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Development of deep learning-based detecting
systems for pathologic myopia using retinal fundus
images
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Globally, cases of myopia have reached epidemic levels. High myopia and pathological

myopia (PM) are the leading cause of visual impairment and blindness in China, demanding a

large volume of myopia screening tasks to control the rapid growing myopic prevalence. It is

desirable to develop the automatically intelligent system to facilitate these time- and labor-

consuming tasks. In this study, we designed a series of deep learning systems to detect PM

and myopic macular lesions according to a recent international photographic classification

system (META-PM) classification based on color fundus images. Notably, our systems

recorded robust performance both in the test and external validation dataset. The perfor-

mance was comparable to the general ophthalmologist and retinal specialist. With the

extensive adoption of this technology, effective mass screening for myopic population will

become feasible on a national scale.
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Myopia is a worldwide public health problem. It was
estimated that nearly 2.5 billion people might be
affected by 2020, among which 27–33% would be high

myopia1. By 2050, the global myopic population can reach 4.8
billion (49.8% of the global population)2, leading to the sub-
stantial global economic loss due to the burden of visual
impairment caused by myopia3.

Pathologic myopia (PM) is one of the most common causes of
severe irreversible visual impairment due to the myopic macu-
lopathy (MM). According to global population surveys, the
incidence of PM was 5–10% in diagnosed myopia and 1–4% in
the general population4–6. In particular, the situation in Eastern
Asia nations is worrisome. In China, more than 50% students in
urban have myopia and 20% are high myopia4,7. Although the
typical PM lesions can also be observed in some moderate
myopia8, high myopia was generally thought as the essential
condition for PM and people with high myopia are at higher risk
of PM9.

As the treatment effects and prognosis of PM are often poor,
early detection and intervention to prevent the aggravation of PM
are critically important. However, the retinal specialists are always
confronted with heavy clinical duty managing multiple ocular
fundus diseases, while the healthcare institution workers are often
lack of the requisite expertise to identify the PM and MM,
let alone the management. Moreover, currently some govern-
ments had launched the public healthcare programs to screen the
ocular fundus diseases including PM in local community medical
institutions10–12. Such large screening task further challenges the
ophthalmic medical resources with respect of clinical data ana-
lysis, especially the retinal fundus images reading. The work
volume of image data processing will be daunting if done by man
power alone.

Fortunately, with the rapid development of artificial intelli-
gence (AI) technologies, the application of AI in medical areas
started to play important role in the automated clinical data
processing and hence made the heavy work feasible13. Among AI
technologies, the deep learning, a sophisticated subclass of
machine learning, mimics the way of human brain working and
uses deep artificial neural networks to solve any feature expres-
sion problem14. The deep learning system (DLS) has shown
excellent performance comparable to the board-certified specia-
lists in the respect of massive medical images categorizing in
clinical practice15–17. In the field of ophthalmology, the DLS-
affiliated diagnosis software for diabetic retinopathy has been
successfully applied in clinical and public healthcare screening
task12.

However, the application of deep learning technology in PM
lesions screening is still a challenge, due to the complexity of
classification and definition system of PM. For a long time, there
had been a lack of consensus on the precise definition of PM,
until a new simplified systematic classification for MM was
proposed by a meta-analysis for pathologic myopia (META-PM)
study group18. According to this classification standard, eyes with
MM, which is equal to or more serious than diffuse choroidal
atrophy (category 2) or with at least one of the “plus” lesions, can
be defined as having PM19. Based on such classification system, it
is viable to design the AI algorithm to automatically identify PM
and assist the clinicians to make relevant diagnosis. Importantly,
sufficient resources of high-quality PM retinal fundus image
dataset and high standard expert teams are also crucial to achieve
this goal.

This study aimed to design and train the DLSs to automatically
detect PM as well as the category of MM using a large dataset of
color retinal fundus images obtained from the ophthalmic clinics
of the hospitals.

Results
Altogether 16,428 gradable images were screened from 17,330
color fundus images and used for PM grading, while 902 images
were labeled as ungradable. The workflow of manual grading
tasks was illustrated in Fig. 1. About 15% of the graded images
with inconsistent diagnosis were submitted to retinal specialists
for final grading. The characteristics and summary of all the
datasets were shown in Table 1 and Supplementary Table 1.

