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Genetic variants associated with platelet count are
predictive of human disease and physiological
markers
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Platelets play an important role in hemostasis and other aspects of vascular biology. We

conducted a meta-analysis of platelet count GWAS using data on 536,974 Europeans and

identified 577 independent associations. To search for mechanisms through which these

variants affect platelets, we applied cis-expression quantitative trait locus, DEPICT and IPA

analyses and assessed genetic sharing between platelet count and various traits using

polygenic risk scoring. We found genetic sharing between platelet count and counts of other

blood cells (except red blood cells), in addition to several other quantitative traits, including

markers of cardiovascular, liver and kidney functions, height, and weight. Platelet count

polygenic risk score was predictive of myeloproliferative neoplasms, rheumatoid arthritis,

ankylosing spondylitis, hypertension, and benign prostate hyperplasia. Taken together, these

results advance understanding of diverse aspects of platelet biology and how they affect

biological processes in health and disease.
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P latelets are small anucleate cell fragments generated from
megakaryocytes in the bone marrow in the process of
thrombopoiesis and released through proplatelets into the

bloodstream, where they play a major role in primary hemostasis
and numerous other aspects of vascular biology and
homeostasis1. Platelet count (PLT) in humans ranges between
150,000 and 400,000/µl and is regulated through a balance
between thrombopoiesis and platelet turnover2,3. PLT deviating
from the normal range, either a decrease (thrombocytopenia) or
an increase (thrombocythemia), may be indicative of a disease
state2.

PLT is highly heritable, with reported heritability estimates
ranging from 54 to 87%, suggesting an essential role of genetics in
shaping this trait2. Several genes affecting PLT have been iden-
tified through studies of congenital platelet-related disorders4–6.
Further discoveries have been made through genome-wide asso-
ciation studies (GWAS)7–15, yielding 1,810 variants that associate
with PLT with P value ≤ 5 × 10−8 (GWAS catalog16, last access
May 26, 2021).

To explore PLT and its connections to diseases and other traits,
we conducted a meta-GWAS analysis of PLT using data from
536,974 Europeans from Iceland and the UK and identified 577
independent signals associated with PLT. In an attempt to
determine how these variants affect PLT, we performed a search
for candidate causal genes and pathways, employing coding
variant and cis-expression quantitative trait locus (cis-eQTL)
analyses. In addition, we analyzed our data with Data-driven
Expression Prioritized Integration for Complex Traits
(DEPICT)17 and employed the Ingenuity Pathway Analysis (IPA)
(QIAGEN Inc., https://www.qiagenbioinformatics.com/products/
ingenuitypathway-analysis)18. We also assessed genetic sharing
by PLT and various diseases and other traits using a PLT poly-
genic risk score.

Results
Variants associating with PLT. We conducted meta-analysis of
PLT GWAS from Iceland and the UK (“Methods”). In the Ice-
landic study, we analyzed about 32.6 million variants identified
through whole-genome sequencing of 28,075 Icelanders and
imputed into 139,479 chip-typed individuals and their untyped
1st and 2nd degree relatives19, or a total of 270,211 individuals
with PLT measurements (“Methods”). In the UK Biobank GWAS,
we used the haplotype reference panel for imputation and ana-
lyzed about 33 million variants. The UK Biobank study contained
397,495 individuals of European British ancestry with PLT
measurements. For genome-wide significance thresholds, we used
the weighted Holm–Bonferroni method20 to account for all
50,177,681 variants being tested in the combined dataset and
defined P value thresholds that take into account the prior
probability of functional impact of the variants21 (“Methods” and
Supplementary Data 1).

Under the additive model, the meta-analysis and subsequent
conditional analyses yielded 577 independent genome-wide
significant signals (Supplementary Fig. 1 and Supplementary
Data 2). Apart from rs190391173, we did not observe substantial
heterogeneity in the effect estimates between the two populations
(Supplementary Fig. 2 and Supplementary Data 2). While the
majority of the variants are common (minor allele frequency
(MAF) ≥ 5%), 28 are rare (MAF ≤ 1%) in at least one of the
populations (Supplementary Data 2). Forty-four of the 577
variants are predicted to affect the coding sequence of the
corresponding genes, with 40 annotated as missense or splice-
region variants and 4 annotated as loss-of-function variants
(stop-gained, splice donor, or splice acceptor) (Supplementary
Data 2).

Three of the signals are located ≥1Mb away from the nearest
known PLT variant reported in the GWAS catalog16 as of May
26, 2021 (Note § in Supplementary Data 2), indicating novel PLT
loci. rs77542162 on chr17 is a missense variant in ABCA6. The
variant has been reported to associate with blood lipids22,23, and
some other variants in the area have been associated with height.
However, there are no previously reported associations with
platelet traits in the 2-MB window surrounding the SNP. The
gene belongs to the ATP-binding cassette transporter family, it is
cholesterol-responsive and potentially involved in intracellular
lipid transport processes24,25. While the exact mechanisms of
ABCA6 involvement in the control of these traits are yet to be
uncovered, there is an example of a related transporter, ABCG4,
that regulates cholesterol efflux and platelet production/
number26. rs2118446 and rs7808461 are intergenic variants on
chr2 and chr7, respectively. Although variants nearby have been
reported in association with mean platelet volume (MPV), the
only trait besides PLT that these two variants associate with in
our study, there have been no previous reports of association with
PLT at these loci. It should also be noted that while PLT and
MPV are genetically related, association with one does not
automatically result in association with the other. Moreover,
variants, located near rs7808461 and reported to associate with
MPV12,14,15, correlate with rs7808461 with R2 < 0.2, thus very
likely representing a different signal. For rs2118446-T, we found
one cis-eQTL that involves gene expression of GCC2 in adipose
tissue (effect=−0.95, P value = 2.1 × 10−80 in the Icelandic
RNA-sequencing data generated from the adipose tissue, see
“Methods”). GCC2 (GRIP and coiled-coil domain containing 2)
is a peripheral membrane protein localized to the trans-Golgi
network and is required for endosome-to-Golgi transport and
maintenance of Golgi structure27,28. According to the expression
data29,30, the gene is also expressed in platelets and megakar-
yocytes, but no significant cis-eQTLs involving rs2118446 and
GCC2 were detected in these cell types, and the exact role of the
gene in platelets and/or megakaryocytes is not known. We did not
find any message in the proximity to rs7808461 that was affected
by the SNP in the tissues analyzed.

