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A systematic analysis of genetic interactions and
their underlying biology in childhood cancer
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Childhood cancer is a major cause of child death in developed countries. Genetic interactions

between mutated genes play an important role in cancer development. They can be detected

by searching for pairs of mutated genes that co-occur more (or less) often than expected. Co-

occurrence suggests a cooperative role in cancer development, while mutual exclusivity

points to synthetic lethality, a phenomenon of interest in cancer treatment research. Little is

known about genetic interactions in childhood cancer. We apply a statistical pipeline to

detect genetic interactions in a combined dataset comprising over 2,500 tumors from 23

cancer types. The resulting genetic interaction map of childhood cancers comprises 15 co-

occurring and 27 mutually exclusive candidates. The biological explanation of most candi-

dates points to either tumor subtype, pathway epistasis or cooperation while synthetic

lethality plays a much smaller role. Thus, other explanations beyond synthetic lethality should

be considered when interpreting genetic interaction test results.
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Cancer is the leading cause of disease-related child death in
developed countries, despite increased survival rates from
10% to over 80% in the last decades1. Moreover, survival

rates differ greatly between different pediatric cancer types and
many survivors suffer from severe side effects later on in life2,3.
Therefore, it is of great importance to gain a better understanding
of pediatric cancers and their potential treatments. Pediatric
cancers are rare compared to adult cancers and are also funda-
mentally different. Insights gained from adult cancer studies are
thus only for a small part applicable to childhood cancer types.
While adult cancers usually occur late in life as the result of a
gradual accumulation of somatic mutations, pediatric cancers are
rather thought of as developmental diseases. Consequently, they
usually have a different cell of origin compared to adult tumors4.
In addition, they are thought to require a lower number of driver
mutations for tumorigenesis and usually exhibit a much lower
number of passenger mutations4. The exhaustive characterization
of genetic alterations has only recently begun in pediatric cancers
using whole-genome and exome sequencing approaches5. Larger
numbers of sequenced tumors for pediatric cancers are now
available, allowing the identification of genes that are frequently
mutated across cancer genomes6,7.

Like many other diseases, most cancers do not arise from
alterations in individual genes alone but are the result of wide-
spread genetic interactions between them8. Genetic interactions
occur when the effect of combining two or more alterations in the
genome cannot be predicted by adding up the effects of the
individual alterations. Genetic interactions are known to be per-
vasive in model organisms9–11. Efforts have also been initiated to
map genetic interactions in adult cancer cells12–15, but have so far
been limited in pediatric cancer. One of the primary goals of such
studies is to detect synthetic lethal relationships. Synthetic leth-
ality is a type of genetic interaction in which simultaneous dis-
ruption of two genes results in cell death16 while the alteration of
only one of the two genes yields a viable cell. For example, cancer
cells that harbor mutations in BRCA1 or BRCA2 are highly
dependent on the function of PARP117. Exploiting these types of
genetic interactions for therapeutic purposes can therefore
advance precision medicine strategies to develop better, patient-
tailored, cancer treatments18,19.

Multiple strategies can be employed to detect synthetic lethal
and other genetic interactions in cancer cells (reviewed in ref. 20).
For example, synthetic lethal gene pairs that are identified with
high-throughput screens in model organisms such as yeast might
indicate synthetic lethality between their human homologs12.
Another approach is to use RNAi or CRISPR–Cas9 to perform
knock-out experiments in human cancer cell lines13,14. However,
candidate genetic interactions identified with these methods are
often hard to validate, as they are context-dependent and might
not replicate in a different genomic background, cell type, or cell
environment19.

Another strategy to detect genetic interactions is to perform in
silico statistical analyses in large collections of tumor genomes.
Applying this approach to adult cancers has led to the identifi-
cation of co-occurring and mutually exclusive pairs of
alterations21–24. A pair is co-occurring (or mutually exclusive)
when two alterations co-occur more (or less) often than expected
by chance. Mutually exclusive altered gene pairs can point to
possible synthetic lethal candidates; mutated gene pairs that co-
occur often probably co-operate to give the tumor cell a selective
advantage. Numerous tools have been developed to identify co-
occurring and mutually exclusive interactions between mutated
genes in cancer (reviewed in ref. 25) and differ in the choice of
underlying model, statistical approach, and incorporation of
existing biological knowledge. However, the interpretation of
mutual exclusivity and co-occurrence patterns is an essential but

not straightforward step and in silico genetic interaction studies
often lack a careful investigation to find biological explanations of
their results25–27.

Here, we draw a comprehensive map of genetic interactions in
pediatric cancer. We present a robust pipeline that implements
two statistical tests to detect with high confidence significantly co-
occurring and mutually exclusive gene pairs. We apply the
pipeline on two pediatric cancer data sets, together consisting of
over 2500 tumors and 23 cancer types. We perform our analyses
both per cancer type and at a pan-cancer level while including the
complete set of mutated genes and not restricting to driver genes
only. We identify multiple co-occurring and mutually exclusive
candidate gene pairs in both data sets. We next investigate
potential biological explanations for the patterns of co-occurrence
and mutual exclusivity and provide estimates of their contribu-
tion to our results. Our findings show that tumor subtype,
pathway epistasis, and cooperation are the main biological
explanations underlying the results, as each comprises over a
quarter of the candidate genetic interactions found. Synthetic
lethality plays a much smaller role, as it explains only 7% of the
candidate interactions. Taken this outcome we conclude that
other explanations beyond synthetic lethality should be con-
sidered when interpreting the results of genetic interaction tests.

Results
A combined genomic data set covering common pediatric
cancers. To systematically detect genetic interactions in pediatric
cancer, a collection of tumor samples from two recently published
pediatric cancer data sets was used as a starting point6,7. The first
data set6, hereafter called DKFZ, consists of 961 tumors from 23
distinct cancer types (Fig. 1a). The second data set7, hereafter
called TARGET, contains 1699 tumors from six distinct cancer
types (Fig. 1b). The combined cohort covers major childhood
cancer types including central nervous system tumors, hemato-
logical tumors as well as solid tumors. While the DKFZ data set
has a focus on central nervous system tumors, the TARGET data
set has an emphasis on hematological tumors, thus com-
plementing each other in the extent to which individual tumor
types are covered.

