledge that sup-
ports it2–4. Acquisition of such demanding technical skills
requires the generative interaction of observation and practice5.
Still, relatively little is known about the interaction of observation
and practice generally6 or for stone tool making specifically7,8. To
address this, we used eye-tracking to investigate gaze patterns
during stone tool making action observation. Our sample com-
prises 11 research participants with no prior stone tool making
experience learning to make Paleolithic stone “handaxes”3 com-
parable to those made by Homo heidelbergensis ca. 500,000 years
ago9,10. Pargeter et al. (2019, 2020) have published details of
training and learning outcomes elsewhere. Here we address
variability in gaze both at the group level over time and in relation
to individual technological success and motor performance
metrics.

Motor variability is an important part of exploratory
behavior6,11,12 that supports individual skill acquisition13,14.
Assessment of motor variability has figured prominently in
attempts to understand the interaction of individual and social
learning in the intergenerational reproduction of stone tool
making techniques5,15,16. Researchers know much less about
perceptual variability, exploration, and learning of stone tool
making17, thus the contribution of demonstration and observa-
tion to social transmission remains unclear2,16,18.

Stone tool making through controlled fracture (“knapping”)
requires the sequential detachment of flakes from a stone core
using precise strikes with a handheld hammer (typically stone,
bone, or antler). Each removal leaves traces that archeologists can
use to reconstruct discrete actions and sequential strategies. These
strategies range in complexity from simple iteration to multi-level
goal hierarchies needed to produce later Paleolithic forms17, such
as the stone “handaxes” studied here. Executing such strategies
requires reliable control over individual flake removals, including
the sensitive adaptation of kinematics to variable core morphol-
ogy, composition, and positioning7,15. Therefore, learning to knap
requires mastery of subtle interactions between bodily kinematics,
object properties, action outcomes, and technological goals7,17,19.
These factors might be facilitated by observation of expert
performance5 and reflected in the spatiotemporal variation of
gaze patterns.

Attentional processes drive eye movements that facilitate
foveation on salient and meaningful visual features20,21, thus
providing a window on cognitive processes22 that we exploit in
order to better understand processes of observational learning.
Work on the role of gaze in motor control and learning has
largely focused on action planning and execution12,22,23 or goal
inference (e.g.24), At least one recent study25 has reported gaze
variation’s effects on observational learning of a novel task
(prosthesis use). Bayani et al found that eye movements tracking
action path and bodily effector rather than the action start and
endpoints during demonstration was associated with more effi-
cient kinematics during execution. This provides support for a
role in gaze in maximizing observational learning through
motor resonance. Arbib (2011) has advanced similar proposals
for the role of observation in knapping skill acquisition. It
remains unknown to what extent useful information about the
rapid and finely tuned kinematics and stone fracture
mechanics7,15 underlying knapping skill can be extracted by
observing others5.

To investigate this issue, we evaluated changes in (1) gaze
variability and (2) the relationship between gaze patterns and
knapping performance over training. Participants (n= 11)
received up to 90 h of practice and direct active teaching26 from
an expert knapper. At three time points (Pre= before training,
Post 1= 50 h training, Post 2= after completion), we invited
participants to observe a 17-min video of their instructor pro-
ducing a handaxe while we recorded participant gaze behavior. A
small number of prior studies have examined gaze variability
during motor learning, although not of entirely novel tasks like
knapping. These studies find that the standard deviation of raw
eye velocity demonstrated a general reduction in gaze variability
with training27. Gaze entropy, a value that utilizes the standard
deviation and fixation distribution, provided an additional mea-
sure of exploratory behavior28. We thus hypothesized that if
participants were extracting useful technical information from
knapping observation, we should observe: 1) a reduction in gaze
variability with training and 2) greater spatial allocation towards
more meaningful features of the task. We further predicted
stronger associations between perceptual processes and motor
performance with practice.

Results
Determination of meaningful action sequences. Participants
watched a 17-min video of an expert knapper performing the
stone toolmaking task before, during, and after training. The
same expert flintknapper that trained all participants (NK) cate-
gorized each second in the video. This allowed for the temporal
categorization of action phases based on one of the six action
phases: core reposition, core move, light percussion, percussion,
grinding, and tool change (see Methods). During video observa-
tion, we instructed participants to press a button whenever they
judged the knapper to have “completed a meaningful unit of
action in pursuit of [the] goal” of making a handaxe (Fig. 1a). We
matched these button presses to specific time points and motor
actions produced by the actor (Fig. 1c, Fig. 2). This allowed us to
identify action phases important to the participants used for our
analysis without bias from the investigators. Meaningful button
presses across all participants and training conditions revealed a
high degree of responses corresponding to core move time points.

The study used participants’ reactions to meaningful time
points in the video to generate a group-level temporal probability
plot by isolating a 10-s window with a 5-s overlap. Within each
window, we calculated the probability by dividing the number of
participants that indicated a particular time segment contained a
meaningful event and dividing it by the total number of
participants (Fig. 3a, black trace). We determined time points
for more in-depth analysis by assigning the 90th percentile as the
threshold for meaningful time points across all participants
(Fig. 3b). The meaningful time points were also matched to
specific action phases with greater meaningful button presses
associated with core moves (χ2(5)= 131.24, p < 0.01, Fig. 3c)
compared to core reposition (t(5)= 9.31, p < 0.001, g= 1.22),
light percussion (t(5)= 9.33, p < 0.001, g= 1.17), grinding
(t(5)= 10.03, p < 0.001, g= 1.50), tool change (t(5)= 11.46,
p < 0.001, g= 1.65), and percussion (t(5)= 10.23, p < 0.001,
g= 1.44). Together, core move time points that met the 90th
percentile probability threshold or higher were isolated and
extracted for continuous gaze analysis (Fig. 2, Fig. 3b, c).

