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Identifying spatio-temporal seizure propagation
patterns in epilepsy using Bayesian inference
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Focal drug resistant epilepsy is a neurological disorder characterized by seizures caused by

abnormal activity originating in one or more regions together called as epileptogenic zone.

Treatment for such patients involves surgical resection of affected regions. Epileptogenic

zone is typically identified using stereotactic EEG recordings from the electrodes implanted

into the patient’s brain. Identifying the epileptogenic zone is a challenging problem due to the

spatial sparsity of electrode implantation. We propose a probabilistic hierarchical model of

seizure propagation patterns, based on a phenomenological model of seizure dynamics called

Epileptor. Using Bayesian inference, the Epileptor model is optimized to build patient specific

virtual models that best fit to the log power of intracranial recordings. First, accuracy of the

model predictions and identifiability of the model are investigated using synthetic data.

Then, model predictions are evaluated against a retrospective patient cohort of 25 patients

with varying surgical outcomes. In the patients who are seizure free after surgery, model

predictions showed good match with the clinical hypothesis. In patients where surgery failed

to achieve seizure freedom model predictions showed a strong mismatch. Our results

demonstrate that proposed probabilistic model could be a valuable tool to aid the clinicians in

identifying the seizure focus.
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Epilepsy is a common neurological disorder, characterized by
seizures, affecting more than 50 million people worldwide1.
Drug-resistant epilepsy is a class of epilepsy where medi-

cation fails to control seizures and is observed in nearly 25%
of epilepsy patients. In such cases, clinical treatment usually
involves surgical resection of brain regions that are considered to
be originating seizures. Success rates of epilepsy surgery, ranging
between 50% and 60%, prescribe a need for developing better
methods to identify an epileptogenic zone (EZ). In this work, we
propose a Bayesian framework based on a dynamical model of
epileptic seizures, namely Epileptor2,3, for identifying spatio-
temporal seizure propagation patterns.

Focal epileptic seizures are characterized by seizures originat-
ing in one or more regions, generally referred to as EZ, and
propagating to other regions that are connected to regions in the
EZ, generally referred to as a propagation zone (PZ). Such seizure
propagation patterns can be adequately described given the
seizure-onset and -offset times of all the regions recruited by
the seizure. In focal epilepsy, a transient change in signal power is
a characteristic feature of seizure onset and offset. Stereotactic
electroencephalography (SEEG) log power computed over a
sliding window captures such transients in SEEG signal power
reliably. In the previous work4,5, patient-specific information
such as anatomical connectivity obtained from non-invasive
imaging techniques is combined with the dynamical models of
local neuronal activity (such as Epileptor) to describe the indi-
vidual’s spatio-temporal brain activity at the macroscopic scale.
These studies demonstrated that a network of coupled Epileptors
can predict various patient-specific seizure propagation patterns
given that EZ is known. Hence, we hypothesize that by inverting
the coupled Epileptor model to best fit the SEEG log power, it
would be possible to build patient-specific virtual models of
spatio-temporal seizure propagation patterns. However, such an
inversion is non-trivial primarily due to the following: (a) large
dimensionality of the parameter space, which includes unknown
model parameters and the unobserved source states; (b) spatial
sparsity of SEEG measurements; and (c) source mixing at the
sensors, i.e., the activity recorded by the SEEG sensors could be a
mixture of activity from different brain regions in the neighbor-
hood of the sensor.

In order to address these issues, in this work, we use Bayesian
inference paradigm to perform model inversion. Bayesian infer-
ence offers a flexible framework for incorporating any prior
knowledge such as plausible range of model parameters,
dynamics of unobserved brain states, and prior hypothesis on the
seizure focus. These priors constrain the parameter space,
thus enabling efficient exploration of posterior distribution of
parameters. In the field of neuroscience, Bayesian inference has
been extensively and fruitfully used for model inversion by a class
of models called dynamic causal modeling (DCM)6. DCM is a
Bayesian framework for inferring physiological mechanisms that
could generate observations obtained from various neuroimaging
techniques such as functional magnetic resonance imaging (MRI)
and electroencephalography (EEG)7,8. Using DCM for cross-
spectral density, Papadopoulou et al.9 have inferred modulations
in synaptic efficacy of intrinsic and extrinsic connections within
and between two regions during seizure onset. They have
demonstrated that DCM provides a mechanistic insight into the
underlying seizure generation and propagation processes pro-
vided a good estimate of the EZ network is available. Although
variants of DCM such as spectral DCM10 and regression DCM11

are shown to scale to whole-brain network models, of up to 66
regions, inference using DCM for a whole-brain model is not yet
demonstrated in the context of epilepsy. Recently, efficient and
robust inversion of seizure propagation on whole-brain scale was
achieved by simplifying the seizure dynamics using a threshold

model12; however, this approach considerably restricts the range
of model dynamics. In this study, we demonstrate inversion of a
phenomenological model of epileptic seizure dynamics at the
whole-brain level, containing 164 regions, with the objective of
identifying the EZ.

Taking advantage of recent advances in probabilistic pro-
gramming languages (PPLs) for Bayesian inference, such as
Stan13, we demonstrate that it is possible to invert the coupled
Epileptor model that best explain each patient’s intracranial
recordings. The problem of model inversion is framed as an
optimization problem by defining an objective function over
Epileptor parameter space such that the maxima of this function
correspond to the parameters that best explain the SEEG
data. Specifically, a joint probability density is defined over the
Epileptor parameters and observed log power of intracranial
recordings by embedding Epileptor equations as priors on brain
source dynamics. Next, using maximum a posteriori (MAP)
techniques, Epileptor parameters are optimized to best fit intra-
cranial data. In order to test the validity of this approach, first the
accuracy of model predictions is tested against the synthetic data
generated using The Virtual Brain (TVB)14. By fitting the syn-
thetic data, we show that the optimized model can accurately
identify the spatio-temporal seizure propagation patterns. Finally,
patient-specific virtual epileptic patient (VEP), models are built
for a retrospective patient cohort containing 25 patients with
varying surgery outcome. As the empirical data set does not
contain the whole-brain source activity, model predictions are
validated against the clinical EZ hypothesis. In patients who are
seizure-free after surgery, we demonstrate that optimized VEP
models are able to identify the EZ. More interestingly, in patients
who are not seizure-free, we found that the model predictions do
not match with the clinical hypothesis of EZ. These results sug-
gest that the proposed approach can be a valuable tool for clin-
icians in identifying EZ to improve outcomes of epilepsy surgery.