PLT polygenic risk score. Platelet indices have been reported to
associate with various diseases and quantitative traits (QTs)31–35.
In order to search for diseases and other traits that share a genetic
basis with PLT, we derived a polygenic risk score for both Ice-
landic and UK PLT datasets (PLT PRS) using about 600,000
variants36 and subsequently analyzed the score for association
with all available diseases and other traits across the two popu-
lations. We set meta P value ≤ 1 × 10−5 (0.05/5,000 available main
phenotypes) as a significance threshold. This analysis yielded 24
traits associated with the PLT PRS (Table 1 and Supplementary
Data 3), including five diseases: myeloproliferative neoplasms
(MNP), ankylosing spondylitis (AS), rheumatoid arthritis (RA),
hypertension, and benign prostate hyperplasia (Table 1). Inter-
estingly, the PLT PRS associated only with MPN among hema-
tologic diseases (Supplementary Data 4).

Of the QTs tested, the PLT PRS associated most significantly
with MPV and all tested blood cell counts, except red blood cell
count. In addition, the PLT PRS associated with several QTs
related to cardiovascular health, anthropometric traits and with
QTs linked to inflammation, and kidney and liver functions
(Table 1).

To analyze the effect of the MHC region on the association of
the PLT PRS with these traits, we removed the variants,
representing the MHC in the polygenic risk core calculations,
and recalculated the association of the PLT PRS with these traits
(Supplementary Data 5). Exclusion of the MHC revealed that the
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PLT PRS association with ankylosing spondylitis, benign prostate
hyperplasia, and cholesterol is dependent on the MHC region.
While association with rheumatoid arthritis is strongly affected by
the MHC region, the MHC does not fully explain the association
of the PLT PRS with rheumatoid arthritis. At the same time,
exclusion of the MHC strengthened the PLT PRS association with
hypertension, MPV, heart rate, alkaline phosphatase, and
bilirubin (Supplementary Data 5).

Association of the PLT variants with phenotypes identified in
the PLT PRS analyses. Next, we tested the 577 variants from the
PLT meta-analysis for association with the phenotypes identified
in the PLT PRS analyses, combining available trait data from
Iceland and the UK. The significance threshold for the meta P
value was set at 3.6 × 10−6, or 0.05 corrected with the number of
variants (577) and phenotypes tested (24, excluding the discovery
phenotype PLT). All significant associations were subjected to
further testing by conditional analyses to determine whether the
variant itself is responsible for the observed effect (“Methods”).

Of the 577 variants, 356 associated with QTs other than PLT.
As expected based on the results of the PLT PRS analyses, they
associated most frequently with hematologic QTs, with MPV in
the leading position (Fig. 1 and Supplementary Data 6). The
direction of effects was most consistent with the PLT PRS
association results for MPV, blood cell counts, and C-reactive
protein (Table 1, Fig. 1, and Supplementary Data 6). Variants
associating with decreased PLT associated with larger platelet size
and vice versa, consistent with previously reported shared genetic
influence on PLT and MPV and an inverse correlation between
the two traits37,38. However, 17 out of 191 variants associated
with PLT and MPV with the same direction of effects
(Supplementary Data 6). This indicates that while the inverse

relationship between PLT and MPV is generally a rule, there are
some exceptions39. Only 7 of 577 variants associated with the
tested diseases with P value ≤ 3.6 × 10−6, with five variants
associating with hypertension, one associating with RA, and one
associating with MPN (Supplementary Data 7).

Pathway and tissue enrichment analysis and search for causal
genes. Only 38 out of the 577 variants are located in or near genes
implicated in platelet disorders (Supplementary Data 2 and 8),
defined based on information from the Online Mendelian Inheri-
tance in Man database (OMIM40, www.omim.org) and confirmed
through literature search. However, mechanisms by which the
remaining variants affect PLT are unclear. In order to shed light on
these mechanisms, we employed several different approaches.

We searched for candidate causal genes at loci harboring the
identified variants by screening for correlated coding sequence
variants, which could account for the signal. Forty-four of the
577 signals are represented by an index SNP that affects a protein
sequence (missense, splice region, stop-gained, splice donor, or
splice acceptor variants) (Supplementary Data 2). Additional 71
index SNPs were found to correlate strongly with coding variants
and represent the same signal as confirmed by conditional
analyses (Supplementary Data 9 and 10). In other words, coding
sequence variants could be responsible for the association with
PLT for 115 of the 577 variants. Of these 115 signals, 85 are
located in genes expressed in megakaryocytes and/or platelets,
based on expression data from platelets and megakaryocytes29,30,
with 18 of them mapping to genes implicated in platelet-related
disorders (Supplementary Data 2, 8 and 9). The remaining 30
variants are located in 29 genes with no record of expression in
these two cell types. However, several of them are noteworthy for
their role in cholesterol/lipid homeostasis: ABCA6, APOH, GCKR,

Fig. 1 Overview of association of the PLT variants with other quantitative traits. Data are presented with respect to the PLT increasing allele. Significance
criteria: P value ≤ 3.6 × 10−6 (“Methods”). For details on associations, see Supplementary Data 6. AP alkaline phosphatase, BASO basophil count, BILI total
bilirubin, CREA serum creatinine, CRP C-reactive protein, EO eosinophil count, GGTP gamma-glutamyl transpeptidase, H height, HR heart rate, LYMP
lymphocyte count, MAP mean arterial pressure, Mo monocyte count, MPV mean platelet volume, n-HDLC non-HDL cholesterol, NEU neutrophil count, TC
total cholesterol, TG triglycerides, WBC white blood cell count, Wt weight.
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TM6SF2, IRF1, and PNPLA3 (Supplementary Data 11). By
analogy with ABCG426, they could function both in platelet
count regulation and control of cholesterol/lipid homeostasis.
Alternatively, they might modify cholesterol/lipid homeostasis
and thus create a pro-inflammatory environment, leading to an
increase in platelet production. Interestingly, all these genes are
expressed in the liver, with three being linked to nonalcoholic
fatty liver disease (Supplementary Data 11). Further experimental
evidence is required to elucidate their role in both regulation of
PLT and control of lipid metabolism/homeostasis.

Physiological system, cell type, and tissue enrichment analysis
with DEPICT17 revealed the strongest enrichment for spleen (P
value= 4.8 × 10−14), followed by enrichment for blood cells and
synovial fluid (P values ranging from 9.4 × 10−14 to 3.4 × 10−9)
(Supplementary Data 12). In gene set enrichment analysis, we
tested whether genes in associated regions were enriched for
reconstituted versions of gene sets17 and identified 758 signifi-
cantly enriched gene sets grouped into 139 clusters (Supplemen-
tary Data 13, significance criteria set at P value ≤ 3.5 × 10−6, or
0.05 corrected with the number of tested gene sets (14,461)). The
analysis revealed that the most significant gene sets are the ones

implicated in hematopoiesis, inflammatory responses, signal
transduction, transcriptional regulation, RNA processing and
translation, hemostasis, development, actin dynamics, cell adhe-
sion, and cell migration (Fig. 2, Supplementary Data 13 and 14).

