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Visual exploration dynamics are low-dimensional
and driven by intrinsic factors
Andrea Zangrossi 1,2,3, Giorgia Cona2,4, Miriam Celli2,3, Marco Zorzi4,5 & Maurizio Corbetta 1,2,3✉

When looking at visual images, the eyes move to the most salient and behaviourally relevant

objects. Saliency and semantic information significantly explain where people look. Less is

known about the spatiotemporal properties of eye movements (i.e., how people look). We

show that three latent variables explain 60% of eye movement dynamics of more than a

hundred observers looking at hundreds of different natural images. The first component

explaining 30% of variability loads on fixation duration, and it does not relate to image

saliency or semantics; it approximates a power-law distribution of gaze steps, an intrinsic

dynamic measure, and identifies observers with two viewing styles: static and dynamic.

Notably, these viewing styles were also identified when observers look at a blank screen.

These results support the importance of endogenous processes such as intrinsic dynamics to

explain eye movement spatiotemporal properties.
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The exploration of visual scenes through eye movements is a
complex behaviour mediated by the sequential and recur-
sive interactions of multiple cognitive processes. For many

years it was thought that eye movements were predominantly
guided by stimulus-driven factors such as the sensory distinc-
tiveness of different objects in the visual field. A highly influential
model by Itti and colleagues1 proposed a neural network that
selects attended locations in a single topographical saliency map
formed by multiscale low-level features of different objects.
Indeed, the pattern of eye movements while viewing complex
scenes is in part predicted by the saliency of the visual images
(e.g., videos2 or pictures3). A cognitive model for the control of
visual attention during the search is also based on the parallel
analysis of visual features4.

However, since the seminal studies of Yarbus5, it has been
known that the patterns of eye movements depend not only on
low-level features, but also on the behavioural relevance of stimuli
in the visual scene, e.g., people, faces, etc., as well as the goals of
the observer. Therefore, current theories, and computational
models, propose that visual exploration is guided both by sensory
and cognitive signals3,6,7. However, even the best models of
fixation location to static natural images account for about 30% of
the potential information present in an image8. In general, these
models see the brain as a sensory-motor analyzer whose activity is
mainly driven by the analysis and transformation of sensory
stimuli into motor decisions.

Understanding naturalistic eye movement behaviour is not
limited only to the topographical aspects of visual exploration,
but also to its spatiotemporal dynamics. Most studies to date have
focused on the spatial pattern of fixations during natural visual
exploration1–8. The spatiotemporal pattern of fixation selection is
of increasing interest to the field, but much less studied. One
study found that eye movement parameters (e.g., fixation dura-
tion, saccade amplitude) were correlated across different labora-
tory tasks (e.g., sustained fixation vs. search vs. Stroop paradigm),
and that the majority of variability across subjects could be
summarized with a single factor putatively related to visual
attention9. Other studies found important individual variability,
but also high consistency of spatiotemporal patterns across tasks
(e.g., visual search vs. fixation10–13) or different versions of the
same picture14.

These results suggest that eye movement spatiotemporal pat-
terns may reflect an intrinsic or endogenous signature relatively
independent of visual input or goal10. These patterns have been
related to individual cognitive styles15, personality traits16, and
genetic influence17.

Here we aimed to quantify the role of stimulus-driven vs.
endogenous (intrinsic) parameters by examining eye movement
spatiotemporal features in a large group of healthy participants
while they viewed a large set of real-world scenes vs. when they
viewed a blank screen, i.e., without any visual stimulus.

First, we were interested in testing whether the variability of
eye movement (e.g., amplitude, velocity), fixation (e.g., duration,
rate), and pupil parameters across many subjects, and across
many visual scenes, was explained with a relatively high or low
number of dimensions. High dimensionality would indicate that
different subjects look differently, or that different image features
yield different eye movement patterns or both. A low dimensional
solution, instead, would indicate that eye movement/fixation
patterns across subjects can be explained with a few components
relatively independent of stimulus content.