Performance of the DLSs. In the test dataset for binary task
(none PM /PM), the external general ophthalmologist had an
accuracy of 0.978 (95% CI: 0.971–0.985), sensitivity of 0.980 (95%
CI: 0.973–0.986), and specificity of 0.967 (95% CI: 0.958–0.976),
while the external retinal specialist achieved an accuracy of 0.991
(95% CI: 0.986–0.996), sensitivity of 0.991 (95% CI: 0.987–0.996),
and specificity of 0.989 (95% CI: 0.984–0.994). The DLS achieved
an AUC of 0.993 (95% CI: 0.989–0.997), accuracy of 0.977 (95%
CI: 0.970–0.984), specificity of 0.972 (95% CI: 0.962–0.980), and
sensitivity of 0.977 (95% CI: 0.970–0.985) (Table 2, Fig. 2a).

In the test dataset for three-class classification task (ungrad-
able/NPM/PM), the DLS achieved a performance measured with
the macro-AUC value of 0.979, an accuracy of 0.963, and
quadratic-weighted kappa of 0.787 (Fig. 2b). Meanwhile, in the
test dataset for five-class task, the DLS achieved a macro-AUC of
0.978, accuracy of 0.976, and quadratic-weighted kappa of 0.990
(Fig. 2c). From C0 to C4 MM, the specific accuracy of DLS is 98.8,
99.3, 93.7, 95.5, and 93.9% respectively. Overall, the DLS achieved
the performance which was comparable to the general ophthal-
mologist. The detailed results of performance in multiclass
classification tasks were listed in Table 3. Moreover, the
performance of DLSs in the external validation dataset was
slightly inferior to that in the test dataset (Supplementary
Table 2). The precision recall curves of DLSs were also provided
in Supplementary Fig. 1 (the source data were shown in
Supplementary Data 1).

Misclassified images analysis. In the binary task of NPM/PM,
the total number of false-negative classification was five, among
which two were PM with retinal detachment and three were PM
with retinal vein obstruction. Of the thirty-three false-positive
images, thirty were tessellated fundus characterized as PM, while
the remaining three were retinal vein obstruction, proliferative
retinopathy, and exudative retinopathy. In the multiclass classi-
fication tasks, the results were shown in confusion matrices
(Supplementary Fig. 2). The major error in the three-class task
was that fifty-five NPM images were misclassified as ungradable
by the DLS due to the poor clarity. Meanwhile, in the five-class
task, the major error was that two patchy chorioretinal atrophy
images were erroneously classified as macular atrophy. Similarly,
there were two images of macular atrophy that were incorrectly
identified as patchy chorioretinal atrophy. The typical mis-
classified images were shown in Fig. 3. In addition, the confusion
matrices of three tasks in the external dataset were also provided
in Supplementary Fig. 2. The distribution of misclassified images
for the 3 tasks in the external dataset was basically comparable to
that in the test dataset.

Visualization analysis. Heatmap analysis demonstrated the
learning procedure of our DLS and the areas contributing to the
DLS. The original images of different MM categories in the five-
class task were displayed in Fig. 4a. After overlying fundus
heatmap in Fig. 4a, the regions that the DLS thought most sig-
nificant for its decision were highlighted and displayed in Fig. 4b.
The typical MM lesions including tessellated fundus, diffuse
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Fig. 1 Workflow diagram showing the overview of developing deep learning systems to detect PM as well as myopic maculopathy. PM pathologic
myopia, NPM none pathologic myopia, DLS deep learning system. *20 graders were randomly grouped into five teams with each team involving three
general ophthalmologists and one senior specialist.

Table 1 Study population characteristics of the total dataset and external validation dataset.

