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Strong nutrient-plant interactions enhance the
stability of ecosystems
Zachariah G. Schonberger 1✉, Kevin McCann 1 & Gabriel Gellner 1

Modular food web theory shows how weak energetic fluxes resulting from consumptive

interactions plays a major role in stabilizing food webs in space and time. Despite the reliance

on energetic fluxes, food web theory surprisingly remains poorly understood within an eco-

system context that naturally focuses on material fluxes. At the same time, while ecosystem

theory has employed modular nutrient-limited ecosystem models to understand how limiting

nutrients alter the structure and dynamics of food webs, ecosystem theory has overlooked the

role of key ecosystem interactions and their strengths (e.g., plant-nutrient; R-N) in mediating

the stability of nutrient-limited ecosystems. Here, towards integrating food web theory and

ecosystem theory, we first briefly review consumer-resource interactions (C-R) highlighting

the relationship between the structure of C-R interactions and the stability of food web

modules. We then translate this framework to nutrient-based systems, showing that the

nutrient-plant interaction behaves as a coherent extension of current modular food web

theory; however, in contrast to the rule that weak C-R interactions tend to be stabilizing we

show that strong nutrient-plant interactions are potent stabilizers in nutrient-limited ecosys-

tem models.
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Modular theory has given ecologists tremendous insight
into the stabilizing mechanisms that underlie food webs
in space and time1–3. It is predicated on the idea that

complex networks can be reduced to subnetworks (i.e., modules)
so their dynamical properties can be studied in detail, and then
these properties can be used to piece back together an under-
standing of whole web dynamics4–6. Importantly, different
modules exist at different levels of complexity. Higher order
modules include the diamond module, omnivory module, and
three species food chain, while a single C–R (consumer–resource)
interaction is representative of a base module. The dynamical
properties of higher order food web modules have often been
deduced through an understanding of the coupled C–R sub-
systems (i.e., base modules) that exist within them7–10.

Despite the utility of a modular approach, and the pioneering
work on ecosystem modules over 30 years ago by Donald
DeAngelis, modular theory has seldom been adopted as a means
for understanding the dynamics of ecosystem modules. A
nutrient-limited ecosystem model (i.e., an ecosystem module) is
comprised of a limiting-nutrient pool coupled to some commu-
nity assemblage, which in turn recycles nutrients back to the
limiting-nutrient pool either directly or indirectly through a
detrital compartment11. Regardless of the community assemblage,
the basal interaction of the model necessarily exists between the
limiting-nutrient pool (N) and an autotroph (R) (i.e., the R–N
module), where the limiting-nutrient pool grows independent of
its density and has dynamical properties that vary from the classic
C–R module12. Nonetheless, the R–N base module has not yet
been considered as a means for understanding the dynamical
properties of nutrient-limited ecosystem models within a modular
framework. R–N is a fundamental interaction of ecosystems and
in light of the push for integrating population-level interactions
with material cycling processes11,13,14, the R–N subsystem merits
further consideration with respect to modulating ecosystem
dynamics.

Here, we begin by revisiting the findings of modular food web
theory, reviewing how an understanding of the C–R base module
can allow us to understand how the interaction strength and
placement of C–R subsystems within higher order modules cor-
responds to predictable dynamical outcomes. We then use ana-
lytical and numerical techniques to establish a generalized
relationship between interaction strength and stability for the
R–N module, followed by a numerical analysis to understand how
the R–N module operates as a subsystem within higher order
systems, with the ultimate goal of relating the structure of the
R–N module to predictable dynamical outcomes. Our results
allow a coherent framework for integrating food web and eco-
system theory and highlights the different role interaction
strength plays for stability in a unified framework.