Results
The workflow for identifying seizure propagation pattern (Fig. 1)
briefly consists of the following steps: (a) estimating structural
connectome (SC) and source to sensor space transformation from
diffusion MRI data and electrode implantation, respectively; (b)
extracting data features, log power over a sliding window, from
the observed SEEG data; (c) defining a generative model that
describes the joint probability density over the observations and
Epileptor model parameters; (d) performing model inversion
using MAP techniques in order to infer the model parameters
and latent source states that best fit to the observed SEEG log
power; (e) computing the seizure-onset times of all regions
recruited by the seizure by thresholding the inferred latent states;
and (f) identifying the EZ and PZ: all regions with onset times
between the lowest onset time and a small onset tolerance win-
dow are classified as part of EZ, and regions with onset times
greater than this window are classified as part of PZ. See
“Methods” for a more detailed description of each of these steps.

Model validation against synthetic data. To test the accuracy
and identifiability of the proposed generative model in inferring
the spatio-temporal seizure propagation patterns, first it is tested
against a synthetic data set (see “Synthetic data” in “Methods”),
so that the inferred seizure propagation pattern can be validated
against the ground truth at the source level. Inferred seizure
propagation obtained by maximizing over the posterior density
(Eq. (5)) of the synthetic data is shown in Fig. 2. State space
dynamics of the simulated and inferred source activity are shown
in Fig. 2a. All the six regions recruited by the seizure, with two
regions in EZ and four regions in PZ, in the ground truth are
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accurately inferred to be recruited by seizure in the inferred
source activity. Figure 2b shows the fit between the observed and
predicted SEEG log power. The seizure propagation pattern is
then identified by computing the onset times of all the regions
that are recruited in the seizure. Seizure-onset times, computed by
thresholding the source activity, in the ground truth and model
predictions are shown in Fig. 2c. Both the regions in EZ are
inferred accurately to have an earlier onset time relative to the
onset times of regions in PZ and no other regions outside EZ and
PZ are inferred to be recruited by the seizure.

Robustness of the inference is then tested against a range of
scenarios such as the signal-to-noise ratio (SNR) in the
observations, different initialization of the MAP optimization,
and different number of regions in EZ and PZ. In order to test
the sensitivity of the inference against different levels of noise in
the observations, Gaussian noise with zero mean and varying SD
is added to the simulated SEEG data, to generate different data
sets with SNR, averaged across SEEG channels, ranging from 0.1
to 2.5. For each SNR, 50 data sets are generated and EZ is
inferred using MAP. Precision and recall of the inferred EZ for
each SNR is shown in Fig. 3a. We found that inference is able to
accurately identify the EZ for SNR values > 0.9. As MAP is an
optimization procedure, it could lead to different results if the
objective function, here the posterior density over model
parameters, is multimodal or non-convex. Typically, if the
objective function is multimodal, MAP is initialized randomly at
different regions of the parameter space and the estimate with
highest posterior probability is chosen as the best estimate. In the
inference procedure proposed in this study, evaluating the
objective function at any point involves numerical integration of

the two-dimensional (2D) Epileptor model (Eq. (8)). This has
prohibited us from using a completely random initialization (i.e.,
initial conditions generated from a uniform distribution) of MAP
as the numerical integration diverges in some regions of
parameter space leading to numerical errors in evaluating the
posterior probability. To avoid such divergences while using a
multi-start procedure with MAP, we have constrained the initial
conditions to well-behaved regions of the parameter space. In
order to achieve this, initial conditions are sampled from ten
different proposal distributions, which are defined to have the
same mean as priors but with SD ranging from 0.1 to 1.0. As the
prior distributions are defined taking into account the dynamical
properties of the 2D Epileptor model, sampling from such a
proposal distribution ensures that the initial conditions are
within the well-behaved regions of the parameter space. For each
of the 10 proposal distributions, 50 samples are generated and
MAP is performed using those samples as the initial values of the
parameters. Accuracy of the inferred EZ for each proposal
distribution is shown in Fig. 3b. Inference is able to accurately
identify EZ when SD of the proposal distribution is <0.7 but gets
stuck in a local minimum for larger SDs. In high-dimensional
parameter spaces, as the SD of the proposal distribution
increases, the probability that the sampled initial conditions
are close to the mean decays exponentially. Hence, for proposal
distributions with larger SD, it would require more samples of
initial conditions to get performance similar to that of proposal
distributions with low SDs. Similar results are obtained in three
other synthetic data sets with various number of regions in EZ
and PZ, and shown in Supplementary Figs. 1 and 2. As best
performance is achieved for low SDs of the proposal distribution,
we have used the mean of priors as initial conditions, while
performing MAP on empirical data.

Model validation against empirical data. Next, the model is
tested against a retrospective patient cohort of 25 drug-resistant
epilepsy patients who underwent surgery. The cohort is divided
into two groups based on the outcome the of surgery as follows:
(i) Engel score I and II: patients who are either seizure-free or
show rare disabling seizures and (ii) Engel score III and IV:
patients with minimal or no worthwhile improvement. For each
group, patient-specific models are generated by inverting 2D
Epileptor model (Eq. (6)) against each patient’s SEEG data.

Precision and recall of the model-predicted EZ compared to
the clinical EZ hypothesis across all patients in each group is
shown in Fig. 4a. As precision across all patients in a group can
potentially be biased when the number of regions in EZ are not
uniformly distributed, we also computed precision/recall per
patient. The distribution of precision/recall computed per patient
in each group is shown in Fig. 4b. In the group with Engel score I
and II patients, model-predicted EZ showed a precision of 0.75
and a recall of 0.38 at an onset tolerance threshold (tϵ) of 10 s. It is
noteworthy that the low recall does not imply that 60% of regions
in EZ clinical hypothesis are not inferred as seizing, because some
of the regions in the EZ hypothesis, although inferred to be
seizing, are classified as part of the PZ. To illustrate this, the
inferred seizure propagation pattern of a patient with Engel score
I is shown in Fig. 5. Out of the five brain regions in the clinical EZ
hypothesis, the model predicted four regions to be recruited by
the seizure with one subcortical region (right hippocampus) in EZ
and three regions (right thalamus proper, right amygdala, and
ctx-rh-G-oc-temp-med-Parahip) as part of PZ. To quantify this at
the group level, we calculated the confusion matrix between the
clinical hypothesis-based classification and the model prediction-
based classification of the regions. The clinical classification is a
binary classification labeling each region as part of EZ or not part

Fig. 1 End-to-end workflow for identifying spatio-temporal seizure
propagation patterns in focal drug-resistant epilepsy patients. Diffusion
MRI and SEEG data are collected for each patient. From this data, structural
connectome and the transformation from source-to-sensor space is
computed. SEEG recordings are preprocessed to extract data features such
as log power over a sliding window, which could be modeled using 2D
Epileptor. A generative model is defined over the 2D Epileptor parameters
and observed SEEG log power using a PPL called Stan. Model inversion is
performed using maximum a posterior techniques to identify 2D Epileptor
parameters that best explain the observations. PPL, probabilistic
programming language; SEEG, stereotactic electroencephalography; TVB,
The Virtual Brain.
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of EZ, whereas the model prediction-based classification consists
of three classes: (i) regions that are part of EZ, (ii) regions in PZ,
and (iii) regions that are not recruited by the seizure. At an onset
tolerance of 10 s, 88.2% of regions in clinical EZ hypothesis are
predicted to be recruited by the seizure, with 38.8% in EZ and
49.4% in PZ (Fig. 5c). As the onset tolerance is increased to 30 s,
the recall increased from 0.38 to 0.71 (Fig. 5d).

