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Connecting MHC-I-binding motifs with HLA
alleles via deep learning
Ko-Han Lee 1, Yu-Chuan Chang1, Ting-Fu Chen1, Hsueh-Fen Juan 1,2,3,4, Huai-Kuang Tsai 1,5 &

Chien-Yu Chen 1,6✉

The selection of peptides presented by MHC molecules is crucial for antigen discovery.

Previously, several predictors have shown impressive performance on binding affinity.

However, the decisive MHC residues and their relation to the selection of binding peptides

are still unrevealed. Here, we connected HLA alleles with binding motifs via our deep

learning-based framework, MHCfovea. MHCfovea expanded the knowledge of MHC-I-

binding motifs from 150 to 13,008 alleles. After clustering N-terminal and C-terminal sub-

motifs on both observed and unobserved alleles, MHCfovea calculated the hyper-motifs and

the corresponding allele signatures on the important positions to disclose the relation

between binding motifs and MHC-I sequences. MHCfovea delivered 32 pairs of hyper-motifs

and allele signatures (HLA-A: 13, HLA-B: 12, and HLA-C: 7). The paired hyper-motifs and

allele signatures disclosed the critical polymorphic residues that determine the binding

preference, which are believed to be valuable for antigen discovery and vaccine design when

allele specificity is concerned.
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Antigens are essential for the induction of adaptive
immunity to respond to threats, such as infectious dis-
eases or cancer1. Most antigens are short non-self-pep-

tides; however, not all peptides are antigenic1. Researchers have
been committed to the development of peptide-based vaccines to
prevent or treat numerous diseases2–5. For instance, tumor
neoantigens, derived from proteins with nonsynonymous somatic
mutations, may be suitable cancer therapeutic vaccines6–8. In
order to choose good antigens, it is important to understand the
process of antigen presentation.

Major histocompatibility complex class I (MHC-I) molecules
are cell surface proteins essential for antigen presentation1. MHC-
I encoded by three gene loci (HLA-A, -B, and -C) are composed
of a polymorphic heavy α-chain and an invariant β-2 micro-
globulin light chain9. The α1- and α2-domains form the peptide-
binding cleft, a highly polymorphic region, contributing to the
diversity of MHC-I-binding motifs9. There are >13,000 MHC-I
alleles on a four-digit level (e.g., A*02:01) recorded in the IPD-
IMGT/HLA database10, representing a particular protein
sequence. Thus, it is difficult to select antigens from numerous
peptides for each MHC allele via experiments.

In order to facilitate the process of antigen discovery, several
predictors have been developed and shown accurate performance
on MHC-I–peptide binding affinity11,12. Owing to the similarity
of polymorphic regions in MHC-I alleles, researchers tended to
build a single pan-allele predictor rather than numerous allele-
specific predictors13; of note, a pan-allele predictor takes both
MHC-I and peptide sequences as the input. A pan-allele predictor
is thought to disclose the connection among different alleles via
the consensus pattern in polymorphic regions13. Nevertheless, the
relation between MHC-I sequences and their binding motifs is
still unspecified.

In the past years, a few studies have discussed the similarity
between MHC-I-binding motifs14–16. Some key residues of
MHC-I molecules determine the binding motifs that can be
clustered into several groups14; the types of key residues within
allele clusters and motif clusters are consistent to some extent15.
In addition, the similarity between binding motifs can be used to
improve the performance of binding prediction16. However, it is
difficult to specify the key residues of each motif group from the
limited number of alleles with experimental measurements.

In this regard, we developed a deep learning-based framework,
MHCfovea, that incorporates supervised binding prediction with
unsupervised summarization to connect important residues to
binding preference. As exemplified in Fig. 1, this study explored
the binding potential of billions of peptide–allele pairs via the
prediction module; only qualified binding pairs were sent to the
summarization module to infer the relation between binding
motifs and MHC-I sequences. In the end, the resultant pairs of
hyper-motifs and allele signatures can be easily queried through a
web interface (https://mhcfovea.ailabs.tw).

Results
Overview of MHCfovea. MHCfovea integrates a supervised
prediction module and an unsupervised summarization module
to connect important residues to binding motifs (Fig. 1). The
predictor in the prediction module is constructed of an
ensemble model based on convolutional neural networks (CNN)
(Supplementary Fig. 1) embedded with ScoreCAM17, a class
activation mapping (CAM)-based18 approach, to highlight the
important positions of the input MHC-I sequences. As for the
summarization module, to infer the relation between the
important residues and the binding motifs, we made predictions
on unobserved alleles to expand our knowledge from 150 to
13,008 alleles followed by clustering all N- and C-terminal

binding motifs, respectively. Then the corresponding signatures
of MHC-I sequences on the important positions were generated
to reveal the relation between MHC-I sequences and their
binding motifs. In the following subsections, we first demon-
strate the performance of MHCfovea’s predictor using 150
alleles with experimental data. Second, we introduce the
important positions highlighted by ScoreCAM embedded in
MHCfovea’s predictor. Finally, we present the summarization
results on 13,008 alleles in the groups of HLA-A, -B, and -C,
respectively. Additionally, alleles from the same HLA group but
falling into different clusters are identified to disclose the critical
residues that determine the binding preference beyond the HLA
groups.

Performance evaluation of MHCfovea’s predictor. The pre-
dictor of MHCfovea takes an MHC-I-binding cleft sequence with
182 amino acids (a.a.) and a peptide sequence with 8–15 a.a.19 to
predict the binding probability. We trained the predictor using
150 alleles with either binding assay data or ligand elution data
and then tested it on an independent ligand elution dataset built
by Sarkizova et al.15. We adopted a large number of in silico
decoy peptides in parallel with in vivo free peptides (not present
on MHC-I molecules) to train and test the predictor; of note, we
took NetMHCpan4.120 as a reference to set the ratio of decoy
peptides to eluted peptides (decoy-eluted ratio (D-E ratio)) at 30
in the benchmark (testing) dataset. The data sources used are
characterized in Supplementary Table 1 and Supplementary
Data 1.