Results
Review of C–R stability theory. To set the context for how the
R–Nmodule will be used to understand the dynamics of nutrient-
limited ecosystem models, we first briefly review stability results
from modular food web theory. We do this by laying out a set of
examples that serve to illustrate that in general, strong C–R
interactions promote oscillatory dynamics while carefully placed
weak C–R interactions dampen them5. We begin with the
Rosenzweig–MacArthur C–R system as our base C–R module
(Fig. 1a). It is biologically supported and produces a range of
biologically plausible dynamics5, making it an appropriate system
for this analysis. It exhibits three different dynamical phases over
a gradient of interaction strengths (energetically defined sensu
Nilsson et al. 2018) such that increasing the attack rate (aCR)
increases interaction strength15 (Fig. 2). We use the return time

after a small perturbation (i.e., eigenvalues) to highlight the
natural stability trade-off that occurs as interaction strength is
changed, (i.e., the “checkmark” stability pattern)5,6. Equations
and parameters can be found in Supplementary Results 1A. We
draw your attention to three notable dynamical phases of the C–R
module. At low interaction strengths the dominant eigenvalue
(λmax) is negative and real and the C–R module follows a
monotonic return to a stable equilibrium (Fig. 2a). During this
phase λmax decreases from 0 (i.e., where aCR allows the consumer
to persist) to more negative values and thus stronger interactions
tend to increase stability (Fig. 2d, i). At moderate interaction
strengths, there is a sudden shift to eigenvalues with a non-zero
complex part and population dynamics overshoot the equilibrium
(Fig. 2b). Increases in interaction strength then further excite
population dynamics and we observe less stable dynamics across
this phase (Fig. 2d, ii). Last, the system reaches a Hopf bifurcation
where the dominant eigenvalue becomes positive, yielding sus-
tained cycles or oscillations (Fig. 2c, d, iii). As interaction strength
increases across this phase, it is difficult to determine stability
from the magnitude of a positive dominant eigenvalue; however,
destabilization with increased interaction strength is readily
observed in that the cycles become increasingly larger oscillations
with a high coefficient of variation (CV)5. Note that while the
Rosenzweig–MacArthur C–R system is shown here under a single
set of parameters, analysis of the Jacobian shows the qualitative
results to be general5. Moreover, the qualitative stability pattern
remains for a type I and type III functional response5.

We now couple C–R modules into higher order food web
modules to demonstrate how the addition of weak and/or strong
interactions to a system can be used to predict dynamics at steady
state (Fig. 3), constituting the “algebra” of C–R modules.
Equations and parameters can be found in Supplementary
Results 1B–D. We start with the three trophic level food chain
(Fig. 3a), consisting of two coupled C–R modules (i.e., C1-R and
P–C1). Theory has tended to find two weakly interacting C–R
modules to generally produce locally stable equilibria16 (Fig. 3a).
Increasing the strength of the C1–R interaction causes it to act like
an oscillator (see Fig. 2c, above), and with enough increase this
underlying oscillation is reflected in the limit cycles of the entire
food chain (Fig. 3b). If the P–C1 interaction is strengthened as
well, we end up with two coupled oscillators—the recipe for
chaos17,18 (Fig. 3c). As such, coupled strong interactions are not
surprisingly the recipe for complex and highly unstable dynamics.

Following McCann et al.19, we now add a weakly coupled
consumer C2 to the food chain system of Fig. 3c. This weak

Fig. 1 C–R and R–N base modules. a Rosenzweig–MacArthur C–R module
modelled with Holling type II functional response and logistic resource
growth, where R is resource biomass and C is consumer biomass.
Parameters: r is the intrinsic growth rate of R, K is the carrying capacity of R,
aCR is the attack rate of C on R, e is the assimilation rate of C, R0 is the half-
saturation density of C, mR and mC are the mortality rates of R and C,
respectively. b R–N module modelled with a Monod nutrient uptake
equation and external nutrient input, where N is a limiting-nutrient pool and
R is the resource biomass. Parameters: IN is external nutrient input to N, aRN
is nutrient uptake rate by R, k is the half-saturation density of R, lN and lR are
nutrient loss rates from N and R, respectively.
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consumer essentially draws energy away from the strong P–C1–R
pathway and in doing so partially mutes the coupled oscillators,
bringing the dynamics back to a more even limit cycle (Fig. 3d)
and under certain conditions can drive equilibrium dynamics19.
Last, the predator is weakly coupled to C2, creating a strong and

weak pathway. The second weak interaction further draws energy
away from the strong pathway, muting the oscillators entirely and
bringing the system in this example to a point attractor (Fig. 3e).
These examples show that well placed weak interactions (i.e.,
non-oscillatory phases, Fig. 2a, b) can be used to draw energy