Genetic alterations that were considered for the genetic
interaction tests include single nucleotide variants (SNVs) as
well as small insertions and deletions (indels). Only SNVs and
indels in coding regions that likely have a functional effect were
used for further analyses. Note that all genes that harbor one or
more mutations were included, not limiting the analysis to just
the candidate driver genes that are frequently mutated across
samples, earlier identified as SMGs6,7. The number of mutated
genes per individual tumor varies greatly across different
pediatric cancer types (Fig. 1c, d) as was also reported before6,7.
After filtering, a total of 2461 tumors remained in the combined
cohort (829 tumors from DKFZ; 1632 tumors from TARGET)
and these were used for investigating genetic interactions (see
Methods and Supplementary Table 1 for more details).

A robust statistical pipeline to detect high confidence genetic
interactions. To detect potential genetic interactions that play a
role in pediatric cancer, we developed a statistical pipeline to
detect pairs of altered genes that co-occur significantly more (or
less) often than expected given their individual frequencies
(Fig. 2, Methods). A pan-cancer analysis, as well as a test per
cancer type to detect cancer-type specific interactions on either
the DKFZ or TARGET data set, were performed. As each data set
was produced with its own technical and filtering procedures, we
applied the tests on each data set separately as merging both sets
would possibly lead to false positives. The resulting candidate
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Fig. 1 Number of samples and mutated genes per cancer type. a, b The number of samples per cancer type in the DKFZ (a) and TARGET (b) data sets
used in this study before sample filtering (e.g., removal of hypermutators and relapse tumors). c, d Number of mutated genes identified in each individual
tumor per cancer type for the DKFZ (c) and TARGET (d) data sets after sample filtering. Box-plots’ center line: median; box limits: upper and lower
quartiles; lower (higher) whisker: smallest (largests) observation greater (less) than or equal to lower (higher) box limit—(+) 1.5× interquartile range.
Points on the horizontal axis represent tumor samples without any mutated genes. Mutated genes are defined as genes that harbor at least one exonic
mutation with a likely functional consequence. Only SNVs and small indels were considered. Source data underlying Fig. 1 can be found in Supplementary
Data 2.
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gene pairs can point to possible genetic interactions between
genes that play an important role in pediatric cancer.

In short, the approach is based on two previously published
tests for genetic interactions in cancer. The first test, which we
will call hereafter the Permutation test23 starts with the creation
of a binary mutation matrix listing which genes are mutated in
which tumor samples. Next, for each gene pair, the number of
samples in which both genes are mutated are counted (co-
occurrence count). Extreme low values point to mutually
exclusive candidate gene pairs, while high counts suggest co-
occurring interactions. To infer the significance (P-values) of such
extreme counts, a null distribution is created by repeatedly
permuting the mutation matrix while keeping its margins fixed.
The second genetic interaction test, named WeSME, is based on

the same principle as the Permutation test but has implemented
several improvements that significantly speed up the testing
procedure while producing highly similar results28. P-values
resulting from both tests were corrected for multiple testing by
estimating an empirical false discovery rate (FDR). Gene pairs
scoring an FDR < 0.2 and P-values < 0.1 were considered
candidate genetic interactions. To produce high confidence
results each WeSME test was repeated ten times (using different
randomization seeds) and only those pairs that scored signifi-
cantly in at least nine out of ten tests were considered as high
confidence pairs.

A comprehensive map of potential genetic interactions in
pediatric cancer. Applying the Permutation and WeSME test on
each cancer type in the TARGET data set resulted in a total of 28
candidates divided over the three leukemia cancer types T-acute
lymphoblastic leukemia (ALL) (14), acute myeloid leukemia
(AML) (8), B-ALL (4), and Wilms tumor (WT) (2) (Table 1 and
Fig. 3). In the pan-cancer test, we detected eleven candidates, ten
of which were also discovered in the test per cancer type. Of all 29
unique candidate gene pairs, 9 were co-occurring, and 20 were
mutually exclusive. Of all candidates, 18 were detected in both the
Permutation as well as the WeSME test, 16 in WeSME only, and
five in the Permutation test only. Seventeen candidate interac-
tions were discovered earlier in the same data set7, and twelve
candidates had not been detected before. In the DKFZ cancer
types, we found a total of eight candidates, all in high grade
glioma (HGG) and Medulloblastoma (MB) subtypes, namely
HGG-K27M (4), HGG-other (1), MB-SHH (2), and MB-WNT
(1) (Table 1 and Fig. 3). Five of these candidates were also found
in the pan-cancer analysis, together with five pan-cancer-only
candidates. In total, we detected six co-occurring and seven
mutually exclusive candidates. Of all candidates, fifteen scored
significant in both the Permutation and WeSME test, two in
WeSME only and one exclusively in the Permutation test. Only
two candidates (ACVR1-HIST1H3B and ATRX-H3F3A) were
detected as potential genetic interactions previously in the same
data set6. Combining the results from both data sets leads to 42

Table 1 Number of candidate genetic interactions in both
data sets.

TARGET DKFZ

Number of candidates
All 39 18
Unique 29 13
Type of interaction
Co-occurring 9 6
Mutually exclusive 20 7
Which analysis
Per cancer type 28 8
PAN
(overlap cancer type)

11
(10)

10
(5)

Previously reported*

In original paper 17 2
Not reported before 12 11
Significant in which test
Both tests 18 15
WeSME only 16 2
Permutation test only 5 1

*Gene pairs that were tested as significantly co-occurring or mutually exclusive in the original
papers published accompanying the TARGET7 and DKFZ6 data sets.
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candidate genetic interactions, of which 27 mutually exclusive
and 15 co-occurring interactions (see Supplementary Data 1 for
more details).

Candidate genetic interactions are highly cancer type specific.
Most genetic interaction candidates that were detected involve
possible cancer driver genes, namely genes that were determined
to be significantly mutated genes (SMGs) in the previous
studies6,7. However, in six interactions discovered in this study,
non-SMGs were involved, and they are relatively often co-
occurring (five candidates) and pan-cancer specific (three can-
didates). Some of these interactions involve both SMGs and non-
SMGs such as for instance CTNNB1 (SMG)–EFCAB6 (non-
SMG) in WT and NOTCH1 (SMG)–MAGI1 (non-SMG) in
T-ALL. This suggests that the inclusion of the whole set of genes
instead of the set of SMGs can lead to new discoveries.