To search for genes whose expression is affected by the 577
variants in cells and tissues that were identified as significantly
enriched by DEPICT (Supplementary Data 12), we performed cis-
eQTL analysis using the Icelandic whole blood and adipose tissue
datasets, the Genotype-Tissue Expression (GTEx) project data41,
as well as recently reported platelet and megakaryocyte datasets29

(see “Methods”). We found 579 significant cis-eQTLs, where 158
variants associated with altered expression of 235 genes in 19
tissues and cell types, all represented by the top eQTLs (Fig. 3 and
Supplementary Data 15).

Taken together, these approaches yielded a list of 284
annotated genes that can be classified as candidate causal genes
for PLT regulation (Supplementary Data 16). While some of these
genes (e.g., GP1BA, GP6, ITGA2B, and TUBB1) are already well-
known in platelet biology, mechanisms by which other genes may
affect PLT are yet to be elucidated. The list of these genes was
analyzed with IPA for association with diseases, physiological

Fig. 2 A network of gene sets identified in the DEPICT analyses. Gene sets from the gene set enrichment analysis were clustered according to their most
relevant biological functions. Only the topmost gene sets of the clusters with eight or more significant gene sets are presented (significance criteria: P value
≤ 3.46 × 10−6). Connecting lines represent gene set overlap if Pearson correlation > 0.3, with thicker lines indicating higher correlation. For detailed
information on gene sets, clusters, and Pearson correlation between the sets, see Supplementary Data 13 and 14.
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systems, and cellular functions, revealing strong involvement of
the listed genes in cancers and hematological diseases, including
hereditary platelet disorders and myeloproliferative neoplasms, as
well as platelet development, morphology, and function, hema-
tological system development and function, and cellular functions
related to cell-to-cell signaling, cell development, cell death, and
proliferation (Fig. 4 and Supplementary Data 17).

IPA core analysis of cis-eQTL data. To gain deeper insight into
possible mechanisms of PLT regulation by the sequence variants,

we performed a Core Analysis of our cis-eQTL data (Supple-
mentary Data 15) with IPA18, focusing on the identification of
master regulators and changes in canonical pathways and tox-
icological functions. For consistency with the PLT PRS results, the
effects in the cis-eQTL data were expressed in terms of the PLT
increasing allele.

In the IPA Core Analysis, 279 endogenous molecules were
identified as master regulators, i.e., molecules that can act on the
genes in the dataset either directly or through intermediate
regulators, with Benjamini–Hochberg corrected P value ≤ 0.05
(Supplementary Data 18). Fourteen of these master regulators

Fig. 3 The PLT variants affecting gene expression. The Circular Manhattan plot shows genes identified in the cis-eQTL analyses whose expression is
affected by the PLT variants (Supplementary Data 15). Only PLT variants affecting the expression of these genes are presented in the plot (Supplementary
Data 2, Note ƚ). For variants, which affect expression of more than one gene, only the gene representing the strongest cis-eQTL (the largest effect size) is
shown. Effector alleles are the same as in Supplementary Data 2. The yellow band: −log10 of P value for association of the variants with PLT. Dots outside
the yellow band represent the genetic effect sizes of the index PLT SNPs, with the blue dot color indicating PLT decrease and the red representing PLT
increase (see Supplementary Data 2 for details). The green band: −log10 of P value for association of the variants with cis-eQTLs. eQTL effects are shown
as colored dots inside the green band. The dot size represents the effect size, and the color indicates the effect direction, where red is increase and blue is a
decrease of gene expression. For scaling purposes, both PLT and cis-eQTL effects are expressed in standard deviation.
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associated with a significant increase or decrease in activity, that
is, the absolute value of activation Z score ≥ 2 (“Methods”), and
were investigated in more detail in terms of diseases, functions,
and canonical pathways that they control, using data from the
IPA’s Ingenuity Knowledge Base (Supplementary Data 19). This
analysis revealed that some of the top master regulators could be
involved in regulatory mechanisms linked to the diseases and
traits associated with the PLT PRS. Examples of such master
regulators are FOXO3, which controls mechanisms linked to
MPN, RA, hypercholesterolemia, and hypertriglyceridemia, and
PRKCG that controls canonical pathways related to regulation of
blood pressure, platelet count, and function and linked to RA
(Table 1 and Supplementary Data 19). In addition, the IPA Core
Analysis revealed that some aspects of kidney and liver functions
(e.g., renal necrosis/cell death and liver hyperplasia/hyperproli-
feration) could be affected by the differential gene expression
observed in our cis-eQTL data (Supplementary Data 20).

The IPA Core Analysis also identified eight significantly altered
canonical pathways (Benjamini–Hochberg corrected P values

≤ 0.05, Supplementary Data 21). Some of these eight canonical
pathways might play a role in regulation of molecular mechan-
isms relevant to the diseases associated with the PLT PRS, e.g.,
Ephrin Receptor Signaling and contraction of vascular tissue or
Role of Tissue Factor in Cancer and myelopoiesis (Supplementary
Data 22).

Discussion
In this study, we identified 577 variants that associate with PLT in
the Icelandic and UK populations. While most of the variants are
found at loci already reported7–15, three of these variants are
located 1MB away from variants reported to associate with PLT
in previous GWAS, indicating novel PLT loci. The loci, harboring
two of them, rs2118446 and rs7808461, have been reported to
associate with MPV. However, it should be noted that although
PLT and MPV are genetically related, association with one trait
does not automatically mean association with the other one. For
example, of 577 variants associated with PLT in our study only

Fig. 4 Association with diseases, molecular functions, and physiologic systems. The 284 candidate causal PLT genes (Supplementary Data 16) were
analyzed for association with diseases, molecular functions, and physiologic systems, using the Ingenuity Pathway Analysis (see “Methods”). Shown are P
values of the identified associations along with median and interquartile ranges for each group (boxplots). Dark red dots represent individual associations,
and black dots indicate outliers. For details on associations, see Supplementary Data 17.
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33% (191 variants) associate also with MPV. The third one is a
missense variant in ABCA6 that has been associated with blood
lipids, but not with PLT or other platelet-related traits. Only 38 of
the 577 variants reside in or near genes that are implicated in
platelet-related disorders. To search for potential causal genes for
the remaining variants and link our findings with biological
functions, we performed cis-eQTL and coding variant analyses,
pathway/tissue and gene set enrichment analyses with DEPICT
and Core Analyses with IPA. These analyses pointed to poten-
tially causal genes, many of which do not currently have a known
role in platelet biology.

Analysis of association between the PLT PRS and hematologic
traits revealed interesting results. According to the classical view
of hematopoiesis, the separation of the myeloid and lymphoid
lineages is followed by a further split of the myeloid lineage into
megakaryocyte–erythrocyte bipotent progenitors and progenitors
of other myeloid lineages42. Given this close developmental
relationship between platelets and red blood cells, a lack of
association between the PLT PRS and red blood cell count is
somewhat unexpected, albeit consistent with results of recent
reports14,43,44. Of the specific blood cell types tested, the PLT PRS
associated most significantly with monocyte, lymphocyte, and
neutrophil counts. Moreover, of 356 variants associated with QTs
other than PLT, 119 associated with one or more of these cell-
type counts. However, despite this very strong association with
blood cell counts, the PLT PRS associated with only one of the
tested hematologic diseases, i.e. MPN.