Fig. 2 C–R checkmark stability response. d Local stability (real and complex parts of the dominant eigenvalue; λmax) as a function of interaction strength
(aCR) for the Rosenzweig–MacArthur C–R module. Time series reflect dynamics associated with region i, ii, and iii, respectively, following a perturbation
that removes 50% of consumer biomass: a Stable equilibrium; monotonic dynamics. b Stable equilibrium; overshoot dynamics. c Unstable equilibrium; limit
cycle. Boldness of arrows indicates the strength of interaction (aCR).

Fig. 3 Algebra of C–R modules. Time series showing the general dynamical outcomes for the food chain and diamond module at steady state with varied
combinations of C–R interaction strengths. a Weak–weak interaction; point attractor. b Strong–weak interaction; limit cycle. c Strong–strong interaction;
chaos. d Strong–strong, weak interaction; limit cycle. e Strong–strong, weak–weak interaction; point attractor.
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away from strong pathways and act as potent stabilizers of
potentially oscillatory pathways. Note that weak interactions play
a similarly stabilizing role in the omnivory module20 and further,
weak interactions have been shown to stabilize large food web
networks4,6 suggesting the principles derived from modular
theory scale up to whole systems. Taken altogether, the oscillatory
nature of strong C–R interactions generally promotes oscillatory
dynamics in higher order systems, while the careful placement of
weak C–R interactions—which are monotonic in nature—act to
dampen oscillations. Although not discussed to our knowledge,
we conjecture that if a subsystem exists such that strong
interactions lead to monotonic dynamics (i.e., without oscillatory
decay), strong interactions in this case would serve as a potent
stabilizer. Below, we show the R–N module appears to be such
a case.

R–N module and stability. Towards understanding how the R–N
subsystem may interact in a higher order system, we first briefly
consider the stability of the R–N module alone (akin to what we
discussed for the C–R module above). The R–N module consists
of a resource that takes up nutrients according to a Monod-like
growth term, is open to flows from the external environment as a
result of geochemical processes, and nutrients are lost to the
external environment according to a linear term11 (Fig. 1b).
Performing a local stability analysis about the interior equilibrium
reveals the R–N module to be locally stable for all biologically
feasible parameterizations, as determined by the signs of the trace
and determinant of the Jacobian matrix (see Supplementary
Results 2B). We now perform further numerical and analytical
analyses to understand how stability is influenced by interaction
strength.

As the maximum rate of nutrient uptake (aRN ) is increased
(i.e., R–N interaction strength), stability is generally increased
(Fig. 4d), with the real part of the dominant eigenvalue (λmax)

tending from 0 (i.e., where aRN allows the resource to persist)
towards an asymptote of �lR (see Supplementary Results 2C).
Numerical analysis reveals that the asymptote at �lR can be
approached from above or below depending on the relative
leakiness of the R and N compartments (i.e., the rate at which
nutrients are lost to the external environment from compartment
R (lR) and N (lN)). For lN > lR (Fig. 4d), the R–N module only
follows a monotonic return to equilibrium as interaction strength
is increased, with increased interaction strength only tending to
increased stability (i.e., reduce return time). For lN<lR (Fig. 4d),
the R–N module follows a monotonic return to equilibrium for
weak (Fig. 4a) and strong (Fig. 4c) interaction strength, but
modest overshoot dynamics are observed for intermediate
interaction strength (Fig. 4b). Stability tended to increase with
interaction strength for weak to intermediate interaction strength
(i.e., dominant eigenvalue becomes more negative), then slightly
decrease as interaction strength became strong. A special case
exists when lR ¼ lN (Fig. 4d), where stability increases with
interaction strength until λmax becomes locked in at �lR,
indicating stability does not change regardless of any further
increase in interaction strength. Overall, the R–N interaction
tends to generally stabilize in all cases (dominant eigenvalue goes
from zero to a more negative saturating value with monotonic
dynamics), although there are some intermediate cases that
produce complex eigenvalues that suggest population dynamic
overshoot potential (Fig. 4b). Note that we obtain qualitatively
similar results when implicitly strengthening the R–N interaction
by increasing nutrient loading (see Supplementary Results 2D and
Supplementary Fig. 1). Now, given the above framework for
coupled C–R modules—where weak C–R interactions with
underlying monotonic dynamics dampen the oscillatory potential
of strong C–R interactions—the underlying monotonic dynamics
of the R–N module suggest that R–N interactions ought to be
stabilizing when coupled to strong C–R interactions. Further, the
underlying increase in stability (i.e., more rapid return to