Gaze variability. We sought to understand any patterns of dis-
persion of gaze data across a given core move time point to
address gaze variability. Temporal dispersion of gaze enables us to
identify how the continuous gaze data vary over training. Spatial
dispersion will determine where gaze falls during observation.
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Fig. 1 Experimental design and task. a Action observation was presented on a computer monitor with the Gazepoint eye tracker and keyboard situated
directly in front of the participants. The image shows a single, sample frame of the video. Their task was to indicate an meaningful and error event using the
left and right arrow on the keyboard respectively. b The training paradigm involved 100 h of training with participants viewing the video and performing the
task. The Pre condition is the baseline training condition with no hours of training, Post 1 occurred after 50 h of training, and Post 2 occurred after 100 h of
training. c One dimension of data displays meaningful key presses during the video observation across all three training conditions are displayed to display
time points in the video that participants perceive to be meaningful. d Gaze data is expressed in two dimensional (x,y) coordinates in the 0,1 dimension.

Fig. 2 Data preprocessing pipeline. a Participants’ response to “meaningful events” via keyboard button press was used to reduce the data and isolate
sections of gaze data based salient time points and action phases. b Button press data corresponded to one of six different types of action phases. This was
used to quantify which action phase was more salient to participants (see Fig. 2 for action phase saliency). Specific time points in the video were also
isolated based on the frequency of button presses within a given time point. c A sample histogram using Post 2 button press data is shown with time on the
x-axis and frequency of button presses on the y-axis. Clear peaks represent time points with the highest participant response. d Action phases and time
points from button press data was used to pinpoint specific action phases and time points in gaze data for e gaze analysis. Performance measures,
specifically model score, were assessed during time points around their respective assessments.
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Temporal dispersion of gaze. We evaluated group-level changes
in gaze patterns with the highest probability of meaningful button
presses by implementing a hierarchical clustering algorithm of
gaze positions over core move time points and calculating cluster
variance for each meaningful core move time point. Imple-
mentation of hierarchical clustering (see Methods) across time
points revealed changes in variability of gaze within a cluster
(within-class variance) and variability of gaze between different
clusters (between-class variance) across training. While within-
class gaze variance decreased from Pre to Post 1 and increased
from Post 1 to Post 2, a one-way ANOVA did not reach statistical
threshold across any of the training phases. Dissimilarity
demonstrated no main effect of training but displayed a stepwise
reduction as participants progressed through training.

These non-significant changes with training may also reflect
the substantial participant-level differences in learning documen-
ted by Pargeter et al (2019,2020), which likely contributed to the
large variability seen in group-level data. We thus measured gaze
coefficient of variation to capture the variability of gaze data for
each participants’ continuous gaze data for core move time points
across training. One-way ANOVA revealed a main effect of
Training (F2,30= 3.74, p < 0.036, ƞ2= 0.20). Pairwise comparison

using TukeyHSD indicated gaze variability decreased from Pre
compared to Post 1 (p < 0.01, g= 0.87) and Post 2 (p < 0.01,
g= 0.949, Fig. 4a). This reduction indicates that participants
focused on a smaller area of the visual scene during core moves
due to training.

Spatial dispersion of gaze. Eye movements involve top-down
processes that direct gaze to information-rich and meaningful
areas in the visual scene20,21. It is vital to assess whether the gaze
changes are associated with task-specific features in the visual
scene by understanding the spatial aspects of this shifting varia-
bility over training. We sought to understand the spatial disper-
sion of gaze by determining if participants directed foveation
towards the most relevant part of the visual scene, the working
edge (i.e., a portion of the tool from which toolmakers remove
flakes). We extracted the working edge’s continuous location
using a MATLAB-based computer vision machine learning
algorithm, random sampling consensus (RANSAC). This algo-
rithm allowed us to detect the core’s x-axis edge in each image
frame (“Computer Vision ToolboxTM User’s Guide R2020a”
200429,30. The output from the hierarchical cluster of gaze data

Fig. 3 Data-driven approach to identify salient action phases and time points. a Each second of the video was categorized as one of the six action phases.
Each color represents a single action phase over time. The black line represents the probability of meaningful events calculated using a 10-s window with a
5-s slide. b We isolated core move time points with high probability in a 10-s window. c The mean number (±S.E.) of counts across subjects for each action
phase. Individual dots represent data points and the shaded area is a kernel density estimate of the distribution. Figure reveals core moves are the most
salient action phase that most participants responded to regardless of training condition.
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identified cluster centroids, a data-driven representation of the
most statistically distinct gaze position and their associated time
points within a core move for all participants (see Methods). We
calculated gaze distance relative from the working edge by sub-
tracting the working edge coordinates from each participants’
gaze centroid coordinate at each frame. Results show a decrease
in gaze distance from the working edge. However, this decrease
across training did not reach statistical significance (F2,27= 0.73,
p= 0.49). The reduced coefficient of variation along with the
proclivity for the gaze to fall closer to the working edge may
reveal that training encourages gaze to fall in information-rich
and meaningful areas of the visual scene20,31. We attributed the
lack of statistical significance to the high degree of variability,
which prompted more in-depth spatial analysis.