The number of decoy peptides is notably higher than that of
eluted peptides, meaning that MHC-I–peptide binding prediction is
an extremely imbalanced classification process. In fact, the
imbalance among classes is a common issue in machine learning,
and some methods have been developed to deal with it21. In
MHCfovea, we used the ensemble strategy with downsampling22–24

to resolve such an imbalanced learning task (Fig. 2a).
Next, to evaluate the effect of the D-E ratio in the overall

training dataset (denoted as A in Fig. 2a) and the D-E ratio in
each downsized dataset (denoted as B in Fig. 2a), we trained
models with five different D-E ratios (B= 1, 5, 10, 15, and 30) in
each downsized dataset and three different D-E ratios (A= 30,
60, and 90) in the training dataset. Of note, all experimental data
were shared in each downsized dataset, and the decoys were non-
overlapping between each downsized dataset to make sure all the
decoys were used in the ensemble model eventually. Figure 2b
depicts the performance of the validation dataset (Supplementary
Tables 2 and 3). The best model was with D-E ratios of B= 5 and
A= 90, showing an average precision (AP) of 0.898 and an area
under the receiver operating characteristic (ROC) curve (AUC) of
0.991. Therefore, we used the ensemble model with 18 (=90/5)
CNN models (the best performance on the validation dataset) as
the predictor of MHCfovea.

To compare MHCfovea’s predictor with other well-known
predictors, including NetMHCpan4.120, MHCflurry2.025, and
MixMHCpred2.116, we adopted an independent benchmark dataset
from NetMHCpan4.1. Even though the testing data (benchmark)
are the same in the comparison of this study, the training data of
different predictors are not consistent. Supplementary Table 4 and
Supplementary Fig. 2 summarized the training dataset used by each
predictor. Both of NetMHCpan4.1 or MHCflurry2.0 used more
alleles and a larger number of experimental measurements (positive
peptides) than MHCfovea. To be specific, only one peptide is
unique in MHCfovea (Supplementary Fig. 2b). As for
MixMHCpred2.1, MHCfovea as well as the other two predictors
used more alleles and peptides than it owing to the paucity of public
data when MixMHCpred2.1 was published.
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On the benchmark dataset, MHCfovea showed an AUC of
0.977 (Fig. 2c and Supplementary Table 5) and an AP of 0.841
(Supplementary Fig. 3a and Supplementary Table 5), both better
than those obtained with the other predictors. The primitive
output of MHCfovea is the estimated probability of allele–peptide
binding. For the threshold of predicting an input pair as positive,
setting a threshold at 0.68 reaches a maximal F1 score of 0.837 on
the validation dataset. This threshold is suggested when adopting
MHCfovea as a binary predictor. Apart from the whole bench-
mark dataset, we also evaluated the performance on every allele.
MHCfovea showed a median AUC value of 0.984. For 82 of the
92 (89%) alleles, the AUC is at least 0.95. MHCfovea performed
significantly better than the other predictors with respect to the
AUC and AP metrics (Fig. 2d, Supplementary Fig. 3c, and
Supplementary Data 2).

Next, the performance of our pan-allele model was carefully
examined in the context of 16 unobserved alleles (with no
experimental measurements in the training dataset), listed in
Supplementary Table 6. Importantly, there is no significant
difference between the AUC and AP of unobserved alleles and of
the observed alleles (Fig. 2e, Supplementary Fig. 3e, and
Supplementary Data 3), suggesting that MHCfovea shows good
performance not only toward alleles present in the training data
but also in the context of unobserved alleles. Furthermore, when
compared with other predictors on the ten commonly unobserved
alleles across all the predictors, listed in Supplementary Table 6,
MHCfovea also has slightly better performance (Supplementary
Fig. 3f, g and Supplementary Data 3). The high similarity of
sequences between alleles in the same HLA group was regarded as

a reason for the good performance on unobserved alleles.
Nevertheless, B*55:02 is an unobserved allele with an AUC of
0.993, while no alleles in the group B*55 are present in the
training dataset, giving an example of MHCfovea’s good accuracy
on the alleles of a rarely observed HLA group.

To further evaluate the reliability of the MHCfovea’s predictor
on unseen peptides, we took the sets of similar and dissimilar
peptides in the benchmark dataset into consideration, where
similar peptides denote a peptide in the testing data is identical or
near-identical (one peptide is another peptide’s substring) to any
peptides in the training or validation data. Because most
experimental data were conducted on normal human cells, it is
possible to have identical or near-identical peptides in the
benchmark dataset even when we require that no identical
allele–peptide pairs are present in the benchmark and training
(or validation) data simultaneously. Finally, benchmark data were
partitioned into four groups (Supplementary Table 7): (1)
unobserved alleles paired with dissimilar peptides; (2) unobserved
alleles paired with similar peptides; (3) observed alleles paired with
dissimilar peptides; and (4) observed alleles paired with similar
peptides. Figure 2f and Supplementary Fig. 3h (Supplementary
Data 4) provide the results on the metrics of AUC and AP,
respectively. For each group, MHCfovea outperformed the other
predictors in the respect of AUC and has better AP than
MHCflurry2.0 and MixMHCpred2.1. Undeniably, similar peptides
have better performance than dissimilar peptides in MHCfovea,
and this phenomenon did not appear in other predictors because
the definition of similar and dissimilar peptides might not
applicable on them because the training data of each predictor

Fig. 1 An overview of MHCfovea. MHCfovea, a deep learning-based framework, contains a prediction module and a summarization module that infers the
relation between MHC-I sequences and peptide-binding motifs. First, the predictor, an ensemble model of multiple convolutional neural networks (CNN
models), was trained on 150 observed alleles. In the predictor, 42 important positions were highlighted from MHC-I sequence (182 a.a.) using ScoreCAM.
Next, we made predictions on 150 observed alleles and 12,858 unobserved alleles against a peptide dataset (number: 254,742) and extracted positive
predictions (score >0.9) to generate the binding motif of an allele. Then, after clustering the N-terminal and C-terminal sub-motifs, we built hyper-motifs
and the corresponding allele signatures based on 42 important positions to reveal the relation between binding motifs and MHC-I sequences.
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are different. It is reasonable for a machine learning task to have
better performance on the groups of similar peptides than of
dissimilar ones. Of note, MHCfovea still has better performance
than the other predictors on the dissimilar groups.