We find about two times more mutually exclusive than co-
occurring candidate interactions with our pipeline. The most
likely explanation is a technical one. If two mutated genes have a
cooperative relationship, but each has a low mutation frequency,
the chance of occurring together in the same tumor is even lower
and one needs large numbers of samples to have enough power to
discover such co-occurring relationships.

The fact that we find less candidate genetic interactions than
reported in the earlier two studies on the same data sets has a
technical ground as well. Our approach differs in several aspects
from the tests applied in the previous studies. First, we include all
mutated genes instead of focusing on SMGs only. This way we
will detect genetic interactions that involve non-driver genes, but
we also introduce more noise which decreases the power of the
test. Furthermore, as our pipeline is based on randomizations per
cancer type, instead of using, e.g., a Fisher Exact test, we control
for the underlying data structure and are more likely to avoid
false positives. Third, we applied thresholds on the minimum
number of co-occurrences to exclude low-confidence results.
Overall, this results in a more conservative estimate of the
number of candidate pairs that we predict compared to the
previous studies.

Interestingly, none of the discovered gene pairs were found in
more than one cancer type albeit several candidates were
confirmed in the pan-cancer analysis. Moreover, none of the

candidates were detected in the other data set. Even the genes
involved in significant gene pairs appear to be data set specific as
only TP53 is part of candidate interactions in both the TARGET
and DKFZ data set.

Sample size explains lack of overlap in candidates for cancer
types present in both data sets. Even though the six cancer types
of the TARGET data set are also present in the DKFZ data set,
none of the candidates found in the TARGET data set were
confirmed in the DKFZ analysis. The most probable explanation
would be the fact that the number of samples of these cancer
types is much lower in the DKFZ set compared to the TARGET
set. Indeed, one of the important requirements to detect genetic
interactions in silico, is to test large numbers of samples to have
sufficient statistical power. The number of samples is usually not
a limiting factor for adult cancers, but sample size can be an issue
in rare diseases such as pediatric cancers.

To investigate if sample size indeed is the underlying cause, we
performed a down-sampling analysis where we performed the
WeSME test on random subsamples of the four cancer types for
which we detected candidates in the TARGET data set, namely B-
ALL, T-ALL, AML, and Wilm’s tumor (WT). As shown in Fig. 4,
we observe a wide variation in the number of candidates,
especially when testing larger sample sizes (200–400). Repeating
the WeSME test ten times and only considering candidates that
score significantly in at least nine out of ten tests thus proves to be
a good strategy to detect high-confidence candidates. More
importantly, the number of discoveries drops dramatically with
sample sizes of 100 and below, which explains the lack of
candidates in these four cancer types in the DKFZ data set, as
their number of samples lies in the range between 11 and 51.

Tumor subtype rather than mutation load association under-
lies most T-ALL candidates. Recently it has been shown by Van
de Haar and colleagues that tumor subtype and tumor mutation
load can be confounding factors in tests to detect genetic inter-
actions in cancer data sets27. When the mutation frequency of a
gene is strongly associated with the tumor mutation load of a
sample, such a gene will likely turn up as a mutually exclusive
candidate with mutated genes that have a negative association
with tumor mutation load. We investigated whether tumor
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mutation load can explain part of our candidate genetic inter-
action pairs. We calculated the tumor mutation load per sample
and the mutation load association (MLA27) of each candidate
gene, where MLA is an indication of the association between the
mutation load and likelihood of being mutated (Methods).
Compared to the Van de Haar study, which found MLA scores
between minus four and ten with a median of five, we find in
general much lower MLA values per gene (Supplementary Figs. 1
and 2), indicating that overall there is no strong correlation with
tumor mutation load in pediatric cancer. This most likely can be
explained by the much smaller number of passenger mutations in
pediatric cancers.

Next, we defined as “suspect” all candidate mutually exclusive
gene pairs with an MLA difference larger than three and at least
one gene having an MLA larger than three or with both genes
having an MLA larger than three in case of co-occurrence. We
found seven of such suspect candidates, all belonging to T-ALL
(Fig. 5, Supplementary Table 2, Supplementary Fig. 3). Most
T-ALL tumors can be assigned to different subtypes, character-
ized by mutually exclusive structural aberrations and subtype-
specific expression profiles29–31. More specifically, T-ALL sub-
types reflect the maturation state of the T-cell progenitor from
which the tumor developed. Since we do have subtype annotation
available for almost all available T-ALL samples from the
TARGET data set (“Methods”), we examined whether there is
an association between tumor subtype and tumor mutation load.
Indeed, there is a clear difference between subtypes, with a
tendency of tumor types associated with primitive T-cell
progenitors carrying more mutations than subtypes associated

with more differentiated precursors (Fig. 5). Four of the seven
suspects mutually exclusive candidate T-ALL gene pairs can likely
be explained by the fact that mutated genes in these pairs are
enriched in different subtypes with different mutation loads
(Supplementary Table 2). The remaining three gene pairs involve
one of the commonly mutated genes NOTCH1 and FBXW7 and
could be false positives (Supplementary Fig. 3), but are likely the
result of other biological processes.

Four biological explanations underly most candidate gene
pairs. Next, we extensively investigated for each of the candidate
genetic interactions which underlying biology could explain their
mutually exclusive or co-occurring relationship. This entailed
consulting experts in the field of the corresponding cancer types
as well as an extensive literature search. We considered the
function of the individual genes, known relationships between the
found gene pairs, and their role in cancer, with specific focus on
the cancer type in which the candidate was detected. In addition,
we developed a Candidate Reporting Tool, which is an R shiny
web application (https://gi-analysis.kemmerenlab.eu/) to aid in
the inspection of mutational information on each candidate gene
pair, producing multiple visualizations together with a table list-
ing the biological or pathogenic consequence of each individual
mutation in the corresponding genes. We have listed all candi-
dates in Table 2 together with the most likely biological expla-
nation for the detected mutual exclusivity or co-occurrence.
Supplementary Note 1 contains detailed explanations and litera-
ture used for all candidates.