We observed the association of the PLT PRS with 12 non-
hematologic QTs, including traits related to cardiovascular, liver,
and kidney functions. The genetic links were further supported by
findings of the IPA Core Analysis, which looked at changes in
relevant canonical pathways and toxicological functions and
searched for potential master regulators of these events. The
association of the PLT PRS with blood lipids is not unexpected
given reported molecular links (e.g., refs. 26,45), although a recent
study did not observe a significant genetic correlation between
PLT and blood lipids44. While platelets have been implicated in
kidney and liver diseases46–48, genetic sharing by PLT and mar-
kers of liver and kidney functions is not well established. A recent
study reported a negative genetic correlation between PLT and
total bilirubin, which is consistent with our findings. In contrast
to our study demonstrating an association of the PLT PRS with
alkaline phosphatase, gamma-glutamyl transpeptidase, and serum
creatinine, they did not find the association with these traits44.
Our study is, therefore, one of the first to provide evidence for
genetic links between PLT and these traits.

We tested the PLT PRS for association with a large number of
phenotypes representing the majority of common human diseases
and observed a significant association with RA and AS. Addi-
tional support for the link between PLT and RA came from the
DEPICT analysis, which identified synovial fluid, a relevant RA
site, as one of the most significant target cell types and tissues.
The IPA assessment of the cis-eQTL data also suggested that there
are molecular mechanisms, such as those regulated by FOXO3,
that could connect PLT and RA. While a link between PLT and
AS has not been established, a positive correlation between pla-
telets and severity of RA has been known for a long time in the
clinical setting49,50. Clinical and animal studies have shown that
platelet numbers are increased within the synovium and synovial
fluid in RA, thus contributing to the pro-inflammatory environ-
ment of the synovium and potentially playing a role in the
thrombus formation, destruction of cartilage, and alteration of
synovial microcirculation observed in RA patients51–55. Of note,
the previous studies12,38,44 did not observe a significant genetic
correlation/sharing between PLT and RA. This could be attrib-
uted to differences in the study design. Compared to those

studies, we derived the polygenic risk score using a larger number
of variants and including the MHC region, and we had larger RA
cohorts.

Our data also indicated a shared genetic basis for PLT and
hypertension. Platelets may be an important cell type in devel-
opment and consequences of hypertension: usually, platelets are
necessary to maintain vascular integrity, but their enhanced
activation may play a key role in the pathogenesis of hypertensive
vascular disease56–60. In addition to hypertension, the PLT PRS
was significantly correlated with a blood pressure/hypertension-
related QT, i.e. mean arterial pressure. This association was fur-
ther supported by findings from the DEPICT analysis, which
indicated significant enrichment of arteries and endothelial cells
in the data, and by results of the IPA Core Analysis that identified
master regulators and molecular pathways relevant to the control
of blood pressure. At the same time, genetic sharing by PLT and
cardiovascular diseases, such as coronary artery disease (CAD),
venous thromboembolism, and intracerebral hemorrhage did not
reach the applied significance threshold of 1 × 10−5, although
each of these cohorts included from about 1,000 to 28,110 cases.
Of note, although our findings for CAD did not reach the set
significance threshold (Pmeta= 1.1 × 10−5, Effectmeta= 0.024),
they are consistent with the results presented by Astle et al.12 who
reported a weak inverse correlation between risk of CAD and
MPV, opposite to what is expected (see ref. 61). This inverse
relationship between the risk of CAD and MPV implies that the
risk of CAD is positively correlated with PLT, which is in
agreement with the observations in our study.

Two impressive reports of PLT (and other blood traits) meta-
analyses and genetics of blood traits and diseases have recently
been published14,15. While most signals that we identified in our
meta-analysis are within 1Mb range from those reported in these
and earlier genome-wide association studies of PLT, three signals
represent potentially novel PLT loci (discussed above). Apart from
the identification of genome-wide significant signals associated
with PLT, the major results of the two papers on the one hand and
our study, on the other hand, are not overlapping, contradicting,
or redundant. The main focus of those reports was on hemato-
poietic cells and hematologic disorders, whereas we did not restrict
our analyses to hematopoietic cell types and disorders associated
with them, acknowledging the relevance of multiple non-
hematopoietic tissues to regulation of PLT. Another difference
concerns the polygenic risk score analysis. In these two papers, the
polygenic risk/trait score was constructed with 135–689 variants
depending on the trait or was restricted to variant–trait associa-
tions that reached genome-wide significance in trans-ethnic MR-
MEGA meta-analysis. However, we constructed our PRS based on
600,000 variants representing the whole genome without exclusion
of any specific region. The authors tested their score in the pre-
diction of hematological disorders or used them to evaluate
portability of the PRS across European populations and associa-
tion with rare blood disorders, whereas we tested ours in terms of
genetic sharing between PLT and a wide range of diseases and
traits, not only hematopoietic ones.

In summary, we identified multiple sequence variants asso-
ciated with PLT and potentially new genes with functions in
platelet biology. Our PRS analysis indicates that genetic sharing
by PLT and red blood cell count is less than could be expected
given their close developmental relationship. At the same time,
the PLT PRS is much more predictive of counts of other blood
cell types tested, albeit of only one of the tested hematologic
diseases. Finally, we observed an association between the PLT
PRS and MPN, RA, AS, hypertension, and benign prostate
hyperplasia, as well as cardiovascular, anthropometric, inflam-
mation, liver, and kidney function-related QTs, with further
support provided by DEPICT and IPA analyses. These results
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help shed light on diverse aspects of platelet biology and how it
interacts with multiple biological processes in health and disease.