Selection of important MHC-I residues. The MHC-I-binding
cleft is a sequence of 182 a.a., some of which occupy highly
polymorphic sites considered as decisive for epitope binding.

Therefore, we investigated the important positions using
ScoreCAM17, a kind of CAM algorithm. First, we applied Scor-
eCAM on positive peptides to illustrate how ScoreCAM works,
since it has been widely considered that the second and last
residues of peptides are anchor positions for most alleles26. Fig-
ure 3a (Supplementary Data 5) depicts that the anchor positions
have higher mask scores than other residues, which reveals that
ScoreCAM is capable of highlighting important positions in the
peptide sequences.

Fig. 2 The framework and performance of the MHCfovea’s predictor. a The ensemble framework with the partitioning strategy. We first adopted the
training dataset with a decoy–eluted ratio (D-E ratio) of A. The decoy dataset was partitioned into A/B downsized decoy datasets with D-E ratio of B. Then
A/B CNN models were trained on one downsized decoy dataset along with the experimental dataset. Finally, the mean of results was calculated as the
prediction score. b AP and AUC scores on the validation dataset of the ensemble model trained under different D-E ratios in the overall training dataset,
including A= 30, 60, and 90, against different D-E ratios in the downsized decoy dataset, including B= 1, 5, 10, 15, and 30. The x-axis represents the D-E
ratio in the training dataset, and the y-axis represents the metric score. Source data are provided in Supplementary Tables 2 and 3. c–f The following
performances are all applied on the benchmark dataset. c The ROC curves with AUC depict the comparison between predictors. d The violin plot shows the
distribution of AUC of each predictor by alleles (n= 91, one allele was removed because it is unavailable in MixMHCpred2.1). e Comparison of the AUC
between observed (n= 76) and unobserved (n= 16) alleles. f The comparison of AUC on the four groups split from the benchmark dataset between
predictors. In violin plots, boxplots depict the median value with a white dot, the 75th and 25th percentile upper and lower hinges, respectively, and
whiskers with 1.5× interquartile ranges. P values (two-tailed independent t test) are shown as **P≤ 0.01 and ****P≤ 0.0001. Source data and details of the
statistical analysis are provided in Supplementary Data 2, 3, and 4.
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Next, we focused on the positive predictions of the training
dataset and obtained allele masks; briefly, every position has a
mask score representing the relative importance across the 182
a.a. Figure 3b (Supplementary Data 5 and 6) shows the stack plot
of importance of each HLA gene at each position and the
heatmap clustering of allele masks. The importance of each
position was quantified by the proportion of alleles with a mask
score of >0.4. Importantly, alleles from identical HLA genes were
mostly grouped together in the heatmap, consistent with the
divergence of importance between different HLA genes in the
stack plot. This result indicates that our model not only learned
the differences between HLA-A, -B, and -C but also focused on
different positions in different HLA genes.

Additionally, to evaluate the consistency of polymorphism and
mask score of each position, we applied linear regression analysis
on the degree of polymorphism and importance. The degree of

polymorphism was calculated by the information entropy of a.a.
frequency. Owing to the divergence between HLA genes in
Fig. 3b, the importance scores of HLA-A, -B, and -C were
calculated separately, and the maximum one was chosen as the
final importance. The activation maps derived from CAM-based
approaches are not sharp enough; residues next to the real
important residue could be highlighted simultaneously. This
explains why some non-polymorphic positions also have high
importance; therefore, before applying linear regression, we
removed all non-polymorphic positions. Figure 3c (Supplemen-
tary Data 6) presents a Pearson’s correlation of 0.67 (P < 0.05)
between polymorphism and importance and reveals that highly
polymorphic sites play a more important role in the predictor.

Polymorphic positions with importance >0.4 were chosen as
important positions. Figure 3d presents the Venn diagram of
position selection. In the end, 42 important positions were

Fig. 3 Selection of the important positions. a A clustering heatmap of the peptide mask on each peptide position of each allele. b A stack plot of the
position importance of HLA genes at each MHC-I residue and a heatmap of allele masks derived from ScoreCAM results with clustering on alleles. These
two plots are aligned by MHC-I-binding cleft sequences, to better demonstrate the distribution of mask scores. In the stack plot, different HLA genes were
counted independently due to the number of alleles with variation as well as the divergent patterns of conserved or polymorphic sequences (Supplementary
Fig. 4). As for the heatmap clustering in a, b, we used Euclidean distance and unweighted average linkage for clustering mask scores, and the row color is
used to label the HLA gene. c A scatterplot with linear correlation shows the relationship between polymorphism and importance of each polymorphic MHC-
I residue (n= 80). Information entropy (−ΣP × ln(P), where P is the amino acid frequency) is used to represent the degree of polymorphism. The important
positions selected using ScoreCAM are colored in red, and the 34 residues derived from NetMHCpan4.1 are cross-marked. The blue band represents the
95% confidence interval of the regression fit, and the line represents the estimated regression. d A Venn diagram shows the intersection of the important
position set from each HLA gene and the polymorphic residue sets. Residues in the set of “(A ∪ B ∪ C) ∩ polymorphism” are selected as the 42 important
positions of MHCfovea. Source data are provided in Supplementary Data 5 and 6.
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selected, and 13 of them were important in all HLA genes
(Supplementary Data 6).