Fig. 4 R–N stability response to increasing interaction strength. Time series showing R density following a perturbation that lowered R density to 50% of
equilibrium density for a low (aRN ¼ 0:8), b intermediate (aRN ¼ 1), and c high maximum rate of nutrient uptake (aRN ¼ 2:8). d Local stability (dominant
eigenvalue; λmax) of the R–N subsystem as aRN is increased for lN > lR, lN ¼ lR, and lN<lR, where lR and lN are the rate at which nutrients are lost to the
external environment from compartment R and N, respectively. Solid lines are real parts and dashed lines are complex parts of λmax.
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equilibrium) as R–N interaction strength is increased suggests the
stabilizing potential of the R–N module ought to increase as the
interaction becomes stronger.

To look into this conjecture, we first coupled R–N to multiple
configurations of strong and expectantly oscillatory C–R inter-
actions and increased R–N interaction strength (aRN ). Following
this, we added nutrient cycling and repeated the experiment to
demonstrate that our results can be generalized to nutrient-
limited ecosystem models. The full equations and parameter
values for each model are listed in Supplementary Results 3A–D
and 4A, B. We begin with the C–R–N system, where C–R and
R–N are coupled through R (Fig. 5a). The initial increase in aRN
implicitly strengthens the C–R interaction and fuels the
oscillatory potential of C–R and cycles emerge almost immedi-
ately after C is able to persist. As aRN is increased further the
cycles disappear and we obverse a steep stabilization phase,
followed by a modest period of destabilization. Adding a weakly
coupled predator gives a similar outcome, although the system
continually stabilizes as aRN is increased (Fig. 5b). If the P–C
interaction is strengthened (i.e., both C1–R and P–C1 are strong,
the recipe for chaos), R–N is unable to dampen oscillations even
with a strong interaction strength, although a strong interaction
gives tighter bound cycles than a weak interaction (Fig. 5c). We
next add a weakly coupled consumer to the nutrient-limited food
chain with strong P–C1 and C1–R interactions (Fig. 5d). As seen
previously, this interaction draws energy out of the strong
pathway, partially muting oscillatory potential. Thus, the ability
for a strong R–N interaction to once again return the system to a
stable equilibrium is not surprising. Finally, we add a detrital
compartment to show that strong R–N interactions remain
potent stabilizers in the context of nutrient cycling (Fig. 6b) when
compared to a nutrient-limited food chain without nutrient
cycling (Fig. 6a).

Note that we repeat our analysis of higher order modules by
implicitly increasing R–N interaction strength through nutrient
loading (see Supplementary Results 3E and 4C and Supplemen-
tary Figs. 2 and 3). In all cases, increased nutrient loading led to
less stable dynamics, consistent with DeAngelis’ (1992) paradox
of enrichment finding where increased nutrient loading lead to
destabilizing autotroph–herbivore oscillations.