Secondly, we asked whether eye movement spatiotemporal
features during visual exploration were modulated by sensory or
semantic content—stimulus-driven information— or by a power-
law-like distribution of gaze steps18—a measure of intrinsic
dynamics. Power law relations are ubiquitously found in nature

and predict many complex phenomena such as earthquakes19,
volcanic eruptions20, stock market21, and foraging behaviour of
many species22,23. Power-law behaviour in biological systems is
thought to reflect the intrinsic constraints of the system, e.g.,
anatomical connections or neural dynamics in the case of the
brain24–27. Power-law scaling relations have been also found in
eye movement patterns during visual search18.

Finally, to further tease apart sensory-driven vs. endogen-
ous factors, we measured spatiotemporal eye movement
parameters in the absence of visual stimuli, i.e., when looking
at a blank screen, and compare them to parameters found
during visual exploration. A large parameter difference in the
two conditions would be consistent with the importance of
sensory-driven factors; in contrast, their similarity would be
more consistent with intrinsic factors controlling eye move-
ment patterns.

This study highlights a low dimensionality of eye movements
spatiotemporal dynamics and a role of intrinsic factors (i.e.,
similarity between eye movements while watching scenes vs.
blank screen, and power-law distribution of eye-movements).
These results suggest that visual exploration dynamics are par-
tially independent from the visual content.

Results
Healthy participants (n= 120) were recruited at the University of
Padova, with n= 114 satisfying inclusion criteria (Supplementary
Table 1 for demographic information). All participants had
normal or corrected-to-normal (i.e., glasses, n= 54) vision. Par-
ticipants (aged 19–34 years) were tested in a single experimental
session lasting approximately 2 h during which their eye-
movements were tracked while watching a blank screen or
freely exploring a set of 185 real-world scenes. These scenes were
selected from a larger set of 36,500 pictures28 (see Supplementary
Fig. 1 for the flowchart used for selection) to be representative of
the following categories: indoor vs. outdoor, which in turn were
divided into natural vs. man-made. The content of the pictures
had no emotional valence and half of them contained human
figures (Supplementary Fig. 2 shows exemplars of each category).
Participants were asked to look at each picture carefully, as they
were told that they would be asked some questions later on, and,
when ready, to advance to the next picture by pressing the
spacebar on the computer keyboard (Fig. 1). After the free
viewing phase, they were asked to recall and describe a subset of
images which were repeated five times. The average number of
freely recalled details was 59.97 (SD= 20.5; range: 22–141; 2.6%
false memories) across all the five images.

A large set of eye movement features (i.e., 58) were extracted
including: fixation duration and number, gaze step length and
the number of direction flips, pupil diameter, velocity,
exploration time, etc. (Supplementary Table 2). A battery of
behavioural tests and questionnaires was then administered to
evaluate working memory, visuospatial memory, impulsivity,
anxiety, and personality traits (see Supplementary Table 1 for a
list of the measures). All volunteers received 10€ for their
participation.

Low dimensionality in eye movement dynamics. The first
question we addressed is whether eye movement dynamical fea-
tures during visual exploration are ‘different’ or ‘similar’ across
individual observers and many different images. We examined
the pattern of correlation across eye movement features, images,
and subjects by running a principal component analysis (PCA)
on the scaled and mean-centred full set of features extracted from
the gaze data acquired during the exploration of images. A three-
components solution accounted for 59% of the total variance
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(Fig. 2 and Supplementary Table 3). The first component (30.5%)
mainly loaded on fixation duration, the second (16.4%) on gaze
step direction and exploration time, and the third (12.1%) on
gaze step length, where gaze steps are defined as gaze shifts
between consecutive timepoints (see “Methods” section for fur-
ther details). Pupil diameter inversely correlated with fixation

duration, in line with previous literature showing that pupils tend
to contract during prolonged fixations29, and suggesting the
existence of a common mechanism that regulates both pupillary
response and fixation disengagement through the activity of the
superior colliculus, as demonstrated in primates’ brain30,31.