We compared the selected residues (42 residues) with 34
contact residues (the pseudo-sequence applied in
NetMHCpan4.1)20 in Fig. 3c. Some highly polymorphic sites
are not included in the pseudo-sequence but have high
importance, suggesting that some residues other than the 34
contact residues are essential for epitope binding, such as position
65 and 71.

Expansion and summarization of MHC-I-binding motifs. Each
MHC-I allele has its own binding motif owing to the distinct
MHC-I sequence. To further explore the pattern among different
alleles, we computed the binding motif of alleles in the training
dataset. Since the length of epitopes ranges from 8 to 15 and the
important residues are usually located at the second and last
positions, we focused on the first four (N-terminal) and last four
(C-terminal) residues to construct an 8-a.a.-long motif for pep-
tides bound by each allele26. Supplementary Fig. 5 depicts the
hierarchical clustering of the binding motifs of HLA-B alleles.
Some alleles, especially those of the identical HLA group (e.g.,
B*44), have similar binding motifs and are grouped together;
however, some alleles with similar N-terminal sub-motifs have
dissimilar C-terminal sub-motifs. For example, both HLA-

B*40:01 and HLA-B*41:01 have an E-dominant N-terminal sub-
motif, but the former has an L-dominant C-terminal sub-motif
and the latter has an A-dominant one. This motivated MHCfovea
to cluster the N-terminal and C-terminal sub-motifs separately.

When exploring the relation between HLA sequences and
MHC-I-binding motifs/sub-motifs, we noticed that the number
of alleles in a cluster is too small to form meaningful signatures.
The training dataset has only 150 alleles, a fraction of the 13,008
MHC-I alleles recorded in the IPD-IMGT/HLA database10; it is
difficult to obtain notable MHC-I sequence patterns from such an
insufficient number of alleles. Therefore, we made predictions on
all available alleles to generate more binding motifs, relying on
the good performance of the MHCfovea’s predictor. In total, we
obtained 4158 HLA-A-binding motifs, 4985 HLA-B-binding
motifs, and 3865 HLA-C-binding motifs.

We then retrieved N- and C-terminal sub-motifs and clustered
them into several clusters. Figure 4 (Supplementary Data 7)
shows the clustering of N- and C-terminal sub-motifs of all HLA-
B alleles, with 7 N-terminal and 5 C-terminal sub-motif clusters
where minor clusters that have <50 alleles are neglected. For each
sub-motif cluster, we calculated the hyper-motif and the
corresponding allele signature to represent the preference of
binding motifs and a.a. at the important positions (Fig. 4,
Supplementary Figs. 6 and 7, and Supplementary Data 7). Of
note, in each cluster, 50 alleles from each HLA group were

Fig. 4 The relation between MHC-I sequences and MHC-I-binding motifs. A summarization table of HLA-B. The MHC-I-binding motifs are divided into N-
and C-terminal sub-motifs; sub-motifs are clustered by agglomerative hierarchical clustering. Hyper-motifs and the corresponding allele signatures are
calculated from each sub-motif cluster. In each cluster, the number of alleles and the HLA groups with the number of alleles ≥25 are recorded in the last
two columns. Source data are provided in Supplementary Data 7.
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randomly sampled to construct the allele signature to reduce the
imbalance between different HLA groups. Notably, the pattern of
binding motifs and allele signatures are partly interpretable with
the property of a.a. In Fig. 4, the first cluster of C-terminal hyper-
motifs is composed of aromatic residues (e.g., Y and F), whereas
the second and third clusters are composed of aliphatic a.a. (e.g.,
L, V, I, and A). Moreover, the fifth and sixth clusters of
N-terminal hyper-motifs dominated by basic a.a. (H and R) with
similar allele signatures, indicating that MHC-I–peptide binding
depends on physicochemical properties to some extent.

To investigate the distribution of allele groups with respect to
the combinations of N- and C-terminal clusters, we plotted the
combination heatmap in Fig. 5a (Supplementary Fig. 8 for HLA-
A and -C and Supplementary Data 8), which in total has 35
combinations (7 N-terminus × 5 C-terminus) for HLA-B. Inter-
estingly, five unobserved combinations, not present in the
training dataset, were discovered by MHCfovea via the pattern
learned from the observed combinations. In Fig. 5b, we presented
four combinations of N- and C-terminal clusters. The noticeable
residues of N- and C-terminal hyper-motifs are mostly located in
the first half and last half part of allele signatures, respectively,

which is consistent with the binding structure of MHC-I
molecules27. For example, the E-dominant cluster has noticeable
residues in the first half part of the allele signature; these residues
are highly conserved in not only different combinations but also
the cluster, which enhances confidence of the key residues
highlighted in the allele signature.

Disclosure of the HLA groups falling into multiple sub-motif
clusters. Overall, alleles within the same HLA group were clus-
tered into the same sub-motif cluster. However, Fig. 4 shows that
some HLA groups, such as B*15 and B*56, fell into multiple sub-
motif clusters. An HLA group is defined as a multi-cluster HLA
group if its alleles fall into multiple clusters and the second large
cluster contains the number of alleles ≥25 or the ratio to the total
allele number of this group >0.1; MHCfovea identified 27 multi-
cluster HLA groups, listed in Supplementary Table 8.