We evaluated the variability of gaze along the working edge by
calculating the gaze distance from the working edge across all
clusters’ time centroids. The standard deviation of those distances
was extracted and used as a measure of gaze variability relative to
the working edge. Quantification of gaze variability using this
metric not only reduced the amount of noise inherent in gaze
data but provides a statistical backing for utilizing specific time
points within a single core move time point. Our results revealed
a main effect of Training (χ2(2)= 8.74, p= 0.013, ε2= 0.21,
Fig. 4a) with significantly higher gaze variability relative to the
working edge in Post 2 compared to Pre (V= 49, p= 0.03,
g=−1.00) and Post 1 (V= 53, p < 0.01, g=−0.93). Training
thus led to an increase in gaze variability relative to the core,
especially comparing Post 1 and Post 2 gaze variability.

Performance measures. Motor skill performance over training
was quantified using two primary measures: handaxe score and
percussion error. The handaxe score is a multivariate ensemble
measure (higher is better) of tool quality for handaxes produced
during periodic skill evaluations throughout training3. Percussion
error measures the difference between knappers’ intended and
actual impact points (i.e., lower is better) during a controlled flake
production task included in the skill assessments7.

For handaxe score, there was a main effect of Training
(χ2(2)= 622.36, p < 2.2e-16, ∈2= 0.89). Pairwise comparisons

using Wilcoxon signed-rank test revealed significantly lower
handaxe scores in Post 1 vs Pre (V= 0, p < 2.2e-16, g=−19.60)
and Post 2 vs Pre (V= 820, p < 2.2e-16, g=−14.97) (Fig. 4a). For
percussion error, a Kruskal-Wallis rank sum test revealed a main
effect of Training (χ2(2)= 25.81, p < 0.001, ∈2= 0.91). Post hoc
comparisons using Wilcoxon signed rank test demonstrated a
statistically significant decrease from Pre to Post 1 (p < 0.01,
g= 3.87), from Post 1 to Post 2 (p < 0.01, g= 3.11). Post 2 was
also statistically lower than Pre (p < 0.01, g= 5.87, Fig. 4a). In
agreement with previous analyses3,7, both measures reveal an
improvement in general skill level with training, following a
classic “power curve”32 of rapid initial progress followed by
asymptotic leveling off as learners reach local performance
optima. We quantified participants’ learning rates as the slope of
a linear regression of all a participant’s handaxe scores against
practice hours’ square root. Because training caused participants
to converge on similar performance levels after 30 h, variation in
learning rate is largely driven by initial aptitude with better initial
performance resulting in a flatter slope.

Relationship between gaze patterns and knapping perfor-
mance. While the above results suggest changes in gaze patterns
and motor performance driven by training, further analysis seeks to
understand the extent to which perceptual (gaze) and motor per-
formance changes may be related to each other through training.

Perceptual-motor shifts with learning. We observed that gaze
variability and handaxe quality showed a complex relationship,
revealing change in motor performance followed by gaze varia-
bility changes through training (Fig. 4b–d). These visualizations
prompted additional analyses to quantify the changes through
shift functions, a technique implemented in neuroscience to
quantify how two distributions differ33. We described the data
using deciles wherein each condition can be separated into nine
quantiles leading to the segmentation of data into ten different
segments (see Methods). We divided the data into two shift
matrices. Shift1 is the perceptual and performance changes from
Pre to Post 1 (Fig. 4b, c), while Shift2 defines the perceptual and

Fig. 4 Perceptual-motor changes after 0 (Pre), 50 (Post 1), and 100 (Post 2) hours of training. Bar plots represent mean ± S.E. Individual dots represent
data points and the shaded area is a kernel density estimate of the distribution. a Gaze coefficient of variation (mean ± S.E.) across an entire core move
time point decreased with training while b gaze variability (mean ± S.E.) relative to the core preparation site increased in Post 2. c Participants ability to
create a stone tool, or model score (mean ± S.E.), increased after 50 h of training, and d their ability to predict action outcomes (mean ± S.E.) improved due
to a decrease in percussion score in a step-wise fashion. e Outcomes from these perceptual-motor parameters reveal a perceptual-motor curve with a
3-dimensional average (model score, percussion score, gaze variability) in blue for Pre, green for Post 1, and purple for Post 2. The shaded region around
the average represents the 3-dimensional 95% confidence interval (model score, percussion score, gaze variability) in blue for Pre, green for Post 1, and
purple for Post 2.
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performance changes from Post 1 to Post 2 (Fig. 4b, d). This
method allows us to quantify which specific variables undergo the
most changes from one training stage to another and if the effect
is applicable across all of the data. The top panel in Fig. 4c, d
represents the deciles (dark black lines) in each training condi-
tion, with colored lines connecting the two conditions’ deciles
representing the direction and magnitude by which that specific
decile has to shift. We plotted the quantile differences to create a
shift function with 0 y-axis values representing no shift (or no
difference between training within a specific decile), positive
(orange) representing a shift to higher values, and negative
(purple) representing a shift to lower values. The error bars
represent a 95% confidence interval percentile bootstrap. Han-
daxe score demonstrated the strongest, positive shift during the
Shift1 (quantile differences: 1.16, 1.45, 1.52, 1.44, 1.32, 1.20, 1.11,
0.96, 0.68), while gaze variability relative to the working edge did
not exhibit a strong shift (Fig. 5b). However, gaze variability
relative to the working edge showed greater shifts in Shift2
(quantile differences: −0.013, −0.0099, −0.0090, −0.0092,
−0.0097, −0.011, −0.012, −0.014, −0.015), while handaxe score
was relatively consistent. This staggered relationship between
changes in execution (handaxe score) and observation (gaze
variability) lends support to a cyclical model of skill
acquisition34,35. In this model, observation of expert models
guides the consolidation of motor skills through individual
practice, which produces enhanced perception and understanding
of demonstrated actions, leading to further learning.