We then performed a k-means cluster analysis splitting the
sample into two clusters. The k= 2 clustering solution emerged
as the most reliable after comparing the similarity between k-
means and hierarchical clustering solutions obtained with
different distance measures and values of k (see Supplementary
Fig. 2 for details). Figure 3a shows the distribution of observers
along the first three principal component (PC) scores. The best
separation (ROC analysis accuracy = 99.9%, 95% C.I.
[95.83–100] with cut-off value of 0.69, AUC= 99.9%) was
obtained along the PC1 score (Fig. 3b). Participants with high
PC1 scores were nicknamed "Static Viewers" because they
showed a lower fixation rate but longer fixations. Participants
with low PC1 scores were nicknamed "Dynamic Viewers"
because they showed more frequent but shorter fixations
(Fig. 3c).

In general, static viewers explored images for a longer time and
showed on average higher amplitude and more numerous gaze
steps, more gaze flips, smaller pupil diameter, as well as a
distribution of gaze steps more similar to a power law. Moreover,
they looked less at regions in the image with high semantic and
saliency information (see “Methods” section for details on the
extraction of semantic and saliency information). Dynamic
viewers showed an opposite pattern of features, with a higher
fixation rate, more fixations, higher pupil diameter, and a
distribution of gaze steps less similar to a power law. Figure 4
shows a characterization of the viewing styles in terms of
individual features and their relative effect size (Cohen d).

The robustness of this solution was tested by splitting the
images in odd and even, computing a PCA in each subset, and
correlating the corresponding PC1 scores. We found a high

Fig. 2 Correlation matrix of spatiotemporal features and principal components (PCs). The line plot shows the variance explained by different PCs. The
matrix shows the correlation (Pearson’s r) between features, which are ordered according to their loadings in the first three PCs. The colour of Y-axis labels
indicates the PC with the highest loading for the corresponding feature, and features written in bold are those with loadings > 0.2.

Fig. 1 Experimental paradigm. The experiment begins with a blank screen
viewing condition in which participants were asked to look at a grey screen
for 30 s. Next, participants were presented with a set of static images
representing a variety of different scenes (e.g., indoor, outdoor scenes with
or without humans or natural vs. man-made). Subjects were asked to
explore with their eyes the picture and press a bar when ready to explore
the next picture. They were also told that they will be asked some questions
at the end of the experiment.
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degree of similarity (for all images vs. odd; all images vs. even;
and even vs. odd images, all r values > 0.97, Supplementary
Fig. 4). Furthermore, each participant’s cluster label remained
substantially the same when the cluster analysis was run on even
(92.1%, i.e., 105/114) or odd (97.4%, i.e., 111/114) images.

To check that the component scores (PC1-3) were a good
model of the original observations, we used PC1, PC2, and
PC3 scores to reconstruct the original features matrix and
compared the similarity of the resulting reconstruction (Supple-
mentary Fig. 5A). As expected, the most accurate reconstruction
was obtained using PC1, compared to the other components.
Next, we reconstructed individual patterns of features for

exemplar Dynamic and Static viewers. The PC1-reconstructed
patterns showed the highest similarity with the original ones,
measured with the Pearson’s correlation coefficient (Supplemen-
tary Fig. 5B; Static viewer r= 0.86; Dynamic viewer r= 0.77).

Next, we examined if PC1 scores were modulated across
different image-categories. We first computed the set of features
for each image category (i.e., indoor, outdoor natural, outdoor
manmade, scenes with humans, scenes without humans),
separately. Then, we computed individual PC1 scores from
category-specific features by applying PC1 loadings calculated on
all images. This procedure allows to obtain comparable individual
scores within the same components space. PC1 scores obtained

Fig. 3 Relation between clusters and principal components. a Clusters’ projection in the three-dimensional space defined by the first three principal
components. b Two-dimensional relation between PC scores. The values of PC1 are those best describing the two clusters; c Examples of Static and
Dynamic eye-movements pattern (each dot represents gaze position sampled at a timepoint). Static viewers are represented in blue and Dynamic viewers
in red.