Methods
Datasets. The meta-analysis combined genome-wide association studies of platelet
count (PLT) in Iceland and UK Biobank datasets. Information on the PLT datasets
is summarized in Supplementary Data 3. The Icelandic study included 139,479
chip-typed individuals and their 130,732 familially imputed 1st and 2nd degree
relatives with available PLT measurements. PLT measurements used in GWAS
were obtained from three health care centers: the National University Hospital of
Iceland (LSH), the Icelandic Medical Center (Laeknasetrid) Laboratory in Mjodd
(RAM) in Reykjavik, Iceland, and Akureyri Hospital (SAK) in Akureyri, Iceland.
The data included all measurements made in these laboratories in the period from
1993 to 2015. The year of birth ranged from 1893 to 2015 (median year of birth
1969), and 52.2% were females. Mean PLT ± standard deviation (SD) was 253,900/
µl ± 101,200/µl, with average 12.7 measurements per person. The National
Bioethics Committee approved the study (reference number: VSN-15-023),
including the protocol, methodology, and all documents presented to the partici-
pants. All individuals who donated samples provided written informed consent. All
sample identifiers were encrypted in accordance with the regulations of the Ice-
landic Data Protection Authority. Personal identities of the participants and bio-
logical samples were encrypted by a third-party system approved and monitored by
the Icelandic Data Protection Authority. The UK Biobank dataset included PLT
data for 397,495 chip-typed individuals. Mean PLT ± SD was 252,400/µl ± 59,900/
µl, with 1.05 measurements per individual. These individuals are participants in a
large prospective cohort study of ~500,000 volunteer participants, who were
recruited between the ages of 40 and 69 years in 2006–2010 across the UK62,63. All
participants gave informed consent, and the UK Biobank’s scientific protocol and
operational procedures were reviewed and approved by the North West Research
Ethics Committee (REC reference number 06/MRE08/65). Individuals whose data
were used in the study were all of the genetically confirmed white British ancestry.
This research has been conducted using the UK Biobank Resource under appli-
cation numbers 24711 and 24898. In summary, the only inclusion criteria in either
population were: (1) available platelet count measurements, (2) available genetic
data, (3) written consent, and (4) for UK participants, confirmed white British
ancestry. No other inclusion or exclusion criteria were applied with regards to
study participants, and individuals with Mendelian disorders were not excluded
from the analysis.

Most measurements, which were used to define various Icelandic QTs relevant
to this study, were obtained from the three largest clinical laboratories in Iceland:
(i) LSH (hospitalized and ambulatory patients); (ii) RAM (ambulatory patients),
and (iii) SAK (hospitalized and ambulatory patients). Numerous cohorts
representing the Icelandic QTs and case-control phenotypes, which were tested for
association with the platelet count polygenic risk score (PLT PRS), have been
described in our previous studies (e.g., refs. 64–80). See Supplementary Data 3 for
details on cohorts that represent traits associated with the PLT polygenic risk score.

Various health records and health-related information and genetic data are
available for the UK Biobank and Icelandic cohorts. Disease definitions were
primarily based on hospital electronic health records of ICD10 codes and self-
reported data, as well as data from the Cancer Registry.

The UK cohort representing rheumatoid arthritis (RA) was defined based on
electronic health records of the ICD10 codes M069, M059, and M060, and the
definition of the cohort representing ankylosing spondylitis (AS) was based on the
ICD10 code M45. This matched the definition of the respective Icelandic cohorts.
The UK Biobank study included 4001 RA cases with 404,652 controls, and 612 AS
cases with 407,953 controls. The Icelandic RA cohort consisted of 1772 chip-typed
and 537 familially imputed cases and 136,368 chip-typed and 203,503 familially
imputed controls. The Icelandic AS cohort included 373 chip-typed and 60
familially imputed cases and 139,426 chip-typed and 131,349 familially imputed
controls.

The Icelandic benign prostatic hyperplasia and associated lower urinary tract
symptoms (BPH/LUTS) study population consisted of 13,928 men with
symptomatic BPH/LUTS (9346 chip-typed and 4582 familially imputed
individuals) and 104,000 controls (42,591 chip-typed and 59,630 familially imputed
individuals). Controls were males not known to have symptomatic BPH/LUTS.
The UK Biobank BPH/LUTS dataset consisted of 21,067 men with symptomatic
BPH/LUTS, according to hospital-based diagnosis (ICD10 code N40), as well as
166,609 male controls not known to have been diagnosed with BPH/LUTS.

The myeloproliferative neoplasm cohorts were defined based on records from
the Icelandic and British Cancer Registries. The Icelandic cohort included 333 cases
(180 chip-typed and 153 familially imputed individuals) and 328,796 controls
(141,889 chip-typed and 186,907 familially imputed individuals). The UK cohort
consisted of 348 cases and 406,981 controls.

The Icelandic study included 32,026 chip-typed and 12,566 familially imputed
individuals diagnosed with hypertension and 110,566 chip-typed and 220,357
familially imputed controls. The hypertension case definition originated from
electronic health records and clinical evaluations. The control samples match the
cases in age, sex, and county of origin. The UK Biobank study contained 77,566
individuals with hypertension and 331,087 controls. Hypertension was defined
based on electronic health records of the ICD10 code I10.

Genotyping. Genotyping and imputation of the Icelandic samples were performed
as described in Gudbjartsson et al.81 and Jónsson et al.82. In short, we sequenced
the whole genomes of 28,075 Icelanders using Illumina technology to a mean depth
of at least 10× (median 32×). SNPs, deletions, and insertions were identified and
their genotypes called using joint calling with the Genome Analysis Toolkit
HaplotypeCaller (GATK version 3.4.07)83. Genotype calls were improved by using
information about haplotype sharing, taking advantage of the fact that all
sequenced individuals had also been chip-typed and long-range phased. About
32.64 million variants that passed the quality threshold were then imputed into
139,479 Icelanders, who had been genotyped with various Illumina SNP chips and
their genotypes phased using long-range phasing19,84 and for whom PLT mea-
surements were available. Using genealogic information, the sequence variants
were imputed into 130,732 untyped relatives of the chip-typed individuals to
further increase the sample size for association analysis and increase the power to
detect associations. For further information regarding genotyping and imputation
we refer to Gudbjartsson et al.81. For comparison of data including both genotyped
and familially imputed Icelanders vs. only genotyped Icelanders, see Supplementary
Fig. 3 and Supplementary Data 23.

The UK Biobank genotyping was performed using a custom-made Affymetrix
chip, UK BiLEVE Axiom85, and with Affymetrix UK Biobank Axiom array86. In
this study, we only used 33.9 million variants that were imputed based on the HRC
reference panel63.

GWAS and meta-analysis. Logistic regression assuming an additive model was
used to test for association between variants and diseases, treating the disease status
as the response and expected genotype counts from imputation as covariates, and
using a likelihood ratio test to compute P values. Prior to association analysis of
quantitative traits, measurements were adjusted for sex, age, year of birth, mea-
surement site, and population structure. Average of multiple measurements for an
individual was used, and the measurements were normalized to a standard normal
distribution using quantile normalization. Since there was a higher standard
deviation in the Icelandic PLT data than in the UK PLT cohort (see above), which
could be explained by more diversity within the Icelandic cohort with most
measurements coming from the tertiary hospital (LSH), the normalization of PLT
was done preserving the standard deviation in the original data. Quantitative traits
were tested for association with genotypes using a linear mixed model implemented
in BOLT-LMM87. All variants, which were tested, had imputation information over
0.8 in Iceland and over 0.7 in the UK. The association analysis for both the
Icelandic and UK datasets was done using software developed at deCODE
genetics81. For the Icelandic study group, patients and controls were matched on
gender and age at diagnosis or age at inclusion. Information on the county of origin
within Iceland was included as covariates to adjust for possible population strati-
fication. For the UK datasets, cases and controls were restricted to individuals of
genetically confirmed white British origin. Forty principal components were
included in the analysis to adjust for population substructure. To account for
inflation in test statistics due to cryptic relatedness and stratification, we applied the
method of linkage disequilibrium (LD) score regression88 to estimate the inflation
in the test statistics and adjusted all P values accordingly. The estimated correction
factors for the phenotypes, which were found to correlate with the PLT PRS, are
shown in Supplementary Data 24. The Q–Q plots are presented in Supplementary
Fig. 4.