Perceptual-motor canonical correlation analysis. To gain a
deeper understanding of the perceptual and motor relationships
with training, we utilized canonical correlation analyses (CCA) to
quantify the strength of the relationship between gaze and per-
formance outcomes within a single training condition, how the
relationship between variables evolved with training using Pear-
son’s R, and the relative contribution of each variable using
canonical weights (Fig. 6). The gaze variate consisted of gaze
coefficient of variation, mean distance from the core, and gaze
variability from the core. The performance variate consisted of
learning slope, handaxe score, and percussion error. In the Pre
condition, the relationship between motor performance and gaze
variables exhibited two modes that demonstrate a strong
(r2= 0.81) and moderate relationship (r2= 0.44). The variables
contributing the greatest weights in the first mode were learning
slope (ω=−1.3762) and gaze variability from the core
(ω= 0.7972). The relative weights of the remaining performance
and gaze variables were relatively low compared to the variables
mentioned above. However, the second mode demonstrated
greater weights between the handaxe score (ω=−0.8678) and the
gaze coefficient of variation (ω= 0.1535).

Similarly, the Post1 condition demonstrated a strong canonical
correlation between the performance and gaze variables
(r2= 0.87). However, there was a single dominant mode that
explained the relationship between these variables. While the
highest contribution to this relationship was learning slope
(ω=−0.9380) and mean gaze distance from core (ω= 0.8499),
the relative contribution of handaxe score (ω= 0.7048), percus-
sion error (ω=−0.6665), and gaze variability relative to the core
(ω= 0.7665) was comparable. Gaze coefficient of variation had
the lowest weight contributing to the correlation (ω= 0.1457). In
the Post1 condition, we did not find a single dominant variable in
each set. Instead, most of the variables in both the gaze and
performance variates contributed equally to the correlation. In
the Post2 condition, the canonical correlation between the gaze
and performance variate decreased (r2= 0.6618). The highest
contributing variables were handaxe score (ω= 0.6567) and

percussion error (ω= 0.6353) as well as mean gaze distance from
core (ω= 0.8571).

Discussion
Researchers have proposed that observational learning of body
movement18 is a uniquely human capacity enabling our species’
accumulation of increasingly complex cultural and technological
practices over time36. This relationship is likely true of ritual and
communicative gestures that depend on accurate replication of
arbitrary body movements37. There is debate on whether the
learning of technical skills is more reliant on the mastery of
physical affordances through individual practice18 and how effi-
ciently observed movements translate effectively to different
bodies38–40 and contexts41,42. This debate raises questions about
the role of action observation in modern skill learning43 and the
importance of putative neurocognitive specializations for action
observation in human evolution5. To investigate the interaction
of observation and practice in real-world technological learning,
we evaluated the development of gaze patterns and motor per-
formance during the acquisition of the completely novel, evolu-
tionarily relevant stone tool-making skill.

Consistent with expectations, we found that training resulted in
rapid initial improvements in tool making action execution
accompanied by a reduction in gaze coefficient of variation (CV)
during action observation. This CV reduction marks putative
emergence of “quiet eye” behavior (fewer, longer fixations with
fewer saccades) often associated with the development of
perceptual-motor expertise21,31,44,45. More specifically, this eye
movement pattern indicates a possible transition from explora-
tion (sampling the visual scene) to exploitation (foveation of
specific regions of the visual scene) for more in-depth
processing22,28,46 and complex mental representation44. Learn-
ing and expertise are associated with the transition of attention
towards exploitation due to the predictive value learned through
exposure47. The fact that experience with tool making action
execution rapidly leads participants to focus on particular aspects
of observed tool making indicates a transition to the exploitation
of (perceived to be) relevant technical information. It supports a
potential role for action observation in learning about stone tool
making object affordances and/or behavioral techniques5.

To further explore this potential, we examined variability in the
spatial allocation of gaze over training. In contrast to decreasing
eye movement variability related to the emergence of quiet eye
behavior, the spatial allocation of gaze relative to the core edge
became more variable over training. Furthermore, this increase in
spatial variability occurred after significant performance increases
observed from Pre to Post1 timepoints instead of coinciding with
the Post1-Post2 period of more modest performance changes.
This pattern is contrary to our predictions of decreasing varia-
bility and tighter correlation with performance derived from
static visual scene studies28 and simple motor tasks27. Instead, it
reflects a more complicated gaze-performance relationship char-
acteristic of real-world skills.

Complex skills like stone tool making often involve simulta-
neously tracking multiple moving areas of interest (e.g., the
hammerstone, anticipated point of percussion on the core edge,
and core surface topography behind the edge). They also require
multifocal strategies that decouple attentional mechanisms from
gaze behavior6,48,49. Humans achieve such “visuomotor
parsimony”48 through increased reliance on peripheral vision that
allows for reduced foveation of the targets. In turn, this strategy
relies on the development of detailed sensorimotor mappings
sufficient to enable the extraction of information from non-
foveated targets50. For this reason, visuomotor parsimony has
been associated with late-stage skill acquisition and refinement12,
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as also seen in our study. More broadly, the complex relationships
between training, gaze behavior, and performance evident in our
study lend support to a cyclical model of real-world skill
acquisition34,35. In Whiten’s (2015) model, observation of expert
models guides consolidation of motor skills through individual
practice51 leading to enhanced perception and understanding of

demonstrated actions52. Enhanced action-perception then sup-
ports further observational learning, continuing the cycle5.