Fig. 5 Tumor mutation load is lower in more mature T-ALL subtypes. Sample tumor mutation load for each T-all subtype, with subtypes ordered (left to
right) from early to late T-cell progenitor stage. Genes that were part of a candidate genetic interaction and that were significantly associated with a T-ALL
subtype are depicted in the figure with their corresponding subtype and their MLA score (secondary vertical axis). Subtype ordering, coloring and
assignment to genes were reproduced from Fig. 3 in ref. 31. Edges between genes represent “suspect” candidate genetic interactions found in T-ALL,
defined as mutually exclusive gene pairs (shown in red) with one gene having an MLA score > 3 and together having a difference in MLA score > 3 or a co-
occurring pair (shown in blue) with both genes having an MLA > 3. Source data underlying Fig. 5 can be found in Supplementary Data 2.
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As indicated before, many of the candidate gene pairs have a
co-occurring or mutually exclusive relationship because the
cancer type in which they were detected actually consists of
multiple subtypes. Apart from the T-all examples described
above, this is for example the case for the high-grade glioma
K27M group. The mutually exclusive candidate gene-pair
HIST1H3B-H3F3A in this group can be explained by the fact
that patients with this particular cancer type can be divided into
two subgroups, defined by K27M mutations in either the
HIST1H3B or H3F3A genes that code for histones H3.1 and
H3.3, respectively32–34. Typically, patients in the H3.1 subgroup
also carry ACVR1 mutations, explaining the ACVR1-HIST1H3B
co-occurrence and ACVR1-H3F3A mutual exclusivity relation-
ships. Similarly, TP53 is almost exclusively mutated in the H3.3
group, again explaining mutually exclusivity between TP53 and
ACVR1. All these candidates, together with the mutually exclusive
TP53-HIST1H3B pair, were also found in the PAN cancer test,

due to this strong signal in HGG-K27M, rather than similar
patterns in other cancer types.

Other candidate gene pairs can be explained by pathway
epistasis (or functional redundancy), the phenomenon in which
the mutation of one gene will have the same effect on the
activation or inactivation of a pathway as mutating another
(downstream) gene. In such cases, mutating either gene will result
in the same effect, and therefore one mutation is enough for the
tumor cell to gain a selective advantage. For example, mutations
in PTCH1 and SMO were found to be mutually exclusive in the
MB SHH cancer type. Both genes are part of the Sonic Hedgehog
(Shh) pathway, which is assumed to have a tumor driver role in
this type of MB35. PTCH1 normally inhibits the activation of
SMO, but the presence of Hedgehog (Shh) leads to suppression of
PTCH1 and consecutive activation of the Shh pathway by SMO.
It has been shown that SMO inhibitors are most effective in MB-
SHH patients with SMO or PTCH1 mutations36, suggesting that

Table 2 Candidate genetic interactions and their underlying explanation.

Cancer type Gene1 Gene2 co/me Most likely explanation Reference(s)

DKFZ
HGG-K27M ACVR1 HIST1H3B co * Cooperation 49

ACVR1 H3F3A me * Subtype 32,33

ACVR1 TP53 me *

H3F3A HIST1H3B me *

HGG-other ATRX H3F3A co * Cooperation 39,50,51

MB-SHH KMT2D PTCH1 me Pathway epistasis 52,53

PTCH1 SMO me Pathway epistasis 36

MB-WNT DDX3X KMT2D co Cooperation 54

PAN HLA-A PCDHA8 co False positives
NCAM1 PCDHA8 co
PCDHA8 ZNF721 co
HIST1H3B TP53 me Subtype 32,33

PIK3CA TP53 me Pathway epistasis 55

TARGET
AML CEBPA CSF3R co Cooperation 56,57

CEBPA WT1 co Cooperation 58,59

FLT3 IDH2 co Cooperation 60–62

IDH2 NPM1 co Cooperation 61

FLT3 KIT me Pathway epistasis 63

KIT NRAS me Pathway epistasis 37

KIT WT1 me Synth lethality 37

NRAS WT1 me Synth lethality 37,64

B-ALL PXDN ZNF582 co * False positive
CRLF2 NRAS me Subtype 65

FLT3 KRAS me * Pathway epistasis 63,66,67

KRAS TP53 me * Subtype 65

T-ALL JAK1 JAK3 co * Cooperation 68

JAK3 STAT5B co Cooperation 69,70

NRAS WT1 co Cooperation 71

DNM2 USP7 me * Subtype 31

FBXW7 JAK3 me * Pathway epistasis 29,72,73

FBXW7 PTEN me * Pathway epistasis 29,72

JAK3 PTEN me Pathway epistasis 73

MAGI1 NOTCH1 me Pathway epistasis 72,74

NOTCH1 USP7 me Synthetic lethality 75

PHF6 PIK3R1 me Subtype 30,31

PHF6 PTEN me * Subtype 30,31

PHF6 USP7 me * Subtype 31

PTEN WT1 me * Pathway epistasis 30,71,73

USP7 WT1 me Subtype 31

WT CTNNB1 EFCAB6 co Cooperation 76

DROSHA TP53 me Subtype 77

PAN FLT3 JAK2 me Pathway epistasis 65,78,79

co co-occurrence, me mutual exclusivity.
*Also significant in PAN cancer test.
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SMO mutations found in MB-SHH samples do not have a
knockout effect on the gene, but more likely release or circumvent
its inhibition by PTCH1. This likely explains the mutually
exclusive relationship found between altered PTCH1 and SMO
genes, as both have the same effect and therefore are redundant
mutations.

Mutual exclusivity could also point to a possible synthetic
lethal relationship between genes, where mutating either of the
two genes has no effect on cell viability but mutating both genes
will result in cell death. We found several candidate interactions
that could be driven by synthetic lethality, although no previous
studies were found that confirm such a relationship. One such
gene pair is NRAS-WT1, found to be mutually exclusive in AML.
NRAS is, together with KRAS, part of the GTPase family of genes
that are often activated in cancer. It has been shown that in
KRAS-dependent tumors, inactivation of WT1 will reduce tumor
formation37. If this effect also applies to NRAS mutated tumors,
NRAS-WT1 could be a synthetically lethal gene pair. RAS genes
act downstream of KIT in the RTK signaling pathway, therefore
the synthetically lethal relationship between KRAS/NRAS and
WT1 might also translate to the mutually exclusive KIT-WT1
candidate in AML. Interestingly, the gene-pair NRAS-WT1 is a
co-occurring candidate in T-ALL. WT1 is known to play different
roles in cancer, acting both as a tumor suppressor and oncogene,
where its function often depends on which isoform is expressed38.
The apparent adverse interaction between NRAS and WT1 in
AML and T-ALL might be due to these different roles of WT1 in
cancer development and warrants further investigation.