In the second group, with Engel score III and IV patients,
inferred EZ showed a strong mismatch with clinical hypothesis in
more than half of the patients. For this group, model predictions
showed a precision of 0.40 and a recall of 0.32. The low precision
and recall imply that most of the regions in the clinical hypothesis
are predicted to be either as not recruited by the seizure or as a
part of the PZ. In addition, regions not part of the clinical EZ

Fig. 2 Inferred seizure propagation pattern in synthetic data. a Phase plane plots of inferred 2D Epileptor source dynamics. For comparison with the
ground truth, generated using 5D Epileptor, time series of local field potential (x1(t)+ x2(t)) and the corresponding permittivity variable z is shown in gray
(see “Synthetic data” in “Methods”). Inferred source dynamics of regions in EZ is shown in red, regions in PZ is shown in orange, and the remaining regions
are shown in black. b Comparison of model-predicted SEEG log. Power (left) of ten sensors with highest power and the augmented data feature: total
sensor power (right). Observations are shown in gray and model predictions are shown in red. c Seizure-onset times in ground truth vs. model predictions.
Red dots represent the seizure-onset times of regions in EZ and orange dots represent the seizure-onset times of regions in PZ. Solid line represents the
linear regression fit and dashed line represents a perfect fit. EZ, epileptogenic zone; PZ, propagation zone.
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hypothesis are inferred to be part of EZ. For illustration,
comparison of the clinical EZ hypothesis and model-predicted
EZ for a patient with Engel score IV is shown in Fig. 6a. In this
patient, none of the five regions in clinical hypothesis are inferred
as part of EZ, but rather a subcortical region outside EZ
hypothesis (right amygdala) is inferred as the seizure focus. Two
regions in the temporal lobe that are part of clinical hypothesis
(ctx-rh-G-temporal-middle and ctx-rh-pole-temporal) are
inferred to be recruited later by the seizure as part of PZ (Fig. 6b).
As shown in the confusion matrix for this group in Fig. 6c, at an
onset tolerance of 10 s, 67.5% of the regions in clinical EZ
hypothesis are inferred to be outside EZ with 24.3% inferred as
part of PZ and 43.2% of regions as not recruited. Unlike the first
group, even at an onset tolerance of 30 s (Fig. 6d), 54% of
regions are still inferred to be outside EZ. However, it is
noteworthy that as shown in Fig. 4b, two out of the nine patients
in this group showed a good match with the clinical EZ
hypothesis. We believe this could be happening as: (1) the
hypotheses about the EZ is correct but during the surgery not
enough tissue is removed from those regions; (2) the hypotheses

is wrong but the data are not informative enough, potentially
due to the implantation being far from the true EZ, in which
case the priors dominate the likelihood, leading to a posterior
mode around the wrong hypothesis.

To investigate the effect of onset tolerance threshold on model
prediction, precision and recall are calculated as the threshold (tϵ)
is increased from 1 to 60 s for both the patient groups (Fig. 7).
Across all thresholds, precision in the Engel I/II group is higher
than precision in the Engel III/IV group. The number of false
positives have substantially increased in Engel III/IV group for
thresholds beyond 5 s as seen by the dip in precision. The recall in
both groups is similar for thresholds <10 s, as some of the regions
in clinical hypothesis are classified as PZ, as shown in Figs. 5 and
6. However, as the onset tolerance is increased, the recall in Engel
III/IV converged to 0.51, implying that ~50% of regions in clinical
hypothesis are not inferred to be recruited by the seizure.

Prediction accuracy with bad EZ hypothesis. In Fig. 2, using
synthetic data we have shown that model predictions are accurate

Fig. 3 Analysis of robustness of MAP estimation of epileptogenic zone. a Accuracy of the estimated EZ as the signal-to-noise ratio is increased from 0.1
to 2.5. For each SNR, n= 50 independent data sets are generated and EZ is estimated using MAP. b Accuracy of estimated EZ with MAP initialized at
different values of parameters. Initial conditions are generated using a proposal distribution, which is defined such that it has the same mean as the priors
of the parameters but with SD ranging from 0.1 to 1.0. At each SD, n= 50 independent samples are generated and used as initial conditions for MAP. EZ,
epileptogenic zone; MAP, maximum a posteriori; SNR, signal-to-noise ratio.

Fig. 4 Precision and recall of model-predicted EZ compared to clinical EZ hypothesis. a Precision/recall across all patients in the two patient groups:
Engel score I and II: patients with post-surgical seizure freedom or with rare disabling seizures (n= 16); Engel score III and IV: patients with minimal or no
worthwhile improvement (n= 9). b Distribution of precision/recall, computed per patient, in each group. In these box plots, red lines represent the median,
red stars represent mean, and the data are overlaid as black circles. In both (a and b), onset tolerance (tϵ) of 10 s is used for identifying EZ from the inferred
source activity. The whiskers are located at 1.5 times the interquartile range from above and below. EZ, epileptogenic zone.
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when the EZ hypothesis is good. In concordance with this, in
empirical data, model predictions in seizure-free group, i.e., Engel
I/II have shown a good match with clinical EZ hypothesis.
However, in the Engel III/IV group, model predictions have
shown a strong mismatch with EZ hypothesis. In order to
understand how to interpret the model predictions when the EZ
hypothesis is bad, we have tested the accuracy of model predic-
tions in synthetic data (Supplementary Fig. 5) with a bad EZ
hypothesis. Figure 8a shows a comparison of model-predicted EZ
with the ground truth and the bad hypothesis. We found the
results to be similar to the results in Engel IV patient in Fig. 6.
Model-predicted EZ did not include any of the regions from the
wrong hypothesis but includes one of the regions from the
ground truth and one false positive.