Number of images
with labels

Number of
participants

Mean age
(years)

Sex (%
female)

Spherical equivalent
(diopters)

Total dataset 17,330 13,869 49.5 66.1 −2.6 ± 4.79a

Ungradable images 902 881 48.8 66.6 NA
none PM 14,623 11,698 49.2 65.9 −1.294 ± 2.39
Pathologic myopia 1805 1290 52.7 67.5 −14.469 ± 4.84
Category 0 693 645 50.6 61.2 −7.23 ± 0.22
Category 1 1581 1089 48.9 66.3 −11.38 ± 2.75
Category 2 480 338 49.7 67.5 −14.06 ± 4.26
Category 3 451 334 55.9 68.9 −16.26 ± 5.24
Category 4 331 188 61.3 67 −16.87 ± 5.78
External validation dataset 1000 738 51.5 63.4 −3.07 ± 5.80a

Ungradable images 63 59 59.0 63.9 NA
none PM 800 602 50.5 64.2 −1.5 ± 3.42
Pathologic myopia 137 77 53.6 55.8 −15.35 ± 5.98
Category 0 35 31 52.1 64.1 −6.73 ± 0.24
Category 1 121 78 49.8 61.6 −12.35 ± 4.98
Category 2 32 17 50.5 62.7 −15.75 ± 5.71
Category 3 33 18 56.2 65.1 −17.03 ± 5.96
Category 4 23 13 62.4 66.2 −17.26 ± 6.21

Abbreviations: PM pathologic myopia.
anot include the refractive error data of ungradable image group.
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chorioretinal atrophy, patchy chorioretinal atrophy, and macular
atrophy were observed in the hot regions. Of note, these lesions
were used to diagnose PM in ophthalmic practice. The t-SNE
analysis showed the excellent classification performance of our
DLSs for each task. In the t-SNE plots, clustering occurred in the
same classification of images, with significant differences between
images with different labels (Supplementary Fig. 3).

Discussion
In view of the rapid increase in myopia prevalence7,20,21, there
was a demand to establish the systemic electronic ocular data-
bases especially for the adolescent individuals. Meanwhile, the
large amount of PM patients also should receive the timely
diagnosis and advices by eye doctors to avoid the occurrence or
aggravation of ocular complications. In particular, with the ser-
ious situation of COVID-19 pandemic, the remote medical sys-
tems will be more broadly applied. To implement such high
throughput or telemedicine task, the aid of modern AI technol-
ogies is crucial.

In this study, we designed a series of DLSs incorporating three
tasks to detect PM and the category of MM based on retinal fundus
images. Our work was an exploratory and innovative effort to apply
the modern deep learning technologies in the PM diagnosis and
management. The target serving population for clinical application of
our DLS will mainly be the subjects with myopia, as the DLS is
designed to identify the PM. Using a large dataset of 17,330 retinal
fundus images labeled by ophthalmologists and senior retinal spe-
cialists from real-world, our DLSs achieved robust performance in
the binary task of NPM/PM (AUC= 0.993), the three-class task of
ungradable/NPM/PM (macro-AUC= 0.979) and the multiclass
classification task of five MM categories (macro-AUC= 0.978).
Besides, based on quadratic-weighted kappa value, the DLS showed
slightly less consistent with the reference standard than the general
ophthalmologist in the three-class task and demonstrated consistency
equivalent to that of a retinal specialist in the five-class task. The
competitive performance of our DLSs in this work could mainly be

attributed to two factors: the suitable CNN architecture and larger
training dataset. We selected Xception inspired by InceptionV3 as the
basic architecture after validation. In this architecture, Inception
modules were replaced with depthwise separable convolutions to
handle spatial-correlations and cross-channel correlations indepen-
dently. It is believed that an independent processing of corss-channel
correlations would better address the tasks involved in this study.
Due to the strong pixel similarity in the characteristic PM lesions,
Xception can better learn the characteristic similarity of multiple pixel
points within a PM lesion to make more accurate judgments by
processing cross-channel correlations independently. Although the
number of parameters was similar to InceptionV3, Xception can take
better use of model parameters22. On the other hand, the larger
training dataset was used in this work and ought to be effective to
prevent parameters overfitting. In the process of DLS development,
in view of the relatively small number of training images for some
categories, several strategies were adopted to avoid overfitting. Firstly,
the diversity of the training data were increased by means of data
augmentation by randomly flipping training images from left to right
or up to down, and adjusting images’ brightness, contrast, hue, and
saturation. Secondly, dropout layer were inserted between the basic
Xception model and the last full connection layer. The dropout ration
is 0.2 with only 20% of the weights updated every time. Thirdly, we
used a two-step training process. In the first training step, only the
last full connection layer was fine-tuned and the weights of the basic
Xception were not updated. In the second training step, the whole
model was fine-tuned and the weights of all the layers were updated.
Finally, we used the early stopping strategy. Training was stopped if
the validation loss did not decrease in 5 consecutive epochs during
the training process. Therefore, our DLSs were proven to be a precise
and efficient solution for the PM screening task.