Fig. 4 Characterization of the static vs. dynamic viewing styles. A series of t-test was run comparing Static (n= 42) and Dynamic (n= 72) Viewers
across all features. Supplementary Table 2 shows a description of features’ labels. In order for the different metrics to be comparable, an effect-size
measure (i.e., Cohen’s d) has been computed (Y-axis). Significant results surviving false discovery rate (FDR) correction for multiple comparisons are
represented by coloured bars. Red bars indicate a significantly higher value for Dynamic viewers compared to Static viewers in the corresponding feature,
while blue bars reveal the opposite pattern (i.e., Static viewers higher than Dynamic). White bars indicate t-tests not reaching significance after FDR
correction.
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from all images were very similar to those obtained from different
category-specific features (all Pearson’s r= 0.97; Fig. 5). Inspec-
tion of the PC1 scores at the individual subject level shows that
subjects with high/low PC scores overall maintained high/low PC
scores for each different image category.

Overall, these findings support a low dimensionality of eye
movement dynamic features across many subjects and types of
visual scene, and the idea that eye movement dynamic features
are relatively independent of image content.

Relative influence of sensory, semantic, and endogenous vari-
ables on eye movement dynamics. Once established that eye
movement dynamics across many subjects and visual images can
be summarized with a low number of components, we examined
more directly if eye movement across subjects was predicted by
stimulus-driven or intrinsic factors. We used PC1 scores as
dependent variable in a linear regression model that included for
each subject and across images: (1) the mean of local sensory
saliency values across fixations (SAL), computed as an estimate of
the overlap between fixation positions and the local values of the
salience-based map derived for each scene from the Itti and Koch
model1; (2) the mean of local semantic values (SEM), computed
similarly on semantic maps for each scene derived from a con-
volutional neural network trained on 10,000,000 images28 (see
“Methods” sections for further details, and Supplementary Fig. 6
for a graphical representation of the procedure used to compute
SAL and SEM variables); (3) the complexity of visual exploration
topography quantified with Shannon Entropy (ShEn), a measure

of visual search strategy32,33; (4) the Kolmogorov−Smirnov dis-
tance (KSD) between the individual distribution of gaze steps and
a power-law distribution. Since power laws in a neural system
suggest the existence of intrinsic system constraints24, we used
this measure to study the intrinsic component of eye movements
dynamics, as previously suggested34,35.

Four nested linear regression models were built and compared
by means of likelihood ratio test (LRT) to determine whether
adding a predictor significantly improved model fit. All models
included PC1 scores as dependent variable and a different set of
predictors. Specifically, M1 included only SAL; M2 included SAL
and SEM, M3 included SAL, SEM, and ShEn, and M4 included
SAL, SEM, ShEn, and KSD. The LRT showed that M4 was
significantly the best model (F[1, 109]= 14.49, p < .001; see
Supplementary Table 4 upper part for details) and led to an
increase in the explained variance of about 10% (i.e.,
R2M1= 0.083, R2M2= 0.087, R2M3= 0.099, R2M4= 0.198; all
values indicate adjusted R2). This model (i.e., including all
predictors; model F[4, 109]= 7.59, p < .001) showed a significant
effect of KSD (t=−3.79, p < .001; Fig. 6a and Supplementary
Fig. 7) and a trend to significance for ShEn (t= 1.76, p= 0.081).
In contrast, SEM and SAL were not significant even though the
set of pictures was highly variable in terms of semantic and
saliency content (Supplementary Fig. 6). See Spatiotemporal
features model in Supplementary Table 5 for further details. These
results suggest that the model best explaining a significant
fraction of PC1 scores (~20% variance explained) is the one
containing KSD, and that SAL and SEM do not significantly
contribute to explain spatiotemporal patterns of eye movements
during free viewing of static natural images.