Candidate co-occurring gene pairs possibly point to a
cooperative relationship, in which the mutation in one gene
reinforces the effect of mutating the other gene. An example of
such a gene pair is ATRX-H3F3A in the HGG Other group. The
H3F3A mutations in this group are not K27M, but G34R/V H3
mutations, another recurrent H3F3A alteration in HGGs. ATRX
regulates chromatin remodeling and transcription and plays an
important role in maintaining genome stability by recruiting H3.3
at telomeres and pericentric heterochromatin. It has been
suggested that the loss of ATRX could prevent mutant H3.3
from altering transcription of specific oncogenes39, which would
suggest a co-operative role of both altered genes in tumorigenesis.

Considering the extensive literature search performed for all
candidate genetic interactions from both data sets (Table 2,
Supplementary Note 1), we found that cancer subtype (12 gene
pairs) is the most likely underlying cause in about 44% of the
mutually exclusive candidates and 29% of all candidates. Pathway
epistasis (12 pairs) accounts for another 44% of the mutually
exclusive candidates (29% of all candidates) and 11% (3 pairs)
may be caused by synthetic lethality (7% of all candidates). About
73% of co-occurrences (11 pairs, 26% of all candidates) could be
attributed to co-operation while the remaining 27% (4 pairs, 10%
of all candidates) are likely false positives.

Discussion
Here, we built a map of genetic interactions in childhood cancer.
We applied a robust statistical pipeline and detected 27 mutually
exclusive and 15 co-occurring altered gene pairs across two
pediatric pan cancer data sets. As we rely on the frequency of
mutated genes occurring in individual cancer types, underlying
phenomena such as cancer heterogeneity, low sample numbers or
low mutational burden limit the power to detect genetic inter-
actions. This might in part also explain the relatively low number
of co-occurrences and mutually exclusive gene pairs detected
here. We implemented two related methods for genetic interac-
tion detection: the permutation test and the WeSME test. Most of
the candidate gene pairs were detected with both tests, confirming

that the faster WeSME test is a good alternative for the permu-
tation test. Indeed, we find a strong correlation between the P-
values of all tested gene pairs that were produced by both tests
(Pearson’s r= 0.97, P-value < 2.2e−16). Note however that the
WeSME test has a slight tendency toward lower mutual exclu-
sivity P-values, while the Permutation test yields lower co-
occurrence P-values (Supplementary Fig. 4) as was shown earlier
by Kim et al.28. In addition, a large majority (77%) of the cancer
type-specific candidate interactions could be reproduced with
DISCOVER, an alternative genetic interaction test that was
shown to be more sensitive than various other methods while
controlling for false positives26. Out of 36 cancer type specific
candidates, 26 scored an FDR < 20% in DISCOVER with two
additional pairs scoring an FDR < 25% (Supplementary Data 1).
Note that DISCOVER only allows for cancer type-specific testing,
and therefore we could not validate our PAN cancer results (six
candidate pairs) with this method.

It has been previously shown that genetic interactions are tissue
and cancer type specific23. Indeed, we confirm this finding in our
current study as no candidate genetic interaction was detected in
more than one cancer type. This is partly because apart from a
few commonly mutated genes in various cancers, most cancer
types are characterized by recurring alterations in specific genes,
showing that the process of oncogenesis is unique within each
tumor (sub) type. The sensitivity to certain genetic hits at a
specific maturation state of the cell of origin is a main driver
underlying this process. As an additional consequence, we have
more power to find genetic interactions between these frequently
mutated genes, compared to rarely mutated genes.

Although all cancer types in the TARGET data set are also part
of the DKFZ set, we did not reproduce the TARGET candidates
when testing the same cancer types in DKFZ. We showed with
downsampling that the most likely explanation for this lack of
overlap is the reduced samples size for these cancer types in
DKFZ. This shows the limited power of the current study with
few samples for many of the cancer types and stresses the
importance of having a larger data set across all cancer types to
detect genetic interactions. Especially in pediatric cancer this
poses a challenge as most cancer types are rare and data sets
produced within one institute are relatively small. Current
initiatives to collaborate between institutes and countries to build
large (pediatric) cancer resources consisting of combined geno-
mic data sets is a key step towards a solution. Examples of such
collaborations are the GENIE project40, the Children’s Brain
Tumor Tissue Consortium41 and St. Jude Cloud42. However,
merging data sets imposes new challenges, since the application
of different protocols, sequencing techniques, and quality filtering
methods will introduce confounding factors leading to batch
effects and consequently false positives. Future genetic interaction
tests applied on merged data sets should therefore take the
underlying heterogeneity of these different sources into account
to overcome the limitations of using tests on smaller individual
data sets as applied here. This could be performed by adjusting
the approach presented here for the PAN cancer test, by counting
co-occurrences and mutual exclusivity over the whole set, while
applying the randomizations within cancer types. This approach
could be easily translated to a framework in which randomiza-
tions take place among samples from the same source, while
summary statistics are collected over the combined data set.

For practical utility in mechanism-of-action based therapies as
well as for understanding the biology driving cancer progression,
we need a much better understanding of the causes underlying
genetic interactions. Here, we have only taken a first step towards
a thorough understanding of the underlying biology by grouping
the potential genetic interactions pairs in different biological
explanations based on existing literature. No functional validation
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has however been performed in this study, which is key to
decisively determine the biological explanation for many of the
pairs found. The biological explanations indicated here should
therefore all be considered as highly likely but warrant further
follow-up experimentation to confirm them. Mutual exclusivity
found between altered gene pairs is often the result of mutated
genes being specific for different cancer subtypes. For the same
reason co-occurrence will be detected between mutated genes that
are enriched in certain cancer subtypes. This underscores the
importance to distinguish between subtypes in the clinic because
it is likely that they will respond differently to the same treatment.
Co-occurrence could also indicate possible cooperation between
both genes in cancer development. Finding such cooperating
pairs will give us more insight in the pathways involved in
tumorigenesis. Pathway epistasis is another source of mutual
exclusivity, as mutating genes that are part of the same pathway
may have the same downstream effect, and as a result having only
one gene mutated is sufficient to have a beneficial effect for the
tumor. Mutual exclusivity or co-occurrence could also occur as a
result of MLA bias, leading to false-positive candidates. Indeed,
we found several mutually exclusive candidate gene pairs in
T-ALL with large MLA differences and one co-occurring pair of
high MLA genes. Most of these “suspect” gene pairs are however
more likely explained by the fact that the genes involved are
associated with different subtypes. Interestingly, we also showed
that in T-ALL mutation load decreases with the maturation state
of the tumor cell. Synthetic lethality is another explanation for
mutual exclusivity. Synthetic lethality is of particular importance
for cancer research because it can be applied as a strategy in
targeted cancer treatment, where pharmaceutical inhibition of
one gene combined with a mutation in its synthetic lethal partner
gene in the tumor induces cancer cell death, while sparing healthy
cells. An example of this is the FDA approved application of
PARP inhibitors to treat breast cancer patients with a BRCA1 or
BRCA2 mutation8. (Note, this gene pair would likely not have
been detected with our method since it is based on induced
essentiality: PARP mutations alone are not beneficial for the
tumor and only become essential after mutation of BRCA1/2).
Progress in other areas is however limited, often due to a poor
understanding of the underlying mechanism, warranting further
efforts to invest more in not only finding genetic interactions, but
also understanding the biology behind them43.