Finally, the canonical correlation analysis allowed us to test
putative relationships between action observation and execution
in individuals. Consistent with our group-level results, this
demonstrated strong gaze–performance correlations during early

Fig. 5 Shift function of perceptuo-motor variables. Quantification of the perceptual-motor curve along these three parameters were separated into shifts
to quantify how the these parameter change from a Pre to Post 1 (shift 1) and from b Post 1 to Post 2 (shift 2) using Shift Functions using the R rogme
package. In top subpanels, transparent gray dots are individual participant data points with the black lines representing decile calculated by the Harrell-
Davis quantile estimator. The colored lines represent the color-coded differences between the quantiles (orange: positive, purple: negative). The bottom
subpanel represents the quantile differences plotted across all quantiles between the two groups in Shift1 (Pre vs. Post1) and Shift2 (Post1 vs. Post2). The
error bars represent 95% confidence interval of decile differences quantified by using percentile bootstrap.
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exploration and skill acquisition (Pre and Post1) that deteriorated
during later stage refinement and consolidation (Post2). Before
training, a relationship between tool making aptitude coming into
the study (high initial performance reflected in a relatively flat
learning slope) and gaze spatial variability dominated the primary
canonical mode. Thus, higher aptitude individuals anticipate to
some degree the visuomotor parsimony that developed in the
group as a whole over training. This anticipation suggests pre-
existing sensorimotor competence in some participants. The
presence of sensorimotor knowledge of a specialized skill has
roots in the mirror neuron system (MNS), a frontoparietal neural
network that is implicated in learning through execution and
observation53. For example, classical ballet dancers or athletes
show MNS activation during observation of their respective crafts
while naïve participants failed to show MNS activation53–55.
Furthermore, participants with prior knowledge of the task
showed greater goal-directed and anticipatory gaze towards the
goal of the task while naïve participants failed to show these
perceptual patterns24. These studies provide neural and percep-
tual evidence for the role of observation in skill learning and
expertise. Indeed, we subsequently found that initial performance
correlated with self-reported years of prior experience in gross-
motor crafts like carpentry and sculpture (n= 17, r2= 0.39,
p= 0.007) among all starting participants reported by Pargeter
et al. (2019, 2020)3,7. A second pre-training canonical mode was
dominated by a negative relationship between handaxe score and
gaze coefficient of variation, again anticipating later group-level
decreases in gaze CV associated with rising performance. Two
canonical modes in the pretraining condition suggest complex
influences of pre-existing sensorimotor competencies and per-
ceptual strategies on initial stone tool making aptitude.

After 50 h of training, variation in participant performance
converged at a higher level, and a single canonical mode emerged,
showing a strong correlation between motor performance and
gaze. This mode differs from the primary pre-training mode,
most notably in the increased weight assigned to mean gaze
distance from the core edge. The effect suggests that particularly
successful participants adopted stable fixation points offset some
distance from the moving core edge, much as expert jugglers
employ a stable “gaze through” strategy fixated at a central
location rather than tracking individual balls48. The post-training
condition showed more evenly weighted performance and gaze
variables, but the canonical correlation weakened from strong to
moderate. This loosening of gaze-performance coupling suggests
that other factors, such as differences in practice habits3 or the
timing transitions between learning plateaus56, may be increas-
ingly important in driving observed performance variation. More
generally, this pattern again speaks to the complex interplay of
action observation and individual practice in acquiring real-world
skills5.

Results show that persons learning the highly skilled stone tool
knapping process rapidly learn to perceive and focus on tech-
nologically informative aspects of observed tool making. Fur-
thermore, gaze behavior during observation is strongly associated
with actual tool making performance. Our study’s complex,
asynchronous development of eye movement strategies, gaze
spatial allocation, and toolmaking performance is consistent with
a cyclical model of real-world skill acquisition. This finding has
implications for debates over the role of individual vs. social
learning in early stone toolmaking, and thus for interpreting the
archeological evidence used to support evolutionary accounts of
the origins of human culture1,4,8,18. It highlights the need for

Fig. 6 Canonical correlation analyses of perceptual and motor variables. a Shows the canonical weights for all performance variables, and b shows the
canonical weights for the gaze variables. The thickness of the lines show the relative weight each variable contributes canonical cross correlation. The
numbers in each box is the value of the canonical weights.
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more real-world skill learning studies to understand perceptual-
motor interactions during human skill learning.

Methods
Subjects. Seventeen experimental participants (10 female/7 male; 21–48 years of
age, median 27.25) were recruited from Emory University (students and staff) and
the surrounding community with no prior flint knapping experience. Full parti-
cipation in the study amounted to ~90 h; of which, ~80 h involved training in
handaxe production. Six participants left the study before the sfinal assessment
with the remaining 11 achieving between 74 and 89 h training (median= 84 h). All
participants were right-handed, had no prior knapping experience, and provided
written informed consent. The study was approved by Emory University’s Internal
Review Board (IRB study no: 00067237).

Experimental set up
Workspace. Subjects were seated in front of a raised 24” computer monitor with a
computer keyboard situated directly in front of the subject (Fig. 1A). Since the eye
tracker is sensitive to direct sunlight and may alter pupil detection reliability,
subjects faced away from the windows to avoid direct sunlight on their face and
pupils. The Gazepoint control system (GP3), a 60-Hz high-performance eye
tracking platform, was placed below the computer monitor approximately 65 cm or
an arms distance away from the subject. The eye tracker was stabilized with a mini
tripod that allowed researchers to adjust the position of the eye tracker based on
each individual subjects’ height. A laptop was used to power and obtain data from
the eye tracker through two USB cables.