Discussion
Here, we have revisited modular theory to show that in contrast
to C–R generated theory, the R–N module is inherently stable,
with strong R–N interactions acting as potent stabilizers in higher
order systems. However, under intermediate interaction strengths
the R–N module did display overshoot dynamic potential (i.e.,
dominant eigenvalue has complex parts; Fig. 4d). This overshoot
potential has been known to excite instability in higher order
modules16. This was likely captured in the higher order modules
where we observed brief periods of destabilization at weak to
intermediate interactions strengths before the system was stabi-
lized as the R–N interaction became strong. Further, maximal
stability of both the underlying R–N module and the higher order
module can occur at more intermediate interaction strengths
(e.g., Fig. 5a, c). Importantly though, the region that follows
maximal stability remains more stable than the dynamics
observed for weak R–N interactions and thus overall, strong R–N
interactions tend to act as potent stabilizers when coupled to
higher order food web modules.

Interestingly, R–N interactions tend to act as a potent stabilizer
despite the fact that increases in interaction strength cascades
through the system to increase the overall flux of nutrients
through C–R interactions—something known to be destabilizing
in food web theory16. Consider the C–R–N model under

equilibrium conditions. In turning up the R–N interaction
strength, N shrinks in size as nutrients are extracted at a higher
rate with C growing because of the top-down control it exerts on
R. Thus, the flow of nutrients through C–R is implicitly increased
in a manner similar to the familiar paradox of enrichment21. C–R
theory would then predict the system to become increasingly
unstable2, but as we have observed here (Fig. 5), this is not the
case. Despite implicit increases to the strength of C–R interac-
tions, strong monotonic R–N interactions appear to be such
potent stabilizers that they are able to overwhelm the potential
instability invoked in C–R by the increased flux of nutrients as
R–N interaction strength is increased.

The degree to which R–N interactions can stabilize a system
(i.e., eliminate oscillatory dynamics), however, seems to be limited
by the overall potential instability in C–R interactions. Recall the
relative stability of the different food web modules without R–N.
In the case of a food chain, a single oscillatory C–R interaction
produces well bounded limit cycles (a more stable dynamical
outcome; Fig. 3b), coupled oscillatory C–R interactions produce
chaos (a less stable dynamical outcome; Fig. 3c), and the addition
of a weak pathway brings chaotic dynamics back to bounded
cycles (a more stable dynamical outcome relative to the coupled
oscillators; Fig. 3d). Then, when coupled to R–N, increasing R–N
interaction strength dampens out oscillations entirely in the
single oscillator food chain (Fig. 5b), only bring cycles to a tighter
bound in the coupled oscillator food chain (Fig. 5c), and entirely
dampen oscillations with the addition of a weak pathway
(Fig. 5d). The corollary is that the structure-stability foundation
of C–R generated theory can be predictably extended to include
R–N interactions.

Despite strong R–N interactions acting as potent stabilizers in
higher order systems, implicit increases to R–N interaction
strength through nutrient loading tend to result in the paradox of
enrichment. This can be reconciled in the following way. First
note that R–N interaction strength refers specifically to the rate of
maximum uptake by R (i.e., aRN ) rather than the general sense of
any increase in flux through the interaction22. Now this appears
to be in line with what DeAngelis originally put forward, at least
implicitly, for the R–N subsystem. Consider first that DeAngelis
(1992) recreated the classic paradox of enrichment with a simple
four compartment ecosystem model, finding that high nutrient
loading led to destabilizing autotroph–herbivore oscillations. He
also noted, however, that when a system is nutrient-limited,
sufficiently strong reactive decreases to irruptions in autotroph
biomass by the limiting-nutrient compartment can dampen an
oscillatory C–R system. In other words, how much R “feels” the
decline it imposes on N can create a self-damping effect. This
aligns with what we have found here where strong R–N inter-
actions can dampen whole system dynamics while heightened
nutrient loading leads to the paradox of enrichment. Therefore,
we posit that increasing nutrient loading implicitly strengthens
and fuels the oscillatory potential of C–R interactions such that it
overwhelms the system, whereas for any given level of nutrient
loading increasing the maximum rate of nutrient uptake by R
pulls the R–N module back towards a state of strong reactive
decreases in the limiting-nutrient pool and thus acts to dampen
destabilizing C–R oscillations.