Taken together, we show in our first map of genetic interac-
tions in childhood cancer that cancer subtype, pathway epistasis,
and cooperation are the main underlying biological explanations
for our candidates, likely contributing each around 26–29% of all
gene pairs. Only in 7% of the candidate gene pairs, synthetic
lethality is the most likely explanation, while another 10% were
most likely false positives due to technical artifacts. These per-
centages differ from expectations in most genetic interaction tests.
Most tests aim to detect patterns of pathway epistasis or synthetic
lethality in cancer but overlook the fact that other explanations
play at least an equally important role. Studies into genetic
interactions in cancer should therefore not stop at producing lists
of candidate gene pairs but need to investigate what the most
likely explanations are before drawing conclusions. The map also
makes clear that these findings are only the first steps towards
exploring the full spectrum of genetic interactions in pediatric
cancer and much more data and functional validation is needed
to understand the complete picture.

Methods
Data collection and processing. To systematically detect genetic interactions in
pediatric cancers, a collection of tumor samples from two recently published
pediatric cancer studies was used in our pipeline. One study6 was carried out by the
German Cancer Research Center (Deutsche Krebsforschungszentrum, DKFZ)

while the second study is part of the Therapeutically Applicable Research to
Generate Effective Treatments (TARGET) initiative7. Informed consent has been
obtained for all subjects involved in both original studies at the time of sample
collection through the corresponding informed consent procedures and protocols.
Approval for use of the subject’s data within the context of this study has been
granted by the Data Access Committees of the TARGET and DKFZ datasets.

DKFZ data set. The DKFZ cohort covers 24 major childhood cancer types with an
emphasis on central nervous system tumors (including atypical teratoid/rhabdoid
tumors; embryonal tumors with multilayered rosettes; the four MB groups WNT
(MB-WNT), SSH (MB-SSH), Group3 (MB-GR3) and Group4 (MB-GR4), pilocytic
astrocytoma; high-grade glioma with and without histone 3 K27M mutations
(HGG-K27M, HGG-other); infratentorial and supratentorial ependymoma (EPD-
IT, EPD-ST)), hematological tumors (AML; B-cell ALL with or without hypodi-
ploidy (B-ALL-HYPO, B-ALL-other); T-cell ALL (T-ALL); Burkitt’s lymphoma) as
well as solid tumors (neuroblastoma (NB); WT, osteosarcoma (OS); Ewing’s sar-
coma (EWS); hepatoblastoma (HB); adrenocortical carcinoma (ACT); rhabdo-
myosarcoma and RB). Note that to be able to compare results from both DKFZ and
TARGET data sets, we merged B-ALL-HYPO and B-ALL-other samples into one
B-ALL group.

The data set consists of 961 tumors (from 914 patients) sequenced with both
paired and single end Illumina-based technology, including whole-genome
sequences (WGS) and whole-exome sequences (WES). To avoid false positives, 82
relapse samples were excluded, as well as seven hypermutator samples (>ten coding
mutations per Mb, see paragraph Hypermutator filtering) from the HGG-other
cancer type (ICGC_GBM15, ICGC_GBM56, ICGC_GBM6, ICGC_GBM67,
SJHGG030, SJHGG034, SJHGG111), and ten single-end sequenced samples
(MB_Exm250, MB_Exm528, MB_Exm10, MB_Exm564, MB_Exm1001,
MB_Exm1017, MB_Exm17, MB_Exm516, MB_Exm575, and MB_Exm879).

Mutation data are available and can be downloaded from publicly available data
portals such as http://pedpancan.com, but are limited to frequently mutated genes.
In this study, we aim to include all mutated genes and therefore use the high
confident, but unfiltered results of the variant calling procedure described in
Gröbner et al.6. In summary, raw FASTQ files were processed by the standardized
alignment and variant calling pipeline developed by and applied in the ICGC Pan-
Cancer project (https://github.com/ICGC-TCGA-PanCancer). The human genome
assembly hs37d5 (ncbi.nlm.nih.gov/assembly/2758) was used as a reference
genome and GENCODE19 (gencodegenes.org/releases/19.html) for gene
annotation. Germline variants were determined based on their presence in the
matched control tissue.

In cases where mutations were annotated to multiple genes, one of these genes
was selected using a voting system based on annotation fields derived from
Gencode version 19 (v19, used by DKFZ in their variant calling pipeline) and
Gencode version 27 (v27, the most recent version at the time of doing the analyses).
In this voting system, the first ranking gene was chosen after sorting the genes on
the following properties: Gencode v19 status (KNOWN, NOVEL, and
PUTATIVE), Gencode v19 type (protein-coding, other), Gencode v27 type
(protein-coding, other), the total number of exonic alterations for this gene (higher
numbers ranking higher), the total number of exonic alterations in single genes (so
alterations not overlapping other genes ranking higher) and gene name not
containing “-” (which usually indicates a read-through gene).

Only somatic SNVs and small insertions and deletions (indels) were selected for
this study and only those located in exonic regions of protein-coding genes that
might have a functional consequence (frameshift, non-frameshift, non-
synonymous, stopgain, and stoploss) according to ANNOVAR annotation were
included. In total, 9922 SNVs and 1236 indels remained for downstream analysis.
Genes with at least one of the abovementioned mutations were considered as
“mutated genes” and were kept for each sample. The final DKFZ data set that was
used to identify genetic interactions includes 829 tumors, comprising 523 WGS and
306 WES samples. See Supplementary Table 1 for an overview of the consequences
of each filtering step on tumor numbers in both data sets.