Eye tracking. To ensure subjects’ distance from the computer monitor and eye
tracker was consistent across all sessions and optimal for gaze data acquisition, the
eye tracker is equipped with distance monitor and a 5-point calibration test. The
distance monitor tracked subjects’ pupil distance from the eye tracker. A moving
dot on the Gazepoint control system displayed the participants’ distance using a
red or green dot indicator. A red dot indicator informs researchers if the partici-
pant was too far or too close. A green dot indicates when the participant is an
optimal distance (~65 cm away) from the eye tracker. Researchers adjusted sub-
jects’ seated position to ensure that the distance monitor’s green dot was always
situated green prior to data collection. The 5-point calibration test was adminis-
tered after optimal distance was determined. Subjects were instructed to follow a
white dot that traveled across the computer monitor with their gaze while keeping
their head completely still. Following the calibration period, five calibration mar-
kers appeared on the screen. Subjects were instructed to make saccades to 5 cali-
bration points. Successful calibration was confirmed if gaze position fell within the
bullseye of each of the 5 points. The combination of the distance monitor and
5-point calibration ensured an accuracy between 0.5 to 1 degree of the visual angle.

Action observation. The paradigm was executed using a Windows laptop con-
taining the Gazepoint control and analysis system software as well as MATLAB to
coordinate video replay, gaze data collection, and behavioral responses from the
subjects. During all sessions, subjects viewed the same 17 min and 4 s video of an
expert stone knapper creating a tear drop shaped hand axe in an egocentric viewing
perspective. The video was presented using a 1680 ×1050 viewing dimension.
During video observation subjects were instructed to “press the left button on the
keyboard for events that seem natural and meaningful to you.” MATLAB was
initiated prior to the start of the video and continued processing during video
observation in order to record the timing of subjects’ meaningful and error event
button presses.

Experimental design. The behavioral and eye-tracking testing sessions were
divided into three different sessions: Pre, Post 1, and Post 2 (Fig. 1b). The Pre
condition is the baseline condition wherein subjects had no prior to training on the
task. Their first exposure to the task was the aforementioned 17 min and 4 s video
of an expert stone knapper performing the task in an egocentric perspective.
Following the first session, subjects completed stone knapping training by an expert
stone knapper and returned for the second session after 50 h of training for the
Post 1 assessment. During this Post 1 condition, subjects observed the same video
and indicated their perception of meaningful and error events with a keyboard
button press. The last 50 h (100 h total) of motor training was completed before
subjects came back for their third and last assessment, Post 2. During this time,
subjects observed the same video and indicated their perception of meaningful and
error events during video observation.

Task. In between each training condition, subjects were trained and assessed on the
flint knapping task. The goal of the task is to create a tear-dropped shaped hand-
axe from a larger stone, which we will refer to as the “core” for the rest of the
manuscript. All participants were instructed in basic knapping techniques
including how to select appropriate percussors, initiate flaking on a nodule,
maintain the correct flaking gestures and angles, prepare flake platforms, visualize
outcomes, deal with raw material imperfections, and correct mistakes. Handaxe-
specific instruction included establishment and maintenance of a bifacial plane,

cross-sectional thinning, and overall shaping. The importance of producing thin,
symmetrical pieces with centered edges was emphasized throughout the training as
these are key components in successful handaxe making.

Data preprocessing
Determination of meaningful action phases. While watching the videos, during Pre,
Post 1 and Post 2, participants indicated their perception of meaningful actions
using the left and right arrows on the computer keyboard. Keyboard button presses
for meaningful events were used to pinpoint the action phases and time points that
were deemed most salient to subjects. Button press latencies are time points that
correspond to specific time points in the video and were collected from the start
until the end of the video. Latencies were stored matrix wherein columns repre-
sented each subject and each row corresponds to a specific time the subject
responded to a meaningful event. All meaningful event button press latencies were
preprocessed using MALAB2015b. Latencies were rounded to the nearest second
and transferred into a discrete subject x time matrix with 1 representing a button
press and 0 representing no response. More specifically, a one was placed in a
column (i.e., time point) within a specific row (i.e., subject) where the button press
occurred. Figure 1c shows the visualization of the subject x time matrix of button
press across the duration of the video for each subject (y axis) across the entire
video duration (x axis) in Pre, Post 1, and Post 2 training conditions. Figure 2c
depicts a histogram of button press data across time within the Post 2 condition.
Together, this reveals salient time points that subjects perceived as meaningful
events in the Post 2 training condition.

To pinpoint the action phases that were most salient across all subjects, each
second in the video was categorized by an expert flintknapper (NK) and
independently confirmed (DS). This allowed for the temporal categorization of
action phases based on one of the six action phases: core reposition, core move,
light percussion, percussion, grinding, and tool change. Action phase time points
were used to segment the subject x time matrix and categorize them based on the
six action phases. The number of subjects that responded with a button press was
summed for each specific action phase. The average number of button presses for
each action phase was determined across all subjects within a training condition to
identify the action phase that subjects’ perceived to be the most meaningful and
salient. Using the shapiro.test in R, action count violated assumptions of normality
(W= 0.60, p-value < 0.001). A linear mixed effect model using lmer in R was used
to determine statistical significance.

Determination of meaningful time points. Due to the hesitation and delayed reaction
to an observed evident, the probability of a meaningful event button press was cal-
culated by isolating a 10-s window with a 5-s slide. Using the subject x time matrix, 10
columns (i.e., 10 s) across all subjects were isolated a time, the probability meaningful
event button presses were calculated by determining the number of subjects (all the
rows) that responded (indicated with a 1) and dividing it by the total number of
subjects. The window was shifted by 5-s. The subsequent probability for this 10-s
window was calculated using the same metric. The sliding window intervals were
applied throughout the entire video resulting in a time series of probability for each
training condition (overlaid black lines in Fig. 3a). Time points for analysis were
determined by assigning a 90th percentile as the threshold percentile and only used
video times points with probabilities at or greater than the 90th percentile (Fig. 3c)
indicate probability number value. Together, core move time points that meet the 90th

percentile probability threshold or higher were isolated and extracted for continuous
gaze analysis (Figure S1). Based on these criteria, we identified 40 core move time
points for gaze analysis. Gaze behavior was analyzed for these 40 core move time
points in Pre, Post 1, and Post 2 for all subjects for a total of 1,320 data points for each
given gaze parameter that was measured.