AI and big data analysis have currently been widely applied in
the medical field. Deep learning technologies based on image data
have become the powerful tools in screening diabetic retinopathy
(DR), glaucoma, retinopathy of prematurity (ROP), and age-
related macular degeneration (AMD)23–26.

Table 2 Classification results for binary task in test dataset.

AUC (95% CI) Accuracy (95% CI) Specificity (95% CI) Sensitivity (95% CI)

DLS 0.993 (0.989 to 0.997) 97.7% (97.0 to 98.4) 97.2% (96.2 to 98.0) 97.7% (97.0 to 98.5)
General ophthalmologista – 97.8% (97.1 to 98.5) 96.7% (95.8 to 97.6) 98.0% (97.3 to 98.6)
Retinal specialista – 99.1% (98.6 to 99.6) 98.9% (98.4 to 99.4) 99.1% (98.7 to 99.6)

Abbreviations: DLS deep learning system, AUC area under the receiver operating curve.
aThe external ophthalmologist and retinal specialist.

Fig. 2 Receiver operating characteristic (ROC) curves of the deep learning systems derived from the test datasets. a The performance for binary task.
b The performance for three-class task. c The performance for five-class task. NPM none pathologic myopia, PM pathologic myopia, AUC area under the
receiver operating curve, C Category.
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Several automated systems for detection of PM have been
reported. For instance, Tan et al. introduced the PAMELA system
that automatically detected PM via peri-papillary atrophy
feature27. Zhang et al. proposed a computer-aided diagnosis
framework for PM diagnosis through biomedical and image
informatics28. Freire et al. reported the work of PM diagnosis and
detection of retinal structures and some lesions using Xception as
the baseline model and achieved satisfactory performance in
classification and segmentation tasks29. Devda et al. developed a
deep learning method with CNN for tasks of Pathologic Myopia
Challenge (PALM) based on dataset provided by International
Symposium on Biomedical Imaging (ISBI). Their works showed a
better performance when compared to PAMELA system30.
However, these were all developed from public databases with
small sample sizes, such as Singapore Malay Eye Study (SiMES)
database, Singapore Cohort Study of the Risk factors for Myopia
(SCORM) and ISBI. The datasets in this study were collected
from the real-world of eye center, which provide more original
disease information and data complexity compared with the
public databases. Nevertheless, in real-world screening condi-
tions, the rate of detecting ungradable images or poor-quality
images exist, being reported at a level about 20%31,32. In the
present work, using targeted three-class task training, the DLSs
recorded high performance in distinguishing ungradable images
or poor-quality images from the raw total dataset (Fig. 2b,
Table 3).

In clinical practice, the category of MM can reflect the severity
of the disease to a large extent. Zhao et al. reported that the
morphological and functional characteristics of highly myopic

eyes were positively correlated to the MM severity from Category
0 to 3. Meanwhile, the complications were different from Cate-
gory 0 to 4 and closely correlated to the MM degree33.

A recent study by Kyoko et al. developed four DL models to
recognize the Category 2 to 4 MM and CNV. They also integrated
the four DL models and a special processing layer to develop the
META-PM categorizing system (META-PM CS), which could detect
PM defined as having MM equal to or more serious than diffuse
atrophy (category 2)34. Compared with their META-PM CS, our
five-class DLS is able to recognize MM from Category 0 to 4 directly.
The binary task of NPM/PM was assigned to a well-trained DLS
based on a more precise PM definition (equal to or more serious than
diffuse atrophy (category 2) or with at least one of the “plus” lesions).
Therefore, our DLSs had prominent significance for ocular healthcare
work. The category of MM lesions suggested by our DLS in the five-
class task can provide the automatic medical diagnosis and relevant

Fig. 4 Visualization of the DLS for five-class task. a The original images of
different myopic maculopathy (Category1–Category4). b Heatmap
generated from deep features overlaid on the original images. The typical
myopic maculopathy lesions were observed in the hot regions.