Control analyses on PC1−PC3. The M4 model was validated in
a split-half design in which 57/114 participants were randomly
selected to fit the model parameters while the remaining 57 were
used only for testing (i.e., prediction of PC1 scores). This pro-
cedure was repeated 1,000 times and the Pearson’s r coefficient
was collected for each iteration to test the correlation between
actual and predicted PC1 scores. All correlations were positive
(97.4% of them were significant), with a mean Pearson’s r value of
0.42 (SD= 0.078; Fig. 6b).

Next, to rule out the possibility that the results were biased by
the eye-tracker’s relatively low spatial resolution (~0.2°, 120 Hz
acquisition rate), we checked the similarity of eye-movements
patterns to power-laws, as computed through the KSD, using
different thresholds of gaze-step length (0.2°–8.1°). Specifically,
we removed gaze-steps smaller than each threshold, recomputed
the KSD calculation, and the linear regression model predicting
PC1 values. This analysis showed that the contribution of KSD
was stable across multiple thresholds (0.2°, 0.4°, 0.8°, 1.6°, 3.2°,
4.0°, and 4.9°) eliminating the possibility that this effect was
driven by small eye-movements not detected by the eye-tracker
(Supplementary Fig. 8).

In control analyses, we ran the same model on PC2 (loading on
gaze steps direction flips and exploration time) and PC3 (loading
on gaze steps length). The full model (SAL, SEM, ShEn, KSD)
indicated that KSD was predictive of PC2 (t=−2.96 p= 0.004),
while SEM was predictive of PC3 (t=−2.45 p= 0.02). Again, we
did not find a significant contribution of the SAL variable.

This analysis shows that the pattern of eye movement dynamic
features during visual exploration of scenes is explained by a few
components (~60% variance across images and subjects). These
components can be used to separate two styles of viewing (>90%
accuracy of classification) that are not predicted by sensory
salience. On the other hand, the visual exploration style was
significantly predicted (~20% variance) by intrinsic dynamics

Fig. 5 Reliability of the first principal component (PC1) across image
categories. The full set of features used for the principal component
analysis (PCA) in the main analysis was extracted separately for each
image category (i.e., indoor, outdoor natural, outdoor manmade, scenes
with humans, scenes without humans). Next, we computed category-
specific individual PC1 scores in the component space of the main PCA by
applying PC1 loadings (calculated on all images) on features computed
from each category. This procedure compares PC1 scores obtained on all
images vs. specific image category. The upper five scatterplots represent
the correlation between PC1 scores extracted from each specific image
category (x-axis) and from all images (y-axis). The similarity is very high
(all Pearson’s r= 0.97). The matrix shows the PC1 scores for each subject
across different image categories. Note high variability across subjects and
similarity across image categories.
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captured by the similarity of the eye gaze steps length distribution
to a power law.

Relative influence of sensory, semantic, and endogenous vari-
ables on fixations distribution. Given most of the literature and
available models focus on the spatial pattern of fixations1–8, we
investigated whether intrinsic factors (distance between the dis-
tribution of gaze step length and a power law as measured by
KSD) significantly contributed to the spatial distribution of
fixations. However, since KSD is usually computed across all eye
movements (fixation) in an image, we developed a method to
estimate KSD from the distribution of gaze steps in different
locations of an image. Maps of regional KSD values were then
compared to corresponding fixation density maps (FDMs), sal-
iency, and semantic maps (See “Methods” section and Supple-
mentary Fig. 9 for details). A mixed-effects model approach was
chosen since it allows to simultaneously take into consideration
not only factors under experimental control (i.e., fixed effects),
but also the so-called random effects (e.g., repeated measures). In
our case, we built three mixed-effects models (MM) including a
random intercept for both images and subjects, and the following
fixed effects: saliency (MM1), saliency and semantic (MM2),
saliency, semantic, and KSD (MM3). ShEn was not included due
to its high correlation with FDM. The different models were
compared by means of a LRT. Specifically, we tested if the

addition of KSD to a model including saliency and semantic
information explained the topographical distribution of fixations
more accurately. The model comparison was run across subjects
and also within each subject independently. In the latter case,
MMs were built with random intercept only for images.