Gaze & perceptual analysis
Temporal dispersion of gaze using agglomerative hierarchical cluster analysis. We
sought to understand the relationship between the dispersion of gaze data across a
given core move time point using gaze coefficient of variation and agglomerative
hierarchical cluster analysis of gaze position along the x-axis. For the first approach,
gaze coefficient of variation was calculated by using continuous gaze data for each
of the 40 core move time points and dividing the standard deviation by the mean
gaze position across the entire core move continuous data segment. For the second
approach, agglomerative hierarchical cluster (AHC) analysis, a bottom-up
approach wherein individual data points are clustered based on their similarity, was
implemented on continuous x-axis gaze data that has been organized into a time x
subject matrix. Data was clustered using XLSTATS 2017.03.44550 with Euclidean
distance as the distance measure and Ward’s method as the agglomeration method
(Manning et al., 2009;57 Tan et al., 201958).

We focused on two classes of parameters: group-level variance and subject-level
gaze positions. For the group-level variance, cluster output included within- and
between-class variance, which is a percentage value that represents how variable
gaze positions are within a cluster and between different clusters respectively. The
average within-class and between-class gaze variance across all core move time
points that exceeded the probability threshold was used to determine if there was
an effect of training on group-level gaze variance. The primary focus of subject-
level parameters from the AHC output was central object, which is an actual value
for each subject that is closest to the cluster centroid. On average, AHC on
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continuous core move time points resulted in 3 time clusters with each time cluster
containing a time cluster centroid, which is the most statistically representative
data point (time point and gaze position) within every identified cluster. Utilization
of this approach for all core move time points reduces and summarizes continuous
gaze data based on cluster-based descriptive statistics.

Spatial dispersion of gaze. To understand where gaze fell in the visual scene during
observation, we focused on gaze dispersion. Since core moves are the focal point of
subjects’ attention, we set the core itself as the primary area of interest (AOI). More
specifically, we deemed the working edge, which is the right most edge of the core,
as the subarea of interest because most of the manipulative, tool-use actions applied
to mold the core itself occurs within this vicinity. The specific coordinates of the
core was determined by an MATLAB2015b-based computer vision object tracking
algorithm using machine learning code that utilizes Random Sampling Consensus
(RANSAC) for the detection of object features (i.e., core) in a training image and
identifying it on a larger visual frame (Computer Vision ToolboxTM User’s Guide
R2020a, 2004; “Computer Vision Toolbox - MATLAB & Simulink29,” 2020;
Bahraini et al., 201830). Video time points that contained core move time points
that meet and exceed the 90th percentile probability threshold or higher were
cropped and used for frame-by-frame object tracking analysis. A screenshot of the
core in various time points within the cropped video were used as training images
for the RANSAC machine learning algorithm. Each frame within the cropped video
was resized to 1680 × 1050 to match the exact viewing dimensions subjects
experienced during video observation. The algorithm extracts features within the
training images and applies it to the larger 1680 × 1050 video frame. A box was
fitted around the core for each video frame to visually validate proper identification
of core coordinates. The x-axis maximum of these coordinates were deemed to the
subarea of interest where most of the manipulative, tool-use actions were applied to
the core. This procedure was repeated across all 40 core move time points.

These core coordinates were used to calculate the mean gaze distance from the
working edge and variance of gaze from the core edge. Subject-level central objects
for each identified cluster from the AHC output was used to calculate gaze distance
from core coordinate by subtracting the subject-level central object from the
working edge coordinates at the corresponding time point of the central object.
Gaze variance relative to the core was calculated by calculating the standard
deviation of the distance for each time centroid. This procedure was repeated
across all 40 core move time points and for each training condition.

Statistical analysis. Statistical analysis were performed using R version 3.6.2 GUI
1.70 El Capitan build (7735) & RStudio version 1.2.5033. For all values, normality and
equality of variances was determined using Shapiro-Wilks and the Levene’s test
respectively. Effect sizes for ANOVA was calculated using eta-squared (Ƞ2) through
the lsr R package with type II sum of squares while effect sizes for the Kruskal–Wallis
test was calculating using epsilon-squared (ϵ). Effect size for pairwise comparisons
was calculated using the effsize R package by implementing Cohen’s d with Hedge’s g
correction, which is utilized for studies with n < 20. For statistical test for significance,
a p-value <0.05 was considered significant for all variables. The data structure and
statistical analysis will be discussed in each individual section.

Action phase. To determine what action phase subjects deemed meaningful, a linear
mixed effect model with maximum likelihood was used to determine the con-
tribution of the fixed effects (action phase and training). A null model, containing
only the random effect of Subject, was created using the lmer R function to account
for any subject-level and baseline differences in behavior. The main effect of action
phase and training were examined by creating models for each independent
variable, and the interaction effect was determined by the combination of action
and training. The chi-square value from the anova R function was used to quantify
the comparison between the models that incorporated these factors and the
baseline model. The multcomp and lsmeans R packages were used for pairwise
comparisons with a Bonferroni adjustment.