Fig. 3 The typical misclassified cases of DLSs. Typical images of false-
negative images in binary task: a PM with retinal detachment. b PM with
retinal vein obstruction. Typical images of false-positive images in binary
task: c Tessellated fundus. d Retinal vein occlusion. e Exudative retinopathy.
f Proliferative retinopathy. The major error cases of three-class task:
g images with the relatively poor clarity. The major error cases of five-class
task: h patchy chorioretinal atrophy image were classified as macular
atrophy image. i macular atrophy image were classified as patchy
chorioretinal atrophy image.

Table 3 Classification results for multiclass tasks in test
dataset.

Macro-
AUC

Accuracy(95% CI) Quadratic-
weighted
kappa(95% CI)

Task of ungradable/NPM/PM
DLS 0.979 96.3% (95.1 to 97.5) 0.787 (0.737

to 0.837)
General
ophthalmologist

– 98.4% (97.6 to 99.2) 0.962 (0.940
to 0.979)

Retinal
specialist

– 99.2% (98.6 to 99.8) 0.981 (0.969
to 0.994)

Task of 5 myopic maculopathy categories
DLS 0.978 97.6% (96.8 to 98.3) 0.990 (0.985

to 0.994)
Category 0 – 98.8% –
Category 1 – 99.3% –
Category 2 – 93.7% –
Category 3 – 95.5% –
Category 4 – 93.9% –
General
ophthalmologist

– 95.4% (94.3 to 96.4) 0.966 (0.957
to 0.974)

Category 0 – 97.7% –
Category 1 – 98.1% –
Category 2 – 91.6% –
Category 3 – 88.8% –
Category 4 – 90.9% –
Retinal
specialist

– 98.9% (98.3 to 99.4) 0.991 (0.986
to 0.995)

Category 0 – 100% –
Category 1 – 99.3% –
Category 2 – 97.9% –
Category 3 – 97.7% –
Category 4 – 96.9% –

Abbreviations: DLS deep learning system, PM pathologic myopia, NPM none pathologic myopia.
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medical advice for patients instantly. Meanwhile, the DLSs also can
assist ophthalmologists to obtain the prompt information of MM
lesions for reference in their clinical practice.

The interpretation of deep learning remains a long-standing
problem35. This study analyzed the distribution of misclassifica-
tion of the DLS, including false negatives and false positives, and
visualized the output images (Figs. 3 and 4). The misclassified
images in our results indicated the weakness of DLSs somewhat.
However, the misclassification rate of our three DLSs was within
4%. The outcomes at this stage were optimistic for future’s clinical
application. Certainly, increasing the image number of specific
diseases into the training dataset will always be the effective
approach to further minimizing the false-positive and false-
negative results. Moreover, the visualization results in heatmap
indicated the regional contribution to decision making by DLS on
an image. The typical MM lesions found in the hot regions of the
heatmap (Fig. 4) indicated the central procedure of the DLSs and
confirmed the validity of our systems. The results also suggested
the direction of optimization and updating for the better preci-
sion in the future.

Although the DLSs designed by our work demonstrated
excellent performance, this study still had limitations. Firstly, our
DLSs had no independent function to detect “plus” lesions
including CNV, lacquer cracks, and Fuchs spots. These three
specific lesions differ greatly in shape, size, color, and location,
especially the lacquer cracks. A large number of images con-
taining these “plus” lesions are required to train the DLS in a
segmentation task, which is another ongoing work including
images collection and labels annotation by our team. Secondly, we
had a single source of the total dataset in this study. Although we
tested our DLSs in the external validation dataset and achieved
robust performance, massive external validation was still desirable
to ensure its successful application in the real world of PM
screening in the future. Thirdly, the DLSs were exclusive one for
PM identification and not trained to identify the ocular diseases
other than PM. It was not an automated comprehensive diag-
nostic platform to screen multiple fundus diseases.

In conclusion, this study designed the DLSs which can auto-
matically detect the PM and the category of MM according to the
META-PM study classification. The data of our work at this stage
were promising. The DLSs achieved excellent performance in the
test and external validation datasets. This pilot work provided a
useful framework to further develop the more complete and
widely applicable platform for PM screening. This study is a
contributive one to the clinical management and healthcare work
for the myopia patients.