Discussion
Focal drug-resistant epilepsy is characterized by seizures origi-
nating in one or more regions of the brain and quickly propa-
gating to other regions. Identifying such spatio-temporal seizure
propagation patterns has been a challenging problem due to the
spatial sparsity of electrode implantation. In this study, we

propose a hierarchical probabilistic model of seizure propagation
based on a phenomenological model of seizure onset and pro-
pagation called Epileptor2,3. The full Epileptor model and its
associated dynamotypes describe a large repertoire of dynamic
phenomena15, capturing the full range of bifurcation types (for
onset and offset), amplitude, and frequency scaling, multistability
of ictal and non-ictal phases, as well as slow-variable fluctuations.
Taking a Bayesian paradigm, using prior knowledge about a
patient’s anatomical information, specifically structural network
and clinical estimation of EZ, and the likelihood of observing
specific propagation patterns, a posterior probability density is
defined for each patient. We demonstrated that using Bayesian
inference and state-of-the-art MAP techniques13,16, personalized
models of patient-specific seizure propagation patterns can be
built by optimizing over the posterior probability density, i.e.,
inverting the Epileptor model. For the model inversion, model
reduction was guided by criteria rendering the approach usable in
application, which meant, in this case, that we emphasized the
power envelope function, thereby losing the data features on
the fast timescales (bifurcation type for instance) and prioritizing
the network features (effects of connectivity and propagation).

Fig. 5 Inferred seizure propagation pattern in patient LMA with Engel score I. a Comparison of clinical EZ hypothesis (left) with model-predicted EZ
(right). b Model-predicted seizure propagation pattern as observed in the predicted source power. c Confusion matrix comparing clinical classification of
brain regions and model prediction-based classification across all patients in the Engel score I/II group at onset tolerance (tϵ) of 10 s. d Same as in (c),
except tϵ= 30 s. Fitting between model predictions and observed data features is shown in Supplementary Fig. 3. EZ, epileptogenic zone.
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This reduction has been justified by the dominance of one seizure
type, which is well represented by the power envelope and by the
network nature of seizure propagation17.

The accuracy of estimated model is validated by comparing the
model predictions against synthetic data, where the ground truth

is available. We have shown that the estimated model is able to
accurately identify the EZ (Figs. 2 and 3). Next, the model
accuracy is validated against a retrospective patient cohort, con-
taining 25 patients. Although model validation in synthetic data is
straightforward, as we know the exact ground truth, it is not

Fig. 6 Inferred seizure propagation pattern in patient FC with Engel score IV. a Comparison of clinical EZ hypothesis (left) with model-predicted EZ
(right). b Model-predicted seizure propagation pattern as observed in the predicted source power. c Confusion matrix comparing clinical classification of
brain regions and model prediction-based classification across all patients in the Engel score III/IV group at onset tolerance (tϵ) of 10 s. d Same as in (c),
except tϵ= 30 s. Fitting between model predictions and observed data features is shown in Supplementary Fig. 4. Ez, epileptogenic zone.

Fig. 7 Precision and recall across various onset tolerance thresholds. a Precision of both the patient groups as the onset tolerance threshold tϵ is varied
from 1 to 60 s. b Recall of both the patient groups as the onset tolerance threshold tϵ is varied from 1 to 60 s. The red vertical line represents the onset
tolerance used in previous results of this study.
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trivial in empirical data. The state-of-the-art in validating model
predictions in focal epilepsy patients is to compare the estimated
EZ with the clinical hypothesis of EZ used for surgery12,18–20.
Following the same approach, we have shown that model pre-
dictions match well (Fig. 4) with the clinical hypothesis in
patients where surgery resulted in seizure freedom, whereas if
different from the clinical hypothesis, surgery tended to fail, to
achieve seizure freedom. These results on a small retrospective
data set of 25 patients provide face validity for the proposed
approach and the estimated personalized models, laying the
groundwork for systematic testing in larger prospective data sets
in clinical trial. When making the link of the comparison relia-
bility for synthetic data to the one of real world data, there are
numerous issues regarding the ecological validity of the entire
approach of EZ such as the network nature of the epileptic brain
(as opposed to a spatially continuous neural field), the stationary
organization of the EZ’s activity (as opposed to traveling waves of
ictal discharges), or, beyond the EZ, the strong parcellation
dependence of the electric forward solution mapping source-to-
sensor space. All of these issues are essentially non-existent in the
synthetic data by construction but they are a major contaminant
factor detrimental to the model inversion process for empirical
data, however, beyond the scope of this study. The target level of
explanatory power in this study can only be the current state of
the art, which we have shown to be well supported by the per-
formance metrics provided in this study.

In the proposed hierarchical model, the lowest level consists of
the Epileptor model parameters, which, through a nonlinear
transformation, determine the second level of parameters, i.e.,
latent states of source dynamics. These source dynamics then
determine the fit to the observed SEEG log power by using a
linear transformation from source-to-sensor space. There are two
levels of degeneracy in this hierarchy: (1) different realizations of
Epileptor parameters could lead to similar source dynamics due
to the structural non-identifiability21,22 in the transformation

from Epileptor parameters to latent states and (2) different rea-
lizations of latent states could lead to similar dynamics in sensor
space, as the transformation matrix from source-to-sensor space
is singular. The second degeneracy is addressed by constraining
the latent state transitions to follow the dynamics as governed by
Epileptor equations (Eq. (8)). The first level of degeneracy
requires a reparametrization of the Epileptor model parameters
and is not explored in this study. However, the latent states are
sufficient to identify the seizure propagation pattern. Moreover,
without a reparametrization, understanding the seizure propa-
gation from a specific parameter values of a coupled Epileptor
model is not obvious unless accompanied by the corresponding
source dynamics.

One of the main advantages of a Bayesian approach is that
much of the relevant information about the seizure can be readily
incorporated into the generative model using priors. Moreover,
the priors can be adjusted to be strong or weak based on the
confidence in the a priori knowledge. If the priors are supported
by the observations, it is automatically reflected in the posterior
density by an increased probability density in the parameter
subspace supported by priors. Whereas, when the priors and the
observations are not in agreement, the observation likelihood
outweighs any weakly informative priors and the posterior shows
a relatively higher density in the parameter subspace supported
by likelihood. In this study, we have used strong priors on the
source dynamics and weakly informative priors on excitability of
the brain regions. As expected, in the case of Engel score I/II
patients where the priors and observations are in agreement, the
model predictions showed a good match with clinical EZ
hypothesis (Fig. 5), whereas, for rest of the patients where the
priors on excitability are not in agreement with the observations
the model predictions showed a strong mismatch with the clinical
hypothesis Fig. 6).