Temporal dispersion of gaze statistical analysis. Within-class variance is a parameter
output from the agglomerative hierarchical clustering that was used to assess gaze
dispersion during core moves. Within-class variance was normally distributed
(W= 0.99, p= 0.26) and exhibited homogeneity of variance (F(2)= 0.72 p= 0.49).
Dissimilarity, a parameter that is calculated using Euclidean distance and used to
quantify gaze distance, was not normally distributed (W= 0.69, p < 0.001) but
exhibited homogeneity of variance (F(2)= 0.75, p= 0.47). Significance was asses-
sed using one-way ANOVA with a TukeyHSD pairwise comparison and a Kruskal-
Wallis rank sum test with a Wilcoxon signed ranked post-hoc for within-class
variance and dissimilarity respectively.

Gaze & motor performance statistical analysis. Each row in the data matrix represents
a particular subject, in a specific condition, and during a specific core move time. Due
to high variability in the data, a data permutation within a specific condition was
conducted. In essence, the subject identifier was shuffled within a given condition.
Finally, we took the mean of all dependent variables across all core move time points.
Each condition should have a mean coefficient of variation for each subject.

Coefficient of variation and mean distance from core. Coefficient of variation
(W= 0.94, p= 0.084; F(2)= 0.54, p= 0.59) and mean distance from the core
(W= 0.98, p= 0.74; F(2)= 0.23, p= 0.80) were both normally distributed and had
equal variances. A one-way ANOVA with a TukeyHSD pairwise comparison
adjustment was used to determine the effect of training.

Gaze variability relative to the core. Gaze variability violated assumptions of nor-
mality (W= 0.92, p= 0.031) but had equal variances (F(2)= 2.02, p= 0.15).
Model score also violated assumptions of normality (W= 15.022, p < 0.001) but
exhibited homogeneity of variance (F(2)= 2.020, p= 0.15). For both parameters, a
Kruskal-Wallis rank sum test with a Wilcoxon signed ranked post-hoc was con-
ducted to determine significant difference across training conditions.

Handaxe score. Model score violated assumptions of normality (W= 0.85,
p < 0.001) and homogeneity of variance (F(2)= 64.77, p < 0.001). A Kruskal-Wallis
rank sum test with a Wilcoxon signed ranked post-hoc was conducted to determine
significant difference across training conditions.

Percussion error. Percussion score violated assumptions of normality (W= 0.90,
p= 0.008) and exhibited homogeneity of variance (F2,27= 3.17, p= 0.06).

Shift functions. To quantify the extent to which perceptual (i.e., gaze) and motor
performance changed from one training condition to another, we utilized shift
function originally proposed by Rouselett & colleagues (2017). A shift function is
another technique that quantifies how distribution differ by quantifying the
amount one distribution must be shifted relative to another distribution (Rousselet
et al., 2016, 201733,59). Data are described using deciles wherein each condition is
described using 9 quantiles leading to the segmentation of data into 10 different
segments. Deciles are calculated using the Harrell-Davis quantile estimator (Wilcox
& Erceg-Hurn, 2012). Deciles for one group (e.g., Pre) is compared to a second
group (e.g., Post 1) by quantifying the decile differences between the two groups
(e.g., Post 1 – Pre). A 95% confidence interval is calculated using percentile
bootstrap, and the significance for each decile is quantified using Hochberg’s
method (Wilcox & Erceg-Hurn, 2012). In the current study, data was separated
into two shifts: Shift1 and Shift2. Shift1 compares gaze and motor performance
scores in Pre & Post 1 while Shift2 compares Post 1 and Post 2 data. Each shift data
frame was passed through the rogme package in R, which implements the Harrell-
Davis quantile estimator, 95% confidence interval, and Hochberg’s method.

Canonical correlation analysis (CCA). To quantify the strength of the relation-
ships between performance and gaze through training, we conducted canonical
correlation analysis (CCA), a multivariate tool that evaluates the relationship
between two variables (Wang et al., 202060). Gaze and performance dependent
variables were separated into two different variable sets or variates. The perfor-
mance variate is a subject x performance data matrix with each row representing
subjects and the columns representing the three performance variables: learning
slope, model score, and percussion score. Similarly, the gaze variate is a subject x
gaze matrix with each row representing a subject and each column representing
gaze variables: gaze coefficient of variation, mean gaze distance from core, and
gaze variability from core. Each training condition (i.e., Pre, Post1, and Post2)
consisted of these two performance and gaze matrices yielding a total of six
matrices.

For each condition, the performance variate (Xa) and the gaze variate (Xb) were
passed through the cca function in MATLAB. Within the cca function, all variables
within each variate was z-scored normalized, a common procedure implemented to
the data prior to CCA implementation. A sample covariance matrix was created
within each variate, which allowed for the implementation of Cholesky
factorization using the chol function in MATLAB. Canonical correlations were
computed using singular value decomposition through the svd function in
MATLAB. The output of the function consisted of canonical weights (Wa, Wb), a
numerical value quantifying how a single variable within a variate contributes to
the overall trend. The canonical variate (Za, Zb) is a computed weighted sum of
original variables obtained by a linear combination of the variables in Xa and
another linear combination of variables in Xb. The computed canonical correlation
(S), a quantification of the strength of the relationship between the two variates
(i.e., performance measures and gaze variables), is obtained by quantifying the
Pearson’s R correlation of the canonical variates, Za and Zb. A comparison of
weights (Wa, Wb) as well as the changes in correlation between Za and Zb will be
assessed from Pre, Post1, and Post2.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the current study are available in
Georgia Tech’s SMARTech Respository: (web link: https://smartech.gatech.edu/handle/
1853/64500).
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