Methods
Data collection. In this study, the use of retinal fundus images was approved by
the Ethics Committee of First Affiliated Hospital, School of Medicine, Zhejiang
University and adhered to the tenets of the Declaration of Helsinki (Approval ID:
NO. 2020–693). Because the study was a retrospective review and analysis of fully
anonymized color retinal fundus images, the medical ethics committee declared it
exempt from informed consent.

A total dataset was generated, containing 17,330 color retinal fundus images
from 13,869 myopia patients aged 14–75 years (Table 1) obtained from the eye
center of the First Affiliated Hospital of School of Medicine, Zhejiang University
between July 2016 and June 2018. The desktop nonmydriatic retinal cameras and
digital retinography systems (Canon) were used to capture the retinal fundus
images, which were maculalutea-centered 45° color fundus photographs. The pupil
dilation was decided by the examiners depending on the patient’s ocular condition.
All the data were pseudonymized.

Definitions and the reference standard. According to the META-PM study
classification, MM was classified into 5 categories: “no myopic retinal degenerative
lesion” (Category 0), “tessellated fundus” (Category 1), “diffuse chorioretinal
atrophy” (Category 2), “patchy chorioretinal atrophy” (Category 3), and “macular
atrophy” (Category 4). Additionally, lacquer cracks, myopic choroidal neovascu-
larization, and Fuchs spot were defined as “plus” lesions18. Thus, in this study, eyes

with MM ≥ Category 2 or with at least one of the “plus” lesions were considered as
having PM19, while the low myopic eyes (myopic refractive error between −0.5 D
and −6.0 D), and the eyes with MM of Category 0 or Category 1 without “plus”
lesions were defined as without PM. The example images of Category 0 to Category
4 MM were shown in Supplementary Fig. 4.

Besides, due to the large volume and high complexity of the raw fundus image
data from real-world sources, the quality and gradability of the images were
assessed by the ophthalmologists and then used for the further PM grading task.
The criteria applied to determine a gradable image was listed below:

1. Image field definition: primary field must include the entire optic nerve head
and macula.

2. Images should have perfect exposure because dark and washed-out areas
interfere with detailed grading.

3. The focus should be good for grading of small retinal lesions
4. Fewer artifacts: Avoid dust spots, arc defects, and eyelash images
5. There should be no other errors in the fundus photograph, such as the

absence of objects in the picture.

After learning the definition and testing the intra- and inter-rater reliability, a
total of twenty ophthalmologists from three ophthalmic centers, who achieved an
kappa value ≥ 0.81 (almost perfect) for PM and MM category, participated in the
manual grading tasks and served as the graders36. Fifteen of them were general
ophthalmologists with more than five years’ experience and five of them were
senior retinal specialists with over 10 years’ experience. They were randomly
grouped into five teams with each team involving one senior specialist. The
reference standard of the three tasks was determined based on the following
protocol. Graders in the same team evaluated the same set of images. Each grader
was blinded to the grading results made by the others and the independent
decisions on the fundus images were made. The results recognized unanimously by
the three graders in the same team were taken as the reference standard. Results
that differed among the general ophthalmologists in the same team were arbitrated
by the retinal specialist for final decision of grading37. For the detailed workflow of
dataset processing, all available fundus images from the total dataset were involved
(n= 17330) at the beginning stage, and the gradable/ungradable images were then
identified and categorized by the grader teams as described above. Subsequently, in
the gradable images group, the PM/non-PM identification and the MM grading
(C0 ~ 4 with C0= non-MM and C1-4=MM) were completed simultaneously by
the grader teams based on the criteria of META-PM classification, with PM or C0-
C4 MM images confirmed by the refractive error data (spherical equivalence worse
than −6.0 D). The workflow of manual grading tasks was illustrated in Fig. 1. The
inclusion/exclusion criteria of three tasks were listed as follows:

1. The binary task: Images obtained from eyes with refractive error (spherical
equivalent) worse than −0.5 diopters were included. Images obtained from
eyes with previous history of refractive surgery and the ungradable images
were excluded.