In this study, parameter inference is performed using MAP.
Although MAP is computationally less expensive, it has several

Fig. 8 Inferred seizure propagation in synthetic data with bad EZ hypothesis. a Comparison of regions in epileptogenic zone from ground truth,
hypothesis, and model prediction. b Model-predicted seizure propagation pattern. EZ, epileptogenic zone.
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limitations. MAP is an optimization technique and the optimi-
zation may get stuck in a local optima when the posterior is non-
convex. It is also possible that posterior is multimodal, i.e., dif-
ferent configurations of the model parameters can explain the
data equally well, in which case point estimates from MAP would
be insufficient even if one of the global optima is identified. Even
when the posterior is unimodal, point estimates obtained from
MAP may not be representative of the whole posterior, as MAP
does not capture the uncertainty in parameters. Moreover, as the
objective function optimized in the case of MAP is a probability
density function, any reparameterization could change the pos-
terior modes. These issues could possibly be addressed by sam-
pling the whole posterior using Markov chain Monte Carlo
(MCMC)-based algorithms, which provide a holistic view of the
posterior instead of point estimates provided by MAP. However,
even advanced gradient-based MCMC sampling algorithms such
as Hamiltonian Monte Carlo (HMC), No U-Turn sampler
(NUTS)23,24 fail to sample the posterior density efficiently when
parameters in a high-dimensional hierarchical model show strong
nonlinear correlations or if the posterior exhibits pathological
geometries such as Neal’s funnel with varying curvature25.
Unfortunately, the probabilistic model proposed here does exhibit
these pathologies, making it computationally infeasible for sam-
pling with HMC/NUTS. Some recent studies26 have shown that
reparameterizations such as non-centered transformation can
help address these issues but they are limited to hierarchical
models with dependency between layers given by generalized
linear model. In our efforts to sampling the posterior using
NUTS, we found generating 500 samples from the posterior of
the synthetic data, with 500 warmup iterations, takes 25 days
finishing ~40–45 iterations per day on a Linux workstation with
3.0 GHz quad core processor. Supplementary Fig. 6 shows the
results obtained from the NUTS samples and some diagnostics on
these samples, which conveyed that the sampler has not been able
to sample the whole posterior.

Even with the limitation of the MAP estimate potentially being
a local optima, we demonstrated that the proposed approach
offers a valuable application in validating clinical EZ hypothesis.
When the MAP optimizer is initialized at the mean of priors,
there are two possible outcomes: (i) if the prior and the likelihood
support each other, the local optima near the mean of priors
corresponds to the global optima, as evidenced by the good match
between inferred EZ and clinical EZ hypothesis in Engel score I
patients, and (ii) if the prior and likelihood are in disagreement,
then the optimizer could converge to a local optima, which may
or may not be the best solution. Even if it is only a local optima,
the inferred EZ deviates from the clinical EZ hypothesis, as evi-
denced by the results on patients with Engel score III and IV, and
synthetic data with bad hypothesis, providing valuable insight to
the clinician so that the patient can be re-evaluated to improve
the EZ hypothesis before any surgical resection. In the context of
modeling neuroimaging data, different mathematical models or
model configurations can be fitted to the observed data and then
compared by information criteria such as Akaike information
criterion (AIC) and Bayesian information criterion, to determine
the best balance between model complexity and accuracy27.
However, these classical information criteria are based on point
estimates and are defined independently of prior knowledge.
Alternatively, the fully Bayesian criteria such as Watanabe-AIC28

and leave-one-out cross-validation29, which are based on the
whole posterior distribution rather than a point estimate, can be
used to compare different EZ hypotheses. Measuring the out-of-
sample prediction accuracy of our model with fully Bayesian
evaluation of potential hypotheses regarding the degree of epi-
leptogenicity across different brain regions remains to be inves-
tigated in a future study.

In clinical practice, EZ identification is computationally aided
by signal analysis metrics such as epileptogenicity index (EI)18

or epileptogenicity maps30. The success and accuracy of these
methods depends on optimal placement of electrodes31, as they
do not take into account the problem of source mixing at sen-
sors, which can lead to false positives when the implantation
closely misses the EZ. In this study, EZ is identified based on the
inferred source activity from the whole-brain network rather
than just relying on the implanted regions. This is achieved by
using a linear transformation to project the activity in source
space into sensor space. Although such a projection addresses
the issues of source mixing, it also introduces the problem of
degeneracy for the inverse problem. Such degeneracy issues
could be addressed if we have any prior knowledge about
inherent structure of source dynamics to constrain the solution
space. In the case of epilepsy, it is reasonable to assume that
such a structure exists in the power profile of source activity.
Specifically, the regions that seize would show a transient in
power during a seizure. To exploit this structure, we have
incorporated 2D Epileptor dynamics3 in the generative model as
priors on source state transitions.

Combining a priori knowledge of the seizure dynamics,
anatomical connections, and clinical expertise with observed
intracranial recordings in a Bayesian framework, we have
demonstrated that whole-brain network models could be
inverted to build individualized in silico models of a patient’s
seizure dynamics. Such a strategy to construct a personalized
whole-brain model allows to refine clinical hypotheses and
exploration of novel therapeutic techniques to improve epilepsy
surgery outcome. Future extensions of this work could inves-
tigate reparameterizations of the generative model to sample
the posterior efficiently using MCMC techniques.

Methods
Patient data. Model predictions are tested against a retrospective patient cohort
containing 25 patients with drug-resistant epilepsy. SEEG and diffusion MRI data
were collected from all 25 patients before surgery. Non-invasive T1-weighted
images (magnetization prepared rapid acquisition gradient echo sequence, either
with repetition time= 1.9 s and echo time= 2.19 ms or repetition time= 2.3 s and
echo time= 2.98 ms, voxel size 1.0 × 1.0 × 1.0 mm) and diffusion MRI images
(diffusion tensor imaging-MR sequence, either with angular gradient set of 64
directions, repetition time= 10.7 s, echo time= 95 ms, voxel size
1.95 × 1.95 × 2.0 mm, b-weighting of 1000 s mm−2, or with angular gradient set of
200 directions, repetition time= 3 s, echo time= 88 ms, voxel size
2.0 × 2.0 × 2.0 mm, b-weighting of 1800 s mm−2) are acquired using a Siemens
Magnetom Verio 3T MR-scanner. SEEG data are collected using a 128-channel
Deltamed system with a sampling rate of at least 256 Hz. SEEG recording are band-
pass filtered between 0.16 and 97 Hz by a hardware filter. Patient details such as
age, gender, preliminary clinical diagnosis, and Engel scores (clinical classification
for epilepsy surgery) are given in Supplementary Table 1. The patients signed an
informed consent form according to the rules of local ethics committee (Comiteé
de Protection des Personnes Sud-Meéditerranée I). Accuracy of inferred EZ is
evaluated by comparing it with the clinical EZ hypothesis that was used for the
surgery. Clinical EZ hypothesis is generated by the clinicians by aggregating the
information from semiology, non-invasive MRI, EEG, visual inspection of SEEG
(invasive), and a data-driven signal-processing method metric called EI18.