Here we used the important positions and expanded alleles to
further investigate the multi-cluster HLA groups. Figure 6a
(Supplementary Data 9) shows that the difference in polymorph-
ism between multi-cluster and mono-cluster HLA groups is

Fig. 5 The combination map of N- and C-terminal hyper-motifs. a The binding motif of an allele is a combination of an N-terminal and a C-terminal hyper-
motif. After allocating all the alleles into the combination map, the cell color is determined by log10(number of alleles in the cell). In each cell with an
allele number >10, the maximal HLA group and HLA groups with an allele number ≥25 or with a proportion (the allele number in the cell to the overall
number of an allele group) >0.1 are listed. b The relation of a combination to its hyper-motifs. Four combinations are used as an example to illustrate the
consistent signatures across different cells in the same column or row. The header column and header row consist of two N-terminal and two C-terminal
clusters, respectively. Then, alleles of a cell, the combination of the N-terminal (column) and C-terminal (row) clusters, are used to generate the
corresponding hyper-motif and allele signature. The color boxes are used to highlight the similar part of allele signatures. Source data are provided in
Supplementary Data 8.
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significant considering the important positions, but not all 182 a.a.
Figure 6b (Supplementary Data 10) shows that MHCfovea has
good performance with respect to unobserved alleles for both the
mono- and multi-cluster HLA groups. Figure 6c, d demonstrate
hyper-motifs and highlighted allele signatures of multi-cluster
HLA groups. Figure 6c shows three major N-terminal sub-motif
clusters of B*15; the gray box highlights the highly polymorphic
sites, especially position 67, which may contribute to different
MHC-I-binding motifs. Additionally, position 65 and 71, not
selected in the pseudo-sequence of NetMHCpan4.1 (Fig. 3c), are
highlighted in the second cluster of Fig. 6c, supporting that some
important positions beyond 34 contact residues are also decisive
for the binding motif. On the other hand, Fig. 6d shows three
major C-terminal sub-motif clusters of B*56; in the B*56 HLA
group, only B*56:01 was present in the training dataset, which
reveals that another two clusters were discovered by MHCfovea
after allele expansion. In summary, these results demonstrate
some notable patterns of MHC-I sequences beyond HLA groups,
corresponding to some specific sub-motifs.

Discussion
Antigen discovery is composed of two major steps, antigen pre-
sentation and T cell recognition1; several researches have built
accurate predictors for antigen presentation, especially

MHC–peptide binding12. However, the decisive residues of MHC
sequences for peptide binding are still unspecified. A few studies
have explored the pattern of MHC sequences and peptides14–16;
nevertheless, owing to the limited number of alleles with
experimental measurements, it is hard to conclude the relation of
MHC sequences and binding motifs from all MHC alleles.

Here we developed MHCfovea for predicting binding prob-
ability and providing the connection between MHC-I sequences
and binding motifs. MHCfovea’s predictor outperformed the
other predictors via an ensemble framework with downsampling
to solve the data imbalance between decoy and eluted peptides.
To focus on the important positions determining the binding
motifs, MHCfovea selected 42 a.a. of MHC-I sequences based on
150 observed alleles using ScoreCAM. After expanding the
knowledge from observed alleles to unobserved alleles (total
number: 13,008), MHCfovea delivered 32 pairs (HLA-A: 13,
HLA-B: 12, and HLA-C: 7) of hyper-motifs and allele signatures
on 42 important positions to reveal the relation of MHC-I
sequences and binding motifs. In addition, MHCfovea discovered
some unobserved combinations of N- and C-terminal sub-motifs
with the support from high similarity between allele signatures.
Finally, MHCfovea disclosed some multi-cluster HLA groups,
such as B*15 and B*56, and highlighted the key residues to
determine the different binding motifs.

Fig. 6 Characteristics of the HLA groups falling into multiple sub-motif clusters. a Polymorphism on all 182 amino acids or the important positions of
mono-cluster (group number= 44) or multi-cluster (group number= 27) HLA-groups. b AUC and AP of unobserved alleles grouped by mono-cluster
(allele number= 7) or multi-cluster (allele number= 9) HLA-groups. c, d The hyper-motifs and highlighted allele signatures of the N-terminal sub-motif
clusters of B*15 (c) and the C-terminal sub-motif clusters of B*56 (d). The box colored in gray is used to highlight the polymorphic sites. Boxplots depict
the median value with a middle line, the 75th and 25th percentile upper and lower hinges, respectively, whiskers with 1.5× interquartile ranges, and points
as outliers. P values (two-tailed independent t test) are shown as “ns” no significance and **P≤ 0.01. Source data and details of the statistical analysis are
provided in Supplementary Data 9 and 10.
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Since the positive allele–peptide pairs in the benchmark data
have a high ratio of peptides (32.8%) that were present in the
training data, it is not clear if the good performance of MHCfovea
came from the memorization of the peptides in the positive pairs
of the training data. To clarify this point, we built an artificial
dataset by pairing all the alleles in the benchmark dataset and the
positive peptides in the training dataset. Supplementary Fig. 9
depicts the distribution of the artificial dataset, which is close to
the negative data in the benchmark. In other words, the artificial
pairs are recognized as negative samples mostly in the MHCfo-
vea’s predictor. This result indicated that the MHCfovea’s pre-
dictor actually recognized the binding peptides via the sequence
patterns rather than memorizing all the positive peptides in the
training data.

Some limitations of MHCfovea are addressed here. First, the
unobserved binding motifs are derived from predictions.
Although MHCfovea has an accurate performance in the context
of unobserved alleles, the total number of alleles with experi-
mental data is a small fraction of available MHC-I alleles. Second,
sub-motifs with a dominant a.a. can be clustered notably. In
contrast, sub-motifs of HLA-C mostly with no dominant a.a. have
neither obvious clusters nor indistinguishable allele signatures;
therefore, it is difficult to determine the relation between binding
motifs and MHC-I sequences on such alleles. Additionally, the
number of clusters is fixed once summarization is completed. In
this study, some minor clusters with <50 alleles were neglected,
and in the end 32 major clusters are presented in our summar-
ization. Most alleles (12,919 in 13,008, 99%) belong to one
N-terminal and one C-terminal cluster within these 32 clusters. If
new alleles are appended in the future, the process of allele
extension and summarization can be reperformed to generate a
new set of clusters.