2. The three-class task: All the images involved in the binary task and the
ungradable images excluded in the binary task were all included in the
three-class task.

3. The five-class task: Images obtained from eyes with refractive error
(spherical equivalent) less than −6.0 diopters, but without serious
retinopathy caused by other retinal disease, were included. Images obtained
from eyes with previous history of refractive surgery and the ungradable
images were excluded.

Development of the DLSs. Our training platform was implemented with the
PyTorch framework, and all of the DLSs were trained in parallel on four NVIDIA
2080 Ti graphics processing units38. After processed by manual grading, the total
dataset was randomly subgrouped into the training, validation, and test datasets,
which accounted 70, 20, and 10%, respectively. Each image was always taken from
a different eye and was only allowed to exist in one dataset, so that no same image
would appear in both the training and test datasets. All the raw fundus images were
pre-processed by cropping and resizing to meet the requirement of input image
format with a resolution of 512 × 512 pixels. The images in the training and
validation datasets were pre-processed by the steps of gray-scale transformations,
geometric variation and image enhancement, in order to eliminate the irrelevant
information and recover the useful or true information in images. The features of
input images were then analyzed and extracted by the DLSs. The results of binary
and multiclass classifications were given. Meanwhile, the images in the test dataset
were simultaneously evaluated by the DLSs and two ophthalmologists (one general
ophthalmologist and one retinal specialist external to the aforementioned grading
teams). The comparison results between the classifications given by the DLSs and
ophthalmologists were used to assess the performance of the DLSs. To further
evaluate our DLSs, we also recruited 1000 images from 738 patients aged 17–79
years (Table 1) in another hospital in Shanghai, which were produced by another
brand of desktop nonmydriatic retinal camera (NIDEK) and served as an external
validation dataset.

In this study, the DLSs were trained using four convolutional neural network
(CNN) architectures, namely DenseNet201, ResNet50, VGG16, and Xception. The
CNN architectures were evaluated in the test dataset and their performances were
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compared. Xception had the best metrics compared with the other architectures in all
three tasks (Supplementary Table 3 and Supplementary Fig. 5). Thus, Xception was
adopted as the optimal architecture used for the classification tasks. The detailed
relevant architecture was shown in Supplementary Fig. 6. Altogether three DLSs were
trained to handle binary or multiclass classification tasks: (i) a binary system of none
pathologic myopia/pathologic myopia (NPM/PM), (ii) a three-class system of
ungradable images/NPM/PM, and (iii) five-class system of five MM categories.

Misclassification and visualization analysis. The false-negative and false-positive
images misclassified by the three DLSs were further analyzed by a senior retinal
specialist. To provide detailed guidance for clinical analysis, a convolutional
visualization layer was implanted at the end of the network in the five-class task.
Then, this layer generated a visualization heatmap highlighting the strong pre-
dicting regions on retinal fundus images39. The consistency analysis between the
hot regions and the actual lesions was performed by a senior retinal specialist.
Additionally, we used an advanced nonlinear dimensionality reduction method, t-
distributed stochastic neighbor embedding visualization (t-SNE) to reduce the deep
features to two-dimension, and visualize them.

Statistics and reproducibility. According to the reference standard in binary task,
the performance of the selected general ophthalmologist, retinal specialist, and the
DLSs in the test and external validation dataset was calculated using the indices of
sensitivity, specificity, accuracy, and area under the receiver operating curve (AUC).
For the multi-class tasks, the area under the macro average of ROC (macro-AUC) for
each class in one-vs-all manner, quadratic-weighted kappa score, and accuracy were
calculated. The source data underlying ROC curves were shown in Supplementary
Data 1. We also demonstrated the confusion matrices for the multi-class classification
tasks40. Additionally, the Clopper–Pearson method was used to calculate the 95% CI.
Statistical data were analyzed using Sigma Plot 14.0 and Python 3.7.3.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets generated and/or analyzed during the current study are available from the
corresponding author on a reasonable request. Correspondence and requests for data
materials should be addressed to Wei Han (hanweidr@zju.edu.cn). All datasets are stored
at our FTP server. The source data underlying ROC can be found in Supplementary
Data 1.

Code availability
The code used in this study can be accessed at GitHub (https://github.com/18818569575/
image_pathological_myopia).
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