TARGET data set. The TARGET data set comprises of 1699 primary tumors, of
which 1648 tumors with WGS or WES data (from 655 and 1115 samples
respectively) were available for download. Three tumors (10-PARTJJ, 10-PAN-
WIM, and 30-PARJXH) were excluded as they could not be linked with corre-
sponding metadata files. The remaining data set consists of six cancer types with
most samples coming from hematological tumors (AML, 208); B-ALL, 681; T-ALL,
267) as well as solid tumors (NB, 286); OS, 88; WT, 115). MAF files with annotated
somatic SNVs and indels for these cancer types were downloaded on March 21,
2018 (https://ocg.cancer.gov/programs/target/data-matrix). The variants listed in
these files are the result of an initial variant calling pipeline using whole-exome
sequencing and Complete Genomics Inc. whole genome sequencing technology
followed by thorough filtering as described in Ma et al.7.

Applying the same criteria as with the DKFZ set for hypermutators, one B-ALL
tumor (10-PARBPX) and one NB tumor (30-PAPPKJ) were excluded from further
analyses. From the remaining 1643 tumors a total of 19,865 SNVs and 2272 indels
located in exons and likely having a functional effect (annotated as
Missense_Mutation, Nonsense_Mutation, missense, nonsense, Frame_Shift_Del,
Frame_Shift_Ins, In_Frame_Del, In_Frame_Ins, frameshift, proteinDel,
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proteinIns) were used to detect genetic interactions. Eleven tumors did not contain
such functional alterations, resulting in a total of 1632 tumors (649 WGS samples
and 1105 WES samples) that were included in downstream analyses.

Hypermutator filtering. Hypermutators are usually defined as tumors with more
than ten coding mutations per Mb, but there is currently no consensus about what
type of mutations and which genomic region should be included to define a
hypermutator44. In this study, where we test two data sets from different sources,
we decided to apply the threshold of ten mutations per Mb on a strictly defined
coding region of known length and counting the number of mutations in this
region including all SNVs (missense, nonsense, and silent) and all indels. We used
the GeneBase tool45 to extract the non-redundant length of the coding part of
exons in a set of protein-coding genes from the NCBI database where the gene and
its transcripts have status REVIEWED/VALIDATED. The exact non-redundant
length of the coding part of these 18,255 genes is 23,698,355 bp (23.7 Mb).
Assuming that the sequencing reads in our data sets have at least 95% sufficient
coverage in this region, so having 22.5 Mb or more covered, each sample with more
than 225 coding mutations in this set of genes will be considered a hypermutator.

Genetic interaction analyses, statistics, and reproducibility
Permutation test. To detect significant cases of co-occurrence and mutual exclu-
sivity, we followed a permutation approach similar as described in23. First, for each
cancer type, we constructed binary mutation matrices, recording per sample if it
has one or more mutations (SNVs or indels) in a certain gene (Supplementary
Fig. 5). Genes with only one mutation in a mutation matrix were excluded to
reduce computational time. For each gene pair we counted the number of co-
occurrences, that is the number of samples that have both genes mutated. Secondly,
we created a null distribution of co-occurrence counts using the Permatswap
function in the vegan R library (version 2.5–4, default parameters, except for
mtype= “prab”) to generate a series of permuted matrices (N= 1 × 106), while
keeping their margins fixed. In other words, with each permutation, the total
number of mutated genes per gene and per sample still match with the original
mutation matrix. This way, the null distribution reflects the underlying hetero-
geneity (variability in gene- and tumor-level mutation rates) of the data set. Next,
an empirical P-value for co-occurrence (Pco) was calculated for each pair of
mutated genes by taking the proportion of permutations in which the co-
occurrence count was equal to or higher than the observed count. To be more
specific, the Pco value for a gene pair (g1,g2) was calculated as follows:

Pcoðg1; g2Þ ¼
1þ ∑

N

i¼1
coi g1; g2

� �
≥ coobsðg1; g2Þ

� �

1þ N

ð1Þ

where N is the number of permutations and coobsðg1; g2Þ and coi g1; g2
� �

represent
the co-occurrence count for genes g1 and g2 in the observed and ith permuted
matrix respectively. Note that we add a one in both the numerator and denomi-
nator to have a good estimator of the P-value and to avoid P-values of zero46. In a
similar fashion, a P-value for mutual exclusivity (Pme) was calculated as the pro-
portion of permutations in which the co-occurrence count was equal to or lower
than the observed data.

As the empirical P-values were not uniformly distributed and showed a bias
towards one, we could not use standard FDR calculations to correct for multiple
hypothesis testing. Instead, we estimated the FDR empirically by creating a P-value
null distribution. We randomly selected 100 matrices from the permuted matrices
and performed the genetic interaction permutation test on each matrix to generate
a random set of P-values, Snull (Fig detailed workflow test). For each observed P-
value P* (computed in the previous step), the FDR was estimated as follows (if all
hypotheses with a P-value ≤ P* would be rejected):

FDR P*
� �

¼ VðP*Þ
RðP*Þ ð2Þ

Where VðP*Þ is the estimated number of false positives and RðP*Þ is the total
number of rejected null hypotheses. V P*

� �
was estimated from the proportion of

P-values ≤ P* in Snull multiplied by the total number of observed P-values. Finally,
a Q-value was determined by taking the lowest estimated FDR among all observed
P-values ≥ P* . Gene pairs were considered as significant if they scored a Q-
value < 0.2 and a P-value < 0.1 and had a minimum co-occurrence count of three
when testing for co-occurring gene pairs.

In the pan-cancer analysis, we performed the same test on a mutation matrix
constructed with all cancer types combined, but permutations were carried out for
each cancer type separately to control for any biases in mutation frequencies.

WeSME test. As the matrix permutation approach is rather time-consuming, we
also applied a faster genetic interaction test and compared the results of both tests
to infer their overlap. This test, called WeSME, starts similar to the permutation
approach with a gene-sample mutation matrix from which for each gene pair the
number of mutual exclusive samples is counted28. Instead of permuting this matrix
many times to compute a P-value, WeSME uses a weighted sampling approach
based on the mutation rate of the samples. The method also reduces computation

time by restricting the number of resamplings as it starts with a small null dis-
tribution and only increases the number of resamplings (to a maximum of
N= 10,000) for candidate gene pairs, namely those that have a low P-value esti-
mated from the initial null distribution.