As for the binding prediction, the testing dataset is the same for
each predictor, but the training dataset is not. Although
MHCfovea has no advantage on the numbers of alleles and
peptides when compared with NetMHCpan4.1 or MHCflurry2.0
(Supplementary Table 4 and Supplementary Fig. 2), the lack of a
public training dataset is still a limitation for comparison between
different algorithms. Furthermore, MHCfovea is only trained on
mono-allelic measurements; adding multi-allelic data to the
training dataset increases not only the number of peptides but
also the diversity of MHC-I alleles. Alvarez et al.28 designed a
semi-supervised method to associate each ligand to its MHC-I
allele, which can potentially deal with the ambiguous annotation
on multi-allelic data. In the future, we will incorporate this
method with MHCfovea to enlarge the number of observed
alleles; we anticipate increasing the number of experimental data
can further improve model performance and the quality of the
summarization of MHCfovea. Furthermore, a complete immune
response depends on the recognition of MHC-I–peptide com-
plexes by T cells. Building a model for T cell immunogenicity
following MHCfovea is expected to promote the contribution of
computational approaches on antigen discovery.

In summary, MHCfovea successfully connects MHC-I alleles
with binding motifs via deep learning. MHCfovea’s predictor
expanded the knowledge of MHC-I-binding motifs from 150
alleles to 13,008, which were further summarized into pairs of
hyper-motifs and allele signatures. The large number of allele
sequences realized the generalization of allele signatures con-
nected to distinct binding motifs correspondingly. Antigen dis-
covery and vaccine design can be facilitated by knowing such
clustered alleles and their key residues. Additionally, MHCfovea
reveals some multi-cluster HLA groups, which provided addi-
tional examination for allele similarity beyond the allele group,
based on the 42 important positions of MHC-I uncovered by
MHCfovea.

Methods
Preparation of MHC-I sequences. We used the IPD-IMGT/HLA database (ver-
sion 3.41.0)10 as a reference for MHC-I sequences and used peptide-binding clefts
annotated in the UniProt database29 as the target binding region. Of note, the
peptide-binding cleft, composed of α-1 and α-2 regions, is a protein sequence with
182 a.a. and is critical for epitope presentation9. We used the alignment file from
the IPD-IMGT/HLA database and obtained the corresponding sequences to build a
peptide-binding domain database of all MHC-I alleles for the development of the
proposed pan-allele-binding predictor adopted by MHCfovea.

Preparation of peptide data. Experimental data of binding and ligand elution
assays, especially mass spectrometry (MS), were collected from Immune Epitope
Database and Analysis Resource (IEDB)30, the most comprehensive immuno-
peptidome database. Because MHCfovea is a binary classifier for MHC-I–peptide
binding, all measurements were labeled with 0 and 1. For the binding assays, an
IC50 of 500 nM was set as the upper bound for the positive label. As for ligand
elution assay, all samples were labeled as positive.

The binding assay dataset generated in 2013 was directly downloaded from
IEDB. To focus on the prediction of four-digit human MHC-I alleles (for example,
A*01:01), non-human, mutant, and digital-insufficient MHC-I alleles were
excluded. The peptides were restricted to 8–15-mers and this setting covered most
epitopes19. The MS dataset was exported from IEDB on 2020/07/01; the following
filters were used: linear epitopes, human species, MHC class I, and positive MHC
ligand assay. Both 4-digit human alleles and peptides with a length of 8–15 a.a.
were selected, following the same selection strategy as above. After filtration, the
dataset consisted of 515,110 measurements across 150 alleles.

Separation of the training, validation, and benchmark datasets. To build an
isolated testing benchmark, we considered a single experimental reference selected
from the previous ligand elution assay dataset. The MHC-I immunopeptidome
built by Sarkizova et al.15 is the largest mono-allelic MS dataset, comprising
127,371 measurements across 92 alleles and was, therefore, chosen as the testing
benchmark in this study. The binding assay dataset and the MS dataset excluding
the experimental data used in the benchmark were combined to build the training
dataset (95%) and the validation dataset (5%). In addition, to avoid duplication
between training and benchmark datasets, we excluded peptides with identical
allele and peptide sequences from the training and validation datasets and retained
them in the benchmark dataset.

Preparation of decoy peptides. As the MS data only provide positive results, we
prepared a decoy dataset to be used as negative results. We created two types of
decoy peptides, “protein decoy” and “random decoy,” both extracted from the
UniProt proteome. “Protein decoy” refers to the peptides that were generated from
the same protein as an eluted peptide, whereas “random decoy” refers to the
peptides that were randomly extracted from the UniProt proteome. For each eluted
peptide in the benchmark and validation datasets, we created two protein decoy
peptides and two random decoy peptides for each length of 8–15 (a.a.). Duplicated
peptides with identical allele and peptide sequence were excluded. In the end, both
benchmark and validation datasets had a D-E ratio of 30, which is close to that of
the dataset in NetMHCpan4.120. On the other hand, in the training dataset, to
evaluate the effect of D-E ratio on model performance, we generated decoy pep-
tides with D-E ratios >30. For each eluted peptide, we created two protein decoy
peptides and ten random decoy peptides for each length of 8–15 (a.a.). We only
enlarged the number of random decoy peptides, because it was difficult to select
more different unique peptides from a single protein (protein decoy peptides) with
a short length. In the end, the training dataset had a D-E ratio of 90, which is three
times that in the validation and benchmark datasets. The number of data instances
in each dataset is listed in Supplementary Table 1, and the data number by alleles of
the training, validation, and benchmark datasets is recorded in Supplementary
Data 1.