Mathematically, differences in dynamical outcomes as the
uptake terms are increased is found in the modelling of basal
compartments. Consider the three compartment, two interaction,
non-recycling, P–C–R and C–R–N systems. All interactions are
modelled with a type II functional response (see Supplementary
Results equations (1.3) and (3.0); note the Monod equation is
mathematically identical to a type II functional response) and the
top two trophic levels have linear loss terms. Nonetheless,
increasing the basal interaction term is stabilizing in C–R–N
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Fig. 5 Nutrient-limited food chain stability. a–d Non-equilibrium dynamics (log10(C1,max/C1,min)) and equilibrium stability (real part of the dominant
eigenvalue; λmax) of the C–R–N, P–C–R–N with a single oscillator, P–C–R–N with coupled oscillators, and P–C1–C2–R–N modules, respectively, as aRN is
varied.
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(Fig. 5a) and destabilizing in P–C–R (Fig. 3b). The difference in
dynamics therefore arises from N being modelled with density-
independent growth (IN ) and a linear loss term (�lNN) while the
R in P–C–R is modelled with density-dependent growth (rR) and
a non-linear self-damping loss term (�rR2=K) (i.e., logistic
growth). We conjecture this difference between the dynamical
properties of R in P–C–R and N in C–R–N creates a scenario
where despite an implicit time lag, N is unable to escape the top-
down forces of R and overshoot its equilibrium density following
a perturbation (i.e., dynamics remain largely out-of-phase
between R and N to create a self-damping effect). This stabiliz-
ing force then increases as the interaction becomes stronger and
greater top-down control is exerted on N by R. This is in contrast
to an implicit lag allowing R to escape the top-down control of C
and overshoot its equilibrium, eventually creating a limit cycle as
the interaction is further strengthened5. Nonetheless, more work
—such as the change in correlation between R and N dynamics
under non-equilibrium conditions as interaction strength is
increased (sensu Rooney et al.10)—is needed to fully elucidate the
mechanism underlying the unique dynamical outcome
observed here.

The modular framework employed here operates such that
complex systems are reduced to modules that can be studied and
then be slowly pieced back together into an understanding of
whole system dynamics. Modules themselves exist at different
levels of complexity, as we have seen here. The C–R module was
used to understand higher order food web modules, which has
been coherently scaled back up to whole food webs4,6. Analo-
gously, we examined the stabilizing properties of the R–N module
to understand its ability to confer stability in a fully formed
nutrient-cycling ecosystem model. It remains to extend these
findings to the scale of whole ecosystems, an important area of
future work. Furthermore, it is equally important to extend our
findings to the empirical realm. Experimental aquatic ecosystem
microcosms employed by Fussmann et al.23 to show the paradox
of enrichment perfectly match the model outlined here, providing
a reasonable first step toward testing these ideas in real systems.

Taken altogether, nutrient-limited and energetic approaches to
theory offer distinct perspectives into the stabilizing mechanisms
of food webs in space and time. Nonetheless, the goal of a

nutrient-limited ecosystem approach is not to replace the ener-
getic models of food web theory, but rather to integrate the
concepts of food web theory (specifically food web structure and
dynamics) with the inevitable influence of material cycling pro-
cesses and limiting nutrients that have dominated ecosystem
theory. Nutrient-limited models capture, in a sense, a specific
brand of limited resource growth, as opposed to the all-
encompassing intrinsic growth rate (i.e., r; see Supplementary
Results) of energetic models. They ask, all else equal, how limiting
nutrients can alter the dynamics, stability, and ultimately per-
sistence of food webs. Nutrient-limited ecosystem models attempt
to give insight into one of many factors that limit the growth of
resources in space and time, with the ultimate goal of synthesizing
this insight with other factors to form an integrative theory. As
pointed out by O’Neil et al.13, ecosystems are inevitably studied
from limited viewpoints and it is imperative to maintain a holistic
view of ecological theory as insight is gained through these lim-
ited viewpoints.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
There were no data used in this study and thus no data are available.
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