Structural connectome. From the diffusion MRI data, a SC is built using the same
reconstruction pipeline as in Hashemi et al.22 but using a different parcellation with a
finer spatial resolution. Briefly, the pipeline involves the following: (a) parcellation of
brain anatomy from T1-weighted images using FreeSurfer v6.0.032; (b) coregistration
with diffusion-weighted images using flirt33 from FSL package in version 6.0; (c)
estimating fiber orientation distributions using dwi2fod tool34,35; (d) generate fiber
tracts using iFOD2 probabilistic tractography algorithm36; and (e) building the
connectome using tck2connectome tool. Tractography is performed using MRtrix
package in version 0.3.15. In this study, we used the Destrieux parcellation37 con-
taining 164 brain regions with 74 cortical regions per hemisphere and 16 subcortical
regions. Region abbreviations, labels, and indices are provided in Supplementary
Table 2. The connectome is normalized such that the maximum value is equal to one.

Source-to-sensor space transformation. The implanted intracranial electrodes
record the local field potential generated by the neuronal tissue in its
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neighborhood. We assume a linear relation between the source activities and the
generated signals,

siðtÞ ¼ ∑
N

j¼1
GijϕjðtÞ; ð1Þ

where si(t) is the signal at sensor i, ϕj(t) is the source activity in region j, and Gij

is the coefficient of transformation. To calculate it, we represent the cortical
regions by their triangulated pial surfaces and the subcortical regions by their
triangulated enclosing surfaces as obtained from the reconstruction by
FreeSurfer32. Assuming that the generated signal decays with square of the
distance from the source, the coefficient is

Gij ¼ ∑
k2Vj

c Ak

j x!s
i � x!v

kj2
; ð2Þ

where Vj is the set of all vertices on the triangulate surface of region j, c is the
scaling coefficient, Ak is the surface associated with vertex k, x!s

i is the position

of the sensor i, and x!v
k is the position of the vertex k. We have not taken into

account the dependency of the source-to-sensor decay on the orientation of the
neuronal tissue. Although the orientation plays an important role for the local
field potential generated by the cortical tissue where a clear geometrical
arrangement of the neurons exist38,39, it is difficult to quantify this effect for the
subcortical structures with their diverse structural arrangements. Thus, due to
the lack of information about the orientation in subcortical structures, we have
chosen to omit the orientation dependency.

Synthetic data. To compare model-predicted seizure propagation with the ground
truth at the source space, a synthetic data set is generated using coupled five-
dimensional (5D) Epileptor model (Eq. (3)). Epileptor is a phenomenological
model of seizure dynamics and is shown to realistically reproduce key features of
epileptic seizure dynamics such as onset, progression, and offset in different
species2. Mathematically, the Epileptor model is defined by five state variables
coupling two oscillatory dynamical systems on three different timescales: on the
fastest timescale, variables x1 and y1 account for fast discharges during the ictal
state. On the intermediate timescale, variables x2 and y2 represent the slow spike-
and-wave oscillations. On the slowest timescale, the variable z, described as per-
mittivity variable, as it represents the ability of the model to resist seizure-triggering

events and controls the transition between interictal and ictal states. Proix et al.3

demonstrated that simple and complex seizure recruitment among brain regions
can be modeled by coupling Epileptor nodes with a permittivity-based coupling.
Following the same approach, we used structural connectivity (Fig. 9b) from a
randomly selected retrospective patient (BT) to couple 5D Epileptor nodes (given
by Eq. (3) with N= 164) to generate a synthetic seizure propagation pattern. The
dynamics of node i are thus described by the following coupled differential
equations.

_x1;i ¼ y1;i � f 1ðx1;i; x2;iÞ � z þ I1

_y1;i ¼ 1� 5x21;i � y1;i

_zi ¼
1
τ0

ð4ðx1;i � x0Þ � zi � ∑
N

j¼1
KCijðx1;j � x1;iÞÞ

_x2;i ¼�y2;i þ x2;i � x32;i þ I2 þ 0:002gðx1;iÞ � 0:3ðzi � 3:5Þ

_y2;i ¼
1
τ2

ð�y2;i þ f 2ðx2;iÞÞ

ð3Þ

where

f 1ðx1;i; x2;iÞ ¼
x31;i � 3x21;i if x1;i < 0

ðx2;i � 0:6 zi � 4
� �2Þx1;i if x1;i ≥ 0

(

f 2ðx2;iÞ ¼
0 if x2;i <�0:25

6ðx2;i þ 0:25Þ if x2;i ≥ �0:25

(

gðx1;iÞ ¼
Z t

�t0

exp�γðt�τÞx1;iðτÞdt

where τ0= 2857, τ2= 10, I1= 3.1, I2= 0.45, and γ= 0.01. The parameter x0
represents excitability of a brain region and an isolated Epileptor node produces
seizure if x0 >−2.1. Further details regarding linear stability analysis and biological
interpretation of parameters are provided in refs. 2,3,5.

For the synthetic seizure used in this study, two brain regions (left hippocampus
and ctx-lh-S-circular-insula-sup), within the vicinity of electrode implantation, are
chosen as the EZ with x0=−1.8. Four regions (ctx-lh-G-front-inf-Opercular, ctx-
lh-G-insular-short, ctx-lh-G-oc-temp-med-Parahip, and left thalamus proper),
which are anatomically strongly connected to regions in EZ, are chosen as part of

Fig. 9 Simulated seizure data generated using structural connectivity and electrode implantation of patient BT from the retrospective cohort. a Top
view of electrode implantation. Spheres colored in red and orange represent the centers of regions in the EZ and PZ, respectively. b Structural connectivity
in log scale. c Gain matrix, transformation matrix from source-to-sensor space, in log scale. d Simulated local field potential (x1(t)+ x2(t)) depicting the
seizure propagation pattern. e Simulated SEEG activity from eight channels. EZ, epileptogenic zone; PZ, propagation zone; SEEG, stereotactic
electroencephalography.
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the PZ with x0=−2.3. In all other regions, x0 is set to −3.0. Simulated SEEG data
(Fig. 9e) is then generated by projecting the local field potential given by
x1(t)+ x2(t) (Fig. 9d) into sensor space using a linear transformation (Fig. 9c).
Simulations are performed in TVB14 using Heun integration scheme with a time
step size of 0.04 ms for 2500 ms.