CNN model architecture. The predictor adopted by MHCfovea is an ensemble
model of multiple CNN model. A CNN model takes the allele (182 a.a.) and
peptide (8–15 a.a.) sequences as input; both sequences are encoded with a one-hot
encoder of a.a. The CNN model architecture is shown in Supplementary Fig. 1.
Before concatenation, the encoded vectors are passed through several convolution
blocks separately. The convolution block is composed of a 1D convolution layer
with kernel size 3, stride 1, and zero-padding 1; a batch normalization layer; a
ReLU activation layer; as well as a max-pooling layer. In the allele part, sequences
are passed through four convolution blocks and downsized to a 15-long matrix. In
the peptide part, all sequences are padded with “X” as an unknown a.a. to 15-long
at the end of the sequence, the maximal length of peptides, and three convolution
blocks are applied. After concatenation in the dimension of filters, the matrix is
passed through another two convolution blocks with the replacement of the last
max-pooling layer by a global max-pooling layer followed by a fully connected
layer and a sigmoid operator. Finally, a prediction score is obtained to represent the
binding probability of MHC-I and peptide sequences.
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Model training. MHCfovea uses binary cross entropy as its loss function and the
Adam optimization algorithm with the weight decay of 10−4 as the optimizer. The
number of training epochs was set to 30, and the best model state was chosen after
epoch 24 via the loss of the validation dataset to avoid overfitting. The hyper-
parameters, including the batch size and learning rate, were selected via the grid
search optimizer based on AP of the validation dataset. The batch size of 32 from
the options [16, 32, 64] and the learning rate of 10−4 from the options [10−5, 10−4,
10−3] were selected (Supplementary Table 9). In addition, the learning rate sche-
duler was used to adjust the learning rate during the training process. Of note, the
learning rate was reduced to 10−5 after epoch 15 and to 10−6 after epoch 24.

Performance metrics. We used four metrics, AUC, AUC0.1, AP, and PPV, to
evaluate the performance of our model as well as that of other predictors. The AUC
is a curve of the true positive rate (TPR) against the false positive rate (FPR).
AUC0.1 has a restriction of the FPR under 0.1. AP is the area under the precision-
recall curve created by plotting the precision against TPR, also called recall. PPV
(positive predictive value) is defined as Eq. (1), where N is the number of positive
measurements.

PPV ¼ positive predictions within top N predictions
N

ð1Þ

In addition, we calculated these metrics in the context of every allele to evaluate
the distribution of allelic performance.

Threshold and %rank for the prediction score. To explain the prediction score
more explicitly, a positive threshold and the %rank score, the percentage of ranking
among background peptides, were provided. The positive threshold was set
according to the maximal F1 score on the validation dataset. As for the %rank,
10,000 random peptides extracted from the UniProt database were built as the
background peptides to calculate the %rank of each prediction score. When a
prediction receives a %rank of 0.5, it means a peptide binds to MHC-I more
probably than 99.5% random peptides.

Comparison with other predictors. NetMHCpan4.120, MHCflurry2.025, and
MixMHCpred2.116, well-known MHC-I–peptide binding predictors, were com-
pared with the MHCfovea’s predictor. For MHCflurry2.0, we used the variant
model of MHCflurry2.0-BA, the only one trained without our benchmark dataset.
Both NetMHCpan4.1 and MHCflurry2.0 are compatible with all kinds of a.a. and
8–15 length peptides; however, for MHCflurry2.0, we had to replace a.a. beyond 20
human-required a.a. with “X” as an unknown a.a. On the other hand,
MixMHCpred2.1 only allows 8–14 length peptides and sequences within 20 a.a.;
therefore, for accurate comparison, we removed peptides with other a.a. or those
>14 a.a.

First, we tested all models directly on the benchmark dataset and calculated
performance metrics for comparison. The output of MHCflurry2.0 was the IC50 of
the binding affinity; therefore, we used a function (1− log50,000(x)) to transform
the binding affinity into binding probability. Then the performances of these
models were tested by allele to evaluate the confidence between different alleles. In
total, there are two types of results because of the peptide availability of
MixMHCpred2.1 depicted in Supplementary Data 2 and 4.

Class activation mapping. We applied CAM on our model for interpretation
purposes. CAM-based approaches provide the explanation for a single input with
activation maps from a convolution layer. There are several CAM-based methods,
including CAM18, GradCAM31, GradCAM++32, and ScoreCAM17. ScoreCAM
was chosen due to its stability on the former convolution layer. We applied
ScoreCAM on the second convolution block before the max-pooling layer of the
MHC part (Supplementary Fig. 1). We focused on positive predictions with pre-
diction scores >0.9. The mean of ScoreCAM scores from positive predictions of a
single allele was calculated as the final result called “epitope mask” for epitope part
and “allele mask” for allele part used in Fig. 3. Of note, in epitope and allele masks,
every position has a score representing the relative importance across the 8-a.a.-
long and 182-a.a.-long sequences, respectively.

Selection of the important positions. The training dataset with 150 alleles
composed of 46 HLA-A, 85 HLA-B, as well as 19 HLA-C alleles was used to select
the important positions, and both allele masks and a.a. polymorphism were taken
into consideration. Owing to the divergence between HLA genes, positions from
different HLA genes were chosen separately. First, we calculated the importance of
each position for each HLA gene. The importance of a position was quantified as
the proportion of alleles with mask scores >0.4 (set heuristically). Then, for each
HLA gene, residues with importance >0.4 (also set heuristically) were selected;
however, those with no polymorphism (all alleles had the same a.a.) were dropped.
Then we combined the selected positions from each HLA gene as important
positions of our model. In total, we selected 42 important positions, including
positions 1, 9, 11, 12, 24, 31, 32, 43, 44, 45, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 76,
77, 79, 80, 94, 95, 97, 98, 109, 114, 116, 127, 131, 138, 142, 143, 144, 145, 152, 156,
163, and 180 of the MHC-I peptide-binding cleft sequence (182 a.a.).

Prediction of all alleles. With the good performance of MHCfovea’s predictor on
unobserved alleles, we predicted the binding probability of each allele against
254,742 peptides (including all ligand elution data and some decoy peptides whose
number was the same as ligand elution data of the benchmark dataset). In total, 3.3
billion pairs of peptide–allele were tested. The peptides with a prediction score >0.9
(~78 million peptides) were sent to the summarization module to calculate the
binding motif for each allele. Each MHC-I-binding motif with 8 a.a. was composed
of the first four residues (N-terminal) and the last four residues (C-terminal). In
total, we obtained 4158 HLA-A-binding motifs, 4985 HLA-B-binding motifs, and
3865 HLA-C-binding motifs in the summarization step.