To infer the FDR, a similar empirical FDR approach is used as with the matrix
permutation method, by permuting the mutation matrix 300 times and applying
the WeSME test on the permuted matrices to create a P-value null distribution.
WeSME places genes in either of two mutation rate bins “high” and “low” (with 2%
of the samples being mutated as threshold) and compares the observed P-values
with a P-value distribution of gene pairs from similar bins. The null P-values are
thus split into three distributions representing the combinations of mutation rate
bins ([low,low], [low, high] and [high,high]). Since null P-values are assigned to
three different bins, 300 permutations were performed instead of 100 as was done
in the permutation test. The WeSME Python scripts were downloaded from
https://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/index.cgi#wesme and
modified to make it suitable for the current study. In particular, adaptions to the
original scripts were made to run a pan-cancer analysis by pooling data from
multiple cancer types, counting mutual exclusivity over the pooled set, but
performing resampling within each cancer type. To reduce computational time in
the PAN cancer test, gene pairs were only tested for mutual exclusivity if the total
number of mutually exclusive samples was at least three. With the co-occurrence
test, at least one sample needed to have a co-occurring mutated gene pair. In
contrast to the original WeSME code, the P-values of all gene pairs were used for
FDR calculations instead of only keeping gene pairs with P-values below 0.1. As in
the Permutation test, only gene pairs with an empirical FDR < 0.2, a P-value < 0.1,
and a minimum co-occurrence count of three (only when testing for co-occurring
gene pairs) were considered as significant candidates for further analysis.

To avoid potential biases due to this sampling-based method, we repeated the
analyses ten times, each time using another randomization seed, and considered
only as high confidence candidates those gene pairs that scored significant in at
least nine out of ten tests. Note that the Permutation Test is also based on
resampling but was only run once because of its higher computation time.

Mutation load analyses. For each gene that was part of a candidate gene pair, the
MLA was calculated following27. In short, we used the R function glm from the
stats package to run a logistic regression of mutation frequency on mutation load
and calculated the MLA score by dividing the regression coefficient by the standard
error. Both the mutation frequency (of a gene) and mutation load (of a sample)
were calculated from the column and row sums respectively of the sample-gene
mutation matrix used in our genetic interaction test. All candidate gene pairs with
an MLA difference larger than three and at least one gene with an MLA larger than
three were marked as “suspect”.

T-ALL subtype annotation. T-ALL subtype annotations were downloaded from
the St. Jude’s PeCan Portal (https://pecan.stjude.cloud/proteinpaint/study/target-
tall) which displays mutation data of T-ALL tumors in a large genomics study31. Of
all 266 T-ALL samples used in our data set, we could assign 263 tumors a subtype
category (Ordered by maturation stage: LMO2/LYL1: 18, HOXA: 33, TLX3: 46,
TLX1: 26, NKX2-1: 14, LMO1/2: 10, TAL1: 86, TAL2: 8, Unknown: 22). We
removed the three unassigned tumors, and those from the ‘unknown’ category
before generating Fig. 5.

Candidate Reporting web application. We developed an R (v3.5.2) web appli-
cation with Shiny (v1.5.0) to provide visualizations and additional up-to-date
variant annotation of genetic interaction candidates. We first ran the Ensembl
Variant Effect Predictor (VEP)47 GRCh37 (v101) on the original set of mutations
to predict the genes, transcripts, protein sequences, and their consequences. We
restricted results by selecting VEP fields indicating the impact of the variant (e.g.,
Consequence and Condel) and by choosing one consequence per variant, which
translates to the top-ranking transcript. In addition, fields indicating the cancer
type and the source data set were added to the VEP output and the final table was
translated to a Mutation Annotation Format (MAF) object. Maftools48 (v1.8.10)
was used to create lollipop plots, oncoplots, and data summary plots from subsets
of the MAF object by filtering on the cancer type and data set. One-letter code
amino acid changes for the lollipop plots were derived from the protein sequence in
the HGVS recommended format (HGVSp field of VEP). The Candidate Reporting
web application can be found on https://gi-analysis.kemmerenlab.eu/.

After running VEP annotation for the reporting tool, we noticed minor changes
in gene annotation in candidate gene pairs compared to the original mutation files.
Six patients (three in T-ALL, one in AML, and one in B-ALL) had mutations
previously annotated in CNKSR3, while these were actually mutations in the gene
MAGI1. This affected all (three) T-ALL patients that were involved in the mutually
exclusive candidate CNKSR3-NOTCH1, and we, therefore, changed this candidate
to MAGI1-NOTCH1. Furthermore, we found three patients (one in T-ALL and
two in NBL) with mutations previously annotated in PTEN where these should be
mutations in TEP1. PTEN is part of several T-ALL candidate genetic interactions.
We, therefore, repeated the WeSME test in T-ALL (N= 20 runs), changing this one
patient mutation from PTEN to TEP1. Some interactions (NOTCH1-USP7, PHGS-
PIK3R1, PHF6-PTEN, and USP7-WT1) scored lower with significance in 17 out of
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20 runs (compared to significance in 9 or 10 out of 10 runs previously). As these
are still high confidence candidates, we kept them in our final result set.

Data availability
The somatic mutation data that support our findings are available via the National
Cancer Institute TARGET Data Matrix (https://ocg.cancer.gov/programs/target/data-
matrix) and the R2 DKFZ Pediatric Cancer Data Portal (https://hgserver1.amc.nl/cgi-
bin/r2/main.cgi?option=about_dscope). We further refer to the original studies6,7 for
more information on the data availability of the raw data files. Source data underlying
main figures can be found in Supplementary Data 1–2. Processed data files that served as
input for our genetic interaction pipeline (gene–sample mutation matrices) are available
upon request.

Code availability
Figure 3 was created with the network visualization software Cytoscape (version 3.7.1).
Cancer type-specific candidates were validated with the R version of the DISCOVER
method (version 0.9.2) (https://ccb.nki.nl/software/discover/). R code to run the
Permutation test and the modified WeSME Python scripts are available on the Github
repository https://github.com/princessmaximacenter/GI_InteractionTests. The code for
the R Shiny Candidate Reporting tool is available on https://github.com/
princessmaximacenter/GI_ReportingTool.
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