Data preprocessing/feature extraction. A spatio-temporal seizure propagation
can be characterized in terms of seizure-onset time and seizure length of all the
regions recruited by the seizure. The log power profile of all brain regions captures
both these features and it can be modeled using the reduced 2D Epileptor3.
Inference over reduced 2D Epileptor allows for faster inversion, compared to
inversion of 5D Epileptor, while enabling us to predict the envelope of fast dis-
charges during the ictal states22. Hence, raw SEEG data are preprocessed to extract
SEEG log power. Preprocessing involves high-pass filtering raw SEEG data from
10 Hz, computing the power over a sliding window, applying a log transformation,
and finally a low-pass filter, tuned per each patient, is applied for smoothing out
any short spikes in the data. In order to reduce the computational cost of fitting,
the SEEG log power time series is down-sampled to 300 time points. Data aug-
mentation is a common technique in machine learning, to improve optimization
when the observations are sparse. Hence, apart from SEEG log power, total power
in each sensor (i.e., the second sample moment of each sensors log power time
series) is used as an augmented data feature.

Generative model. In a Bayesian paradigm, the generative model is a statistical
model over the observed and latent variables. Here, it is defined by the joint
probability density over the combined space of 2D Epileptor parameters, hidden
states, and the observations. Using the chain rule of probability, this joint prob-
ability density can be factorized as the product of likelihood and priors:

Pðθ;Y;DÞ ¼ PðDjθ;YÞPðθ;YÞ ð4Þ

where

D ¼ ðS; ρ!Þ

S ¼

s1ðt1Þ s2ðt1Þ � � � sMðt1Þ
s1ðt2Þ s2ðt2Þ � � � sMðt2Þ
..
. ..

. . .
. ..

.

s1ðtT Þ s2ðtT Þ � � � sMðtT Þ

0
BBBB@

1
CCCCA

T ´M

Y ¼

x1ðt1Þ x1ðt2Þ � � � x1ðtT Þ
z1ðt1Þ z1ðt2Þ � � � z1ðtT Þ
..
. ..

. . .
. ..

.

xN ðt1Þ xN ðt2Þ � � � xN ðtT Þ
zN ðt1Þ zN ðt2Þ � � � zN ðtT Þ

0
BBBBBBB@

1
CCCCCCCA

T ´M

θ ¼ x!0; x
!ðt0Þ; z!ðt0Þ;K; τ0; α; β; ϵ1; ϵ2

� �

S is the matrix of random variables with element si(tj) representing SEEG log
power from sensor i at time tj. ρ! represents the augmented data feature, total
power in each sensor. Y is a matrix of random variables representing the evolution
of unobserved source states. In this study, the source state is given by the 2D
Epileptor variables x and z (Eq. (6)). In the 2D Epileptor model, x can be
interpreted as a proxy variable to the source log power and z is a slow permittivity
variable, which determines how close the system is to seizure threshold2. Thus,
column j of the matrix Y represents the unobserved source state at time tj, where
element xi(tj) is the log power of region i at time tj and element zi(tj) is the slow
permittivity variable of region i at time tj. θ is a vector of random variables, of
length 498, representing all the free parameters that are inferred. The vector x!0, of
length 164, represents the excitability parameter of all regions. x!ðt0Þ; z!ðt0Þ, with
164 elements in each, are the initial source states of all brain regions. K and τ0 are
scalar parameters in the Epileptor model representing global coupling and
timescale (see Eq. (6)). α and β are auxiliary scalar parameters representing the
scaling and offset of model-predicted SEEG log power, respectively. ϵ1 and ϵ2
represent the observation noise strength in SEEG log power and the augmented
data feature, respectively. T is the number of samples in time, N is the number of
regions in the parcellation, and M is the number of sensors. By Bayes’ theorem, the
joint probability density (Eq. (4)) is proportional, up to a normalizing constant, to
the posterior probability density of Epileptor parameters and hidden states
conditioned on observed data:

Pðθ;YjDÞ / PðDjθ;YÞPðθ;YÞ ð5Þ

Priors. One of the advantages of Bayesian inference is that any prior knowledge
such as parameter constraints can be incorporated easily into the model. Moreover,
priors can be adjusted to be strong or weak based on the confidence in that
knowledge. In this study, dynamics of source log power are governed by coupled

2D Epileptor equations given below.

_yi ¼ _xi
_zi

� �
¼

1� x3i � 2x2i � zi þ I1
1
τ0

4ðxi � x0Þ � zi �∑N
j¼1 KCijðxj � xiÞ

� �
2
4

3
5 ð6Þ

2D Epileptor dynamics are embedded into the prior as the transition
probabilities on hidden source states as:

Pðθ;YÞ ¼ PðYjθÞPðθÞ

PðYjθÞ ¼ Pð y!ðt0ÞjθÞ
YT
j¼1

Pð y!ðtjÞj y!ðtj�1Þ; θÞ

where, Pð y!ðtjÞj y!ðtj�1Þ; θÞ represents the state transition probability from time

tj−1 to tj given the current state y!ðtj�1Þ and Epileptor parameters θ.
In a more general framework, for systems described by nonlinear stochastic

differential equations (SDE) of the generic form dy= f(y, t)dt+ L(y, t)dβ, where f is
the drift function, L is the dispersion matrix, and β is Brownian motion with
diffusion matrix Q, the state transition probability density is usually intractable. In
such cases, the transition density can be approximated using SDE simulation and
discretization methods40, which is valid for sufficient regularity and small step size.
Under these conditions, a common choice for the approximate transition density is
a normal distribution with mean given by numerically integrating the dynamical
model from tj−1 to tj, i.e.,

Pð y!ðtjÞj y!ðtj�1Þ; θÞ ¼ N ðf ð y!ðtj�1Þ; θÞ; ϵÞ ð7Þ

where the function f ð y!ðtj�1Þ; θÞ represents the state on the 2D Epileptor trajectory

after a small time step departing from y!ðtj�1Þ and ϵ represents the SD of the
normal distribution (or equivalently noise in state dynamics). For small noise, state
space exploration would be limited to local variations around the deterministic
trajectory, consistent with the above choice of normal distribution. If the stochastic
properties of the system (such as L and Q) were known a priori, then ϵ could be
precomputed based on the discretization method, else it would have to be inferred
as one of the parameters of the inference procedure.