Sequence motifs. The sequence motif is the pattern of a set sequences. There are
some types of matrices, including position probability matrix (PPM), position
weight matrix, and information content matrix (ICM), used to represent the
sequence motif. In this study, we used PPM to calculate the MHC-I sequence motif
and ICM to calculate the MHC-I-binding motif. From a set S of M aligned
sequences of length L, the elements of the PPM are calculated from Eq. (2), where I
is an indicator function.

PPMi;j ¼
1
M

∑
M

k¼1
IðSk;j ¼ iÞ; i ¼ f20 amino acidsg

j ¼ 1; :::; L
ð2Þ

The ICM is used to correct PPM with background frequencies and highlight
more important residues. The elements of the ICM are calculated from Eq. (3),
where the background frequency B is 0.05 (=1/20) for each a.a.

ICMi;j ¼ PPMi;j ∑
m2 20 amino acidsf g

PPMm;j ´
log2 PPMm;j

� �

B

2
4

3
5 ð3Þ

Sub-motif clustering. An MHC-I-binding motif with 8 a.a. was split into an
N-terminal sub-motif with the first 4 residues of the binding motif and a
C-terminal sub-motif with the last 4 residues of the binding motif. Consequently, a
sub-motif is represented by a 4 × 20 (the number of a.a.) ICM. Before clustering,
the pairwise distance of each sub-motif was calculated via cosine metric. Then we
used agglomerative hierarchical clustering with cosine metrics and maximum
linkage to cluster the pairwise distance. Different numbers of clusters were set for
different HLA genes and termini manually, and minor clusters with <50 alleles
were neglected.

Hyper-motifs and allele signatures. Hyper-motifs and allele signatures are both
used to demonstrate the characteristics of a specific group of alleles. Hyper-motifs
representing the MHC-I-binding motif of alleles were calculated from the element-
wise mean of motif or sub-motif matrices. Allele signatures disclose the preference
of a.a. at important positions. For each sub-motif cluster, we sampled 50 alleles
from each HLA group on a two-digit level to balance the allele number of each
group because of two reasons. First, alleles with the same HLA group have similar
MHC-I sequences, which may lead to similar binding motifs (Supplementary
Fig. 5). Second, there is a huge variation among the allele number of different HLA
groups. For example, HLA-B*07 has 394 alleles, but HLA-B*56 only has 69 alleles.
Of note, if the allele number of an HLA group was <50, all alleles were selected.

Afterward, to generate the allele signature matrix (ASM), we had to calculate a
background PPM (PPMbackground) from all sampled alleles of an HLA gene and a
PPM of sampled alleles from a specific sub-motif cluster (PPMcluster). On the other
hand, to evaluate the sequence pattern of HLA groups, we also calculated the PPM
of alleles from an HLA group in a specific sub-motif cluster (PPMgroup). The
ASMcluster was defined as the positive part of the difference between PPMcluster and
PPMbackground in Eq. (4); the ASMgroup was defined as the difference between
PPMgroup and PPMbackground in Eq. (5), where Iverson bracket was used to set
positive elements and the others as 1 and 0, respectively.

ASMcluster ¼ fþ PPMcluster � PPMbackground
� �

; f þðxÞ ¼ max f xð Þ; 0� � ð4Þ

ASMgroup ¼ g PPMgroup � PPMbackground
� �

; gðxÞ ¼ x > 0½ � ð5Þ
For instance, we used 1790 sampled HLA-B alleles to generate the

PPMbackground of HLA-B and 502 sampled alleles of the P-dominant sub-motif
cluster (Fig. 4) to produce the PPMcluster. The allele signature of the P-dominant N-
terminal sub-motif in the header row of Fig. 4 was calculated from the difference of
these two probability matrices.

In addition, the highlighted allele signature demonstrated in Fig. 6c, d was used
to highlight the similarity of allele signatures of the specific alleles and of the
corresponding sub-motif clusters. We implemented the element-wise product to
get the highlighted allele signatures in Eq. (6), where L is the sequence length and
HASM is the matrix of the highlighted allele signature.

HASMi;j ¼ ASMgroup � ASMcluster
� �

i;j;
i ¼ f20 amino acidsg
j ¼ 1; :::; L

ð6Þ

Statistics and reproducibility. For all comparisons of performance, we used two-
tailed independent t test and set the criterion for statistical significance as P < 0.05.
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For the relation between polymorphism and importance of each polymorphic
MHC-I residue, we fit a linear regression along with 95% confidence interval
(Fig. 3c).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Several public databases were used in this study, including Immune Epitope Database
and Analysis Resource (IEDB) (https://www.iedb.org/) for experimental measurements,
UniProt (https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/
complete/uniprot_sprot.fasta.gz) for decoy peptides, and IPD-IMGT/HLA (https://
github.com/ANHIG/IMGTHLA/tree/3410) for MHC-I allele sequences. Research data
files supporting this study, including the peptide-binding cleft sequence of MHC-I alleles;
the training, validation, and benchmark datasets; the prediction of the validation and
benchmark datasets; and the prediction of the allele expansion are available from
Mendeley Data (https://doi.org/10.17632/c249p8gdzd.3)33. Source data for all figures are
provided in Supplementary Data.

Code availability
The source code of the research and the MHCfovea’s predictor are freely available at
GitHub (https://github.com/kohanlee1995/MHCfovea) and Mendeley Data33 for
academic non-commercial research purposes. All source codes are based on Python
(v3.6.9) and its packages, including numpy (v1.18.2), pandas (v1.0.3), scikit-learn
(v0.22.2), pytorch (v1.4.0), matplotlib (v3.2.1), seaborn (v0.10.0), logomaker (v0.8).
Numpy, pandas, and scikit-learn, are used for data analysis; pytorch is used for deep
learning; matplotlib, seaborn, and logomaker are used for visualization. The website for
the summarization of MHCfovea is available at https://mhcfovea.ailabs.tw.
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