Variants in the UK imputation dataset were mapped to NCBI Build38 positions
and matched to the variants in the Icelandic dataset based on allele variation.
Results from the two study cohorts were combined using a Mantel–Haenszel
model89, in which the groups were allowed to have different population frequencies
for alleles and genotypes but were assumed to have a common effect. Heterogeneity
was tested by comparing the null hypothesis of the effect being the same in all
populations to the alternative hypothesis of each population having a different
effect using a likelihood ratio test. I2 lies between 0 and 100% and describes the
proportion of total variation in study estimates that is due to heterogeneity.

We selected a threshold of imputation info > 0.8 and minor allele frequency
(MAF) > 0.01% in Iceland and imputation info > 0.7 and MAF > 0.01% in the UK
for variants available in both datasets. A more stringent quality threshold was used
for the Icelandic dataset, since the imputation in that dataset is of higher quality,
especially for rare variants, because the imputation is based on a large set of whole-
genome sequenced Icelanders. Furthermore, the phasing of the Icelandic genetic
data is much more reliable due to the large fraction of the population included and
the use of long-range phasing. A total of 50,177,681 variants met these criteria. For
detailed information, see Supplementary Data 1.

We used the weighted Holm–Bonferroni method20 to account for all 50,177,681
variants being tested (P value < (0.05*weight)/50,177,681). Using the weights given
in Sveinbjornsson et al.21, this procedure controls the family-wise error rate at 0.05.
The following five variant classes were defined and the following significance
thresholds were applied: (1) P value ≤ 1.58 × 10–7 for high-impact variants,
including stop-gained and stop-loss, frameshift, splice acceptor, or donor and
initiator codon variants (n= 13,762); (2) P value ≤ 3.17 × 10–8 for moderate-
impact variants, including missense, splice-region variants, inframe deletions and
insertions (n= 268,662); (3) P value ≤ 2.88 × 10−9 for low-impact variants,
including synonymous, 3′ and 5′ UTR, and upstream and downstream variants
(n= 3,723,529); (4) P value ≤ 1.44 × 10−9 for lowest-impact deep intronic and
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intergenic variants in DNase I hypersensitivity sites (DHS) (n= 6,728,845); (5) P
value ≤ 4.8 × 10−10 for other lowest-impact non-DHS deep intronic and intergenic
variants (n= 39,442,883) (Supplementary Data 1).

Conditional analysis. We applied approximate conditional analyses, implemented
in the GCTA software90 to the meta-analysis summary statistics to identify inde-
pendent association signals, using a stepwise model selection procedure. Variants
were concluded to belong to an independent signal if their adjusted P value was
class-specific genome-wide significant (for applied genome-wide significance
thresholds, see Supplementary Data 1). LD between variants was estimated using a
set of 8700 whole-genome sequenced Icelandic individuals, assuming that variants
more than 10Mb away from each other are in complete linkage equilibrium. Due
to the complexity and population differences in LD in the MHC region, the
conditional analysis there was done directly on genotype data in the Icelandic and
UK Biobank cohorts separately, and the results meta-analyzed to find the set of
variants that explain the signal in that region. Only 16 secondary signals (Sup-
plementary Data 2 and Note ǂ) were identified in these analyses; all of them are
located <1Mb away from the primary signals.

In testing of the PLT variants for association with phenotypes identified in the
PLT PRS analyses (see later), the variants were considered significant if their P
value was ≤3.6 × 10−6, or 0.05 corrected with the number of tested variants (577)
and tested phenotypes (24, excluding the discovery phenotype PLT). All significant
associations were further tested in conditional analyses, using the methodology
described above, to determine whether the variant itself is responsible for the
observed effect.

Polygenic risk score (PRS) and phenotype correlation analysis. We used PRS
analysis of the GWAS results for PLT to investigate its predictive power for other
traits. We derived PLT PRSs both using Icelandic and UK datasets, as described in
Kong et al.36. Briefly, the PRSs were calculated using genotypes for about 600,000
autosomal markers included on the Illumina SNP chips to avoid uncertainty due to
imputation quality. We estimated linkage disequilibrium (LD) between markers
using 14,938 phased Icelandic samples and used this LD information to calculate
adjusted effect estimates using LDpred36,91. The effect estimates calculated using
the Icelandic data were used as weights to generate the weighted PRS (PLT PRSIce)
for testing in the UK, and the effect estimates generated from the UK data were
used to derive the weighted PRS (PLT PRSUK) for testing in Iceland. We created
several PRSs assuming different fractions of causal markers (the P parameter in
LDpred). Subsequently, we selected one PLT PRSUK that was the most predictive of
PLT in Iceland explaining 11.9% of the variance, and one PLT PRSIce that was the
most predictive of PLT in the UK explaining 10.9% of the variance (Supplementary
Data 25). The most predictive PLT PRSIce was used to analyze correlation with
various phenotypes in the UK data, and the most predictive PLT PRSUK was tested
for correlation with various phenotypes in Iceland. The correlation between the
PLT PRS and phenotypes was calculated using logistic regression in R (v3.5)
(http://www.R-project.org) adjusting for year of birth and principal components by
including them as covariates in the analysis.

More than 3300 quantitative traits were available for the UK cohort presenting
various lab measurements, various data for brain and its specific areas, ECG,
measurements of body size and its different parts, metabolic rates, speech
reception, birth weight, and so on, > 3400 presenting various ICD codes, 39 lists
from Cancer Registry, as well as data based on CISR and NCISR codes. Thousands
of phenotypes (QTs, diseases defined based on e.g. the ICD codes, data from the
Cancer Registry) were also available for Icelanders. Five thousand traits were
considered to have a matching phenotype in the other cohort and were therefore
included in the analysis, where we searched for phenotypes, which associate with
the PLT PRS with the P value threshold set at 1 × 10−5 (0.05/5000). With regards to
hematologic diseases, we performed the analysis of only those four hematologic
diseases (Supplementary Data 4) where cohorts were defined in the same way, that
is, data coming from the Cancer Registry of Iceland and the UK and diagnosis
confirmed by pathologists.