In our case, the state transition is a deterministic transformation of the current
state and model parameters41–43, which significantly reduces the number of
parameters that need to be inferred, as the latent states are deterministically
computed given the model parameters. Mathematically, this is equivalent with the
limit ϵ→ 0 in Eq. (7) leading to

Pð y!ðtjÞj y!ðtj�1Þ; θÞ ¼ δð y!ðtjÞ � f ð y!ðtj�1Þ; θÞÞ ð8Þ
As the state dynamics are described by an ordinary differential equation (ODE),

f ð y!ðtj�1Þ; θÞ can be solved by any ODE solver. We used a fourth-order
Runge–Kutta method with a time step of 0.1.

Based on the dependency structure (Supplementary Fig. 7), prior probability
density over Epileptor parameters and the auxiliary parameters can be factorized
as:

PðθÞ ¼ Pð x!0; x
!ðt0Þ; z!ðt0Þ;K; τ0; α; β; ϵ1; ϵ2Þ

¼ PðKÞPðτ0ÞPðαÞPðβÞPðϵ1ÞPðϵ2Þ
YN
i¼1

Pðx0;iÞPðxiðt0ÞÞPðziðt0ÞÞ

All the priors are defined to be either normal or truncated normal distributions.
The mean of the priors is set based on the a priori knowledge about the dynamical
system properties of the Epileptor model and the clinical hypothesis of the EZ. The
timescale parameter (τ0) is set by analyzing simulations, so that the transition to
seizure state is smooth and not a sudden jump. This choice is made, as the fitted
data features are smoothed in preprocessing. Prior values of initial conditions

Table 1 Mean and SD of the normal prior probability
densities.

Parameter Mean SD

K 1 10
τ0 20 10
xi(t0) − 2.0 10
zi(t0) 3.5 10
α 1 10
β 0 10
ϵ1 1 10
ϵ2 1 10

Mean and SD of the normal prior probability densities of global coupling (K), time scaling
parameter (τ0), initial conditions (xi(t0), zi(t0)), amplitude scaling (α) and offset (β) of SEEG log
power, observation noise strength in SEEG log power (ϵ1), and total sensor power (ϵ2). For
parameters that are defined only in the probability, densities are truncated below at zero.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02751-5 ARTICLE

COMMUNICATIONS BIOLOGY |          (2021) 4:1244 | https://doi.org/10.1038/s42003-021-02751-5 |www.nature.com/commsbio 11

www.nature.com/commsbio
www.nature.com/commsbio


( x!ðt0Þ; z!ðt0Þ) are set close to a stable fixed point of a single Epileptor node. As we
have no information about the global coupling parameter (K), its mean is set to 1,
i.e., no scaling is assumed on the connectivity between regions. For the auxiliary
parameters, as no information is available, their mean is set such that no
assumptions are made regarding the amplitude scaling (α) and offset (β) between
model-predicted and -simulated SEEG log power. Observation noise parameters
(ϵ1, ϵ2) are set based on a comparison between a few simulated and observed SEEG
log power. Mean and SD values of all these parameters are given in Table 1.
Epileptor parameter x0,i represents excitability of tissue in brain region i. An
isolated Epileptor node would trigger seizures if x0 >−2.1. Thus, clinical hypothesis
about the EZ is incorporated as a weakly informative prior on the excitability
parameter as given by:

Pðx0;iÞ ¼
N ð�1:5; 1Þ if region i 2 EZ Hypothesis

N ð�3:0; 1Þ otherwise

�

where, N represents a normal distribution.

Likelihood. Likelihood describes the probability of observed data under a particular
realization of the parameters. It is defined as:

PðS ¼ Ŝ; ρ!¼ ρ̂jY; θÞ ¼ PðS ¼ ŜjY; θÞPð ρ!¼ ρ̂jS ¼ Ŝ;Y; θÞ ð9Þ
where, Ŝ; ρ̂ represent a particular realization of S; ρ!, i.e., the SEEG log power and
total sensor power computed from the SEEG recordings of a patient. To simplify
notation, the realizations are not shown further. P(S∣Y, θ) represents the probability of
observed SEEG log power given that the latent source states are Y. This is defined as a
normal distribution with mean given by projecting the source state to sensor space:

PðSjY; θÞ ¼
YM
i¼1

YT
j¼1

PðsiðtjÞj x!ðtjÞ; θÞ

PðsiðtÞj x!ðtÞ; θÞ �N ðαlog hGi ; e
xt
!

iþ β; ϵ1Þ
where, 〈. , . 〉 represents an inner product. G, known as the gain matrix, is the linear
transformation from source-to-sensor space. α and β are auxiliary parameters, which
account for the scaling and offset, respectively, in the observations. Pð ρ!jSÞ represents
the probability of the augmented data feature, total sensor power, given the observed
SEEG log power and the latent states. It is defined as:

Pð ρ!jS;Y; θÞ ¼
YM
i¼1

PðρijS; θÞ

PðρijS; θÞ �N 1
T
∑
T

j¼1
siðtjÞ

� �2
; ϵ2

	 


Model inversion. By construction, maxima of the posterior density (Eq. (5))
corresponds to the set of parameters that best explain the observed data. Maxima of
the posterior density are identified using a quasi-Newton optimization algorithm
L-BFGS16. Optimization is initialized at the mean of the priors and is run till
convergence. Convergence is monitored according to the following three criteria:
(a) density convergence: change in unnormalized log posterior density is <10−12;
(b) gradient convergence: Euclidean norm of gradient is <10−8; and (c) parameter
convergence: change in parameter value is <10−8. Numerical implementation of
the generative model and model inversion are performed using a PPL Stan13. On a
Linux workstation with 3.0 GHz quad core processor model inversion, using MAP
took, on average, 1 h for optimization to converge.

Identifying EZ and PZ. EZ is the network of brain regions where seizure originates
and PZ is the network of brain regions that are later recruited by the seizure due to
the coupling with regions in EZ. Although in an isolated Epileptor node seizure
would originate when the excitability parameter (x0) is greater than te bifurcation
threshold value −2.1, such a threshold does not exist in a network of coupled
Epileptors. Hence, in this study we used seizure-onset times of the regions to
identify EZ and PZ. First, onset times are estimated by finding the time instant
where depolarization shift occurred in the model-predicted activity of the fast
variable (x). Next, all regions with onset times within a tolerance, tϵ, of the earliest
onset time, tλ, are classified as EZ. All other regions with onset times beyond tλ+ tϵ
are classified as PZ.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The patient data sets cannot be made publicly available due to the data protection
concerns. The synthetic data used in this study are available in figshare with the identifier
doi:10.6084/m9.figshare.16628332.v144.

Code availability
The Stan code used in this study is available in figshare with the identifier https://doi.org/
10.6084/m9.figshare.16636411.v145. Stan in version 2.23.0 is used for performing MAP.
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