Enrichment analyses with DEPICT. We performed Data-driven Expression Prior-
itized Integration for Complex Traits (DEPICT)17 analysis of gene set enrichment, as
well as analysis of the physiological system, tissue, and cell-type enrichment. We
analyzed all 577 variants identified in our meta-analysis of PLT GWAS. We applied
default settings in DEPICT, where all SNPs with LD > 0.5 with respect to the PLT lead
SNPs in each locus are included in the analysis, with no additional adjustments or
modifications of gene mapping. In the physiological system, tissue- and cell-type
enrichment analysis, we tested whether genes in the PLT-associated regions, which
were identified in our study, were highly expressed in any of the 209 Medical Subject
Heading (MeSH) tissue and cell-type annotation categories that include 37,427 human
Affymetrix HGU133a2.0 platform microarrays17. In the gene set enrichment analysis,
we tested whether genes in the identified PLT-associated regions were enriched for
reconstituted versions of the 14,461 gene sets used by DEPICT17, and identified
758 significantly enriched gene sets (P value ≤ 3.46 × 10−6, or 0.05 corrected with
14,461 tested gene sets). DEPICT was also used to compute pairwise Pearson corre-
lations between all reconstituted gene sets that were subsequently clustered by simi-
larity using the affinity propagation method92. For each cluster with eight or more

significant gene sets, the member gene set with the lowest P value was used as a
representative in the pathway interaction network constructed based on the clusters´
potential roles in hematopoiesis, inflammatory responses, signaling pathways, tran-
scriptional regulation, RNA processing and translation, hemostasis, development and
regulation of actin dynamics, cell adhesion and migration (Fig. 2). Interactions
between the clusters were visualized with Cytoscape (https://cytoscape.org/).

Cis-expression quantitative trait locus (cis-eQTL) analysis. We performed cis-
eQTL analysis to search for genes whose expression is affected by the 577 variants
in cells and tissues that were identified as significantly enriched by the DEPICT
analyses. In search for cis-eQTLs in blood and adipose tissues, we analyzed RNA-
sequencing data from the whole blood of 13,206 Icelanders and adipose tissue from
750 Icelanders. cis-eQTLs in other tissues were analyzed in the corresponding
GTEx datasets41 (https://www.gtexportal.org/home/) and platelet and mega-
karyocyte datasets29 (http://www.biostat.jhsph.edu/~kkammers/GeneSTAR/).

The Icelandic RNA-sequencing data were prepared as follows. For RNA
preparation from blood, 2.5 mL of blood was drawn in Paxgene Blood RNA Tubes
(PreAnalytiX). RNA was subsequently isolated using the Chemagic Total RNA Kit
special (Perkin-Elmer, CMG-1084) on a Chemagic360 instrument following the
manufacturer’s protocol. The quality (RIN score) and quantity of isolated total
RNA samples was assessed using the DNA 5 K/RNA chip for the LabChip GX
(Perkin-Elmer).

For total RNA isolation from adipose tissue, adipose tissue samples were
sectioned to appropriate size on dry ice and transferred to a pre-chilled 2 mL
screw-cap tube containing a 5-mm stainless steel bead (Qiagen, Cat no. 69989).
Samples were stored at −80 °C until isolation. RNAZol RT (Molecular Reasecrch
Center, Inc. Cat no. RN190) was added to the frozen samples and incubated for
2 min at room temperature. The adipose samples were homogenized on a Tissue
Lyser LT (Qiagen, Cat no 856000) according to the instrument manufacturer’s
instructions, centrifuged at 12,000 × g for 5 min and the excess lipids removed from
the top. Samples were then processed further following the manufacturer’s
instructions for total RNA isolation using RNAzol RT.

cDNA libraries derived from Poly-A mRNA were generated using Illumina’s
TruSeq RNA v2 Sample Prep Kit. Briefly, Poly-A mRNA was isolated from total
RNA samples (0.2–1 μg input) using hybridization to Poly-T beads. The Poly-A
mRNA was fragmented at 94 °C, and first-strand cDNA was prepared using
random hexamers and the SuperScript II reverse transcriptase (Invitrogen).
Following second-strand cDNA synthesis, end repair, the addition of a single A
base, indexed adaptor ligation, AMPure bead purification, and PCR amplification,
the resulting cDNA sequencing libraries were measured on the LabChip GX,
diluted to 3 nM and stored at −20 °C. Samples were pooled, clustered on to
flowcells using either Illumina’s cBot and the TruSeq PE cluster kits v4 (4 samples/
pool), or on NovaSeq S4 flowcells (24 samples/pool) using on-board clustering,
respectively. Paired-end sequencing (2 × 125 cycles) was performed with either
HiSeq2500 instruments using the TruSeq SBS kits v5 from Illumina or NovaSeq
instruments using S4 flowcells. Approximately 54–68 million (Q1–Q3) fragments
were sequenced per sample.

RNA-sequencing integrity was inspected using parameters generated by
FastQC93. Sequenced reads were aligned with STAR94 for quality assurance of the
RNA. Alignment files were processed with RNA-SeQC95 and Picard
CollectRnaSeqMetrics (https://broadinstitute.github.io/picard/) to estimate
sequencing artifacts. Genotype concordance was determined by comparing
imputed genotypes to those derived from genome alignment of RNA-sequencing
reads. Transcript abundance was estimated with kallisto v0.43.196 using
personalized transcriptome reference. Gene expression was computed by
aggregating transcripts abundance. Association between variant and gene
expression was estimated using a generalized linear regression assuming an
additive genetic effect and normal quantile-transformed gene expression estimates,
adjusting for measurements of sequencing artifacts, demography variables, blood
composition and hidden covariates97. All variants within 5Mb of each gene were
tested. Top independent eQTL signals were produced by running iterative
conditional association, each iteration adding genotypes of the eQTL with lowest P
value as a covariate into the model.

Only associations with P value ≤ 1.52 × 10−6 for blood (0.05 corrected with the
number of tested variant-gene associations (32,778)) and P value ≤ 8.8 × 10−7 for
adipose tissue (0.05 corrected with the number of tested variant-gene associations
(56,868)) were considered significant and underwent further analyses. To address
the question whether the variant itself is directly responsible for the observed effect
on gene expression, we identified the topmost cis-eQTL signals and asked if our
PLT variants represented these topmost cis-eQTLs or correlated with the variants
representing the topmost cis-eQTLs. In case of correlation, the PLT variant and the
topmost cis-eQTL variant were subjected to conditional cis-eQTL analyses to
further confirm their effect on the gene expression.

To investigate the effect of the PLT variants on gene expression in other tissues
and cell types identified as significant by DEPICT, we analyzed expression data for
corresponding cells and tissues using two sources, namely the GTEx datasets41, and
eQTL data from platelets and megakaryocytes derived from iPSCs29. We analyzed
all tissues, defined as significant by DEPICT, including non-hematopoietic ones,
since they can also be relevant to control of PLT (e.g. liver and kidney, major
production sites of thrombopoietin). In these analyses, we asked whether the PLT
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variants presented the topmost cis-eQTL or were highly correlated with the
variants presenting the topmost cis-eQTL (R2 ≥ 0.95). For eQTLs identified in the
GTEx data, the significance thresholds applied were the same as defined in the
GTEx datasets (see Supplementary Data 15). For eQTLs identified in the platelet
and megakaryocyte data, the significance threshold was set at the calculated q
value ≤ 0.0529.

Ingenuity pathway analysis (IPA). IPA (https://www.qiagenbioinformatics.com/
products/ingenuitypathway-analysis, QIAGEN Inc.) is a bioinformatics tool that
connects molecules into networks based on information on biomolecules and their
relationships, which is gathered in the Ingenuity Knowledge Base18. The Core
Analysis incorporated in IPA was used to interpret our data, in the context of
biological processes, pathways, and networks.

Two types of statistical analysis are applied in IPA18. The first one is a P value of
overlap that estimates the overlap between the molecules in the dataset and a
disease, biological function, or pathway. It is calculated using the right-tailed
Fisher’s exact test, with P value ≤ 0.05 indicating a statistically significant, non-
random association. The second one is an activation Z score that makes predictions
about activation or inhibition of a molecule or a pathway by using the information
on the direction of expression of the genes in the dataset and assessing the match
between the observed and the predicted up- and downregulation patterns of gene
expression. The positive Z score means that the molecule, biological process or
disease is trending towards an increase, and the negative Z score indicates a trend
towards a decrease, with activation Z scores ≥ 2 or ≤−2 indicating that the disease
or function is statistically significantly increased or decreased, respectively.

To gain a comprehensive insight into diseases, molecular mechanisms, and
physiological systems potentially affected by the genes at the PLT loci, we ran the
IPA Core Analysis with the combined list of candidate genes identified in the cis-
eQTL and coding variant analyses (Supplementary Data 16). It returned a list of
500 diseases and functions associated with the genes on our list with P values
ranging from 7.95 × 10−4 to 1.42 × 10−14 (Fig. 4). However, since these data (a list
of gene names) do not provide information on the effect direction, which limits full
exploitation of the other parts of the Core Analysis, we continued this investigation
using the cis-eQTL data (Supplementary Data 15) instead of the gene list.

For consistency with the results of the PLT PRS analysis where associations
were presented with respect to PLT increase, we used our cis-eQTL data expressed
in terms of the PLT increasing alleles as an input into the IPA Core Analysis. To
correct for multiple testing, the significance threshold in the analysis of canonical
pathways and toxicological functions was set at Benjamini–Hochberg corrected P
value ≤ 0.05. Fifteen toxicological functions (Supplementary Data 20) and eight
canonical pathways (Supplementary Data 21) met this requirement.

The Causal Network Analysis within the IPA Core Analysis was applied to
identify upstream molecules, or master regulators, that are predicted to orchestrate
causal networks and control the expression of the genes in the dataset. The
significance threshold was set at Benjamini–Hochberg corrected P value ≤ 0.05,
with 279 endogenous molecules meeting this requirement (Supplementary
Data 18). Fourteen of these 279 endogenous master regulators with
Benjamini–Hochberg corrected P value ≤ 0.05 had the absolute values of the
activation Z score ≥ 2 and were further investigated with respect to canonical
pathways and diseases they affect, using the IPA’s Ingenuity Knowledge Base
(Supplementary Data 19). The eight significantly altered canonical pathways were
also analyzed in terms of molecular mechanisms, diseases, and functions that they
regulate, using the IPA’s Ingenuity Knowledge Base (Supplementary Data 22).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sequence variants from the Icelandic population whole-genome sequence data have
been deposited at the European Variant Archive under accession code PRJEB15197. The
GWAS summary statistics and data on the polygenic risk score are available at https://
www.decode.com/summarydata/. The UK Biobank data can be obtained upon
application (https://www.ukbiobank.ac.uk/). The authors declare that the data supporting
the findings of this study are available within the article, its Supplementary Information
file, and upon reasonable request. Data presented in Fig.1, showing the overview of
association of the PLT variants with other quantitative traits with respect to the PLT
increasing allele, are provided in Supplementary Data 6. Data presented in Fig. 2, which
shows a network of gene sets identified in the DEPICT analyses, are provided in
Supplementary Data 13 and 14. Data points presented in Fig. 3, showing the PLT variants
that affect gene expression, are provided in Supplementary Data 15 and Supplementary
Data 2 Note ƚ. Data points presented in Fig. 4 that shows the association of the 284
candidate causal PLT genes with diseases, molecular functions, and physiologic systems
are provided in Supplementary Data 17. Data presented in Supplementary Fig. 1, which
shows the Manhattan plot, are provided in the GWAS Summary Statistics. Data points
presented in Supplementary Fig. 2, which shows the effects of the 577 PLT variants in
Iceland vs. the UK, are provided in Supplementary Data 2. Data points presented in
Supplementary Fig. 3, which compares effects of the 577 PLT variants in data including
both genotyped and familially imputed Icelanders and genotyped only Icelanders, are
provided in Supplementary Data 23.

Code availability
In the study, we used publicly available software and datasets in conjunction with the
above-described algorithms in the sequencing processing pipeline (whole-genome
sequencing, association testing, RNA-sequencing mapping and analysis): Bedtools
v2.25.0-76-g5e7c696z, https://github.com/arq5x/bedtools2/; BOLT-LMM, https://
data.broadinstitute.org/alkesgroup/BOLT-LMM/downloads/; BWA 0.7.10 mem, https://
github.com/lh3/bwa; Cytoscape, https://cytoscape.org/; DEPICT, https://
data.broadinstitute.org/mpg/depict/; Genome browser, https://genome.ucsc.edu/;
GenomeAnalysisTKLite 2.3.9, https://github.com/broadgsa/gatk/; OMIM, https://
www.omim.org/; GTEx, https://www.gtexportal.org/home/; GWAS catalog, https://
www.ebi.ac.uk/gwas/; LD link, https://ldlink.nci.nih.gov/?tab=ldpair; LDSC (LD Score),
https://github.com/bulik/ldsc; Picard tools, https://broadinstitute.github.io/picard/;
SAMtools 1.3, http://samtools.github.io/; Platelet/ megakaryocyte cis-eQTLs, http://
www.biostat.jhsph.edu/~kkammers/GeneSTAR/; Variant Effect Predictor, https://
github.com/Ensembl/ensembl-vep. Ingenuity Pathway Analysis (IPA) was performed
using commercially available software from QIAGEN Inc. (https://
www.qiagenbioinformatics.com/products/ingenuitypathway-analysis). We used R
extensively to analyze data and create plots. No custom codes were created for this
project.
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