The model including saliency, semantic, and KSD (MM3) was
the best model (χ²[1]= 681.12, p < .001; Supplementary table 4
lower part). This was confirmed at the individual level with MM3
being the best model in >70% of subjects. The winning model
showed strong significant effects of SAL (t= 167.16, p < .001),
SEM (t= 123.32, p < .001), and KSD (t=−26.11, p < .001; Fig. 6a
and Supplementary Fig. 7). See Fixation topography model in
Supplementary Table 5 for further details.

These results confirm the role of saliency and semantic
information in explaining the topography of fixations (i.e.,
FDMs), and suggest a significant contribution of KSD, despite
the proportion of explained variance did not increase significantly
(i.e., R2MM1= 0.151, R2MM2= 0.195, R2MM3= 0.196).

Eye movement dynamics during blank screen viewing. Given
the significant influence of intrinsic eye movement dynamics on
visual exploration, we asked whether the pattern of eye move-
ments could be used to accurately classify participants during
visual exploration of a blank screen (herein blank screen viewing).
A positive result would strongly support the idea that intrinsic

Fig. 6 Significant results of regression models and prediction performance. a Significant relation between KSD and PC1 scores in the best visual
exploration model (i.e., Spatiotemporal features model); b Pearson’s correlation values between actual and model-predicted PC1 scores obtained over 1,000
iterations of split-half validation procedure. At each iteration the sample (n= 114) was randomly split into two halves, one was used as training set to fit the
regression model and the other one (i.e., test set) was used to assess the model prediction of PC1 scores for unseen data. The red line indicates the
frequency distribution of the correlation values in the scatter plot. The peak of the red line indicates the mean r value = 0.42. Significant effects of Age (c)
and Stroop test (d) on PC1 scores in the Cognitive-Personality model; e Pearson’s correlation values between actual and model-predicted PC1 scores as
described before (see b). The peak of the red line indicates the mean r value= 0.32.
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factors independent of visual analysis are important in controlling
eye movement patterns. To test this hypothesis, we applied the
same pipeline of analysis, i.e., features extraction and PCA to 30 s
of blank screen viewing data prior to the presentation of the first
image. It should be emphasized that subjects had not seen any of
the images prior to the blank screen viewing observation period.
Fourteen participants were removed from this analysis because
they maintained steady fixation at the centre of the screen. The
blank screen viewing data analysis was thus conducted on a
sample of n= 100 subjects. The results did not change when all
subjects were included.

The PCA on blank screen viewing data (Supplementary Table 3
and Supplementary Fig. 10) showed also a low dimensionality
with three components explaining ~50% of the variance (23.4, 19,
and 8.4%, respectively). Not surprisingly, the order of compo-
nents during blank screen viewing was not the same as during
visual exploration. Fixation features that loaded on PC1 during
visual exploration moved to a weak PC3 during blank screen
viewing (7 out 11 features, loading ≥0.2). Conversely, PC1 in
blank screen viewing loaded on the maximum length and
variability of gaze steps, as well as on the number of flips on
the Y axis, features that were mainly related to PC2 and PC3
during visual exploration (6 out of 7 features, loading ≥0.2). This
was also confirmed quantitatively by running a linear regression
model with PC1 during blank screen viewing as a dependent
variable, and PC1−3 of image viewing (as well as their
interactions) as predictors. This model showed that PC3 during
image-viewing significantly predicted PC1 during blank screen
viewing (t= 2.98, p= 0.004).

Next, we used blank screen viewing eye movement features to
predict individual subject labels (Static vs. Dynamic viewers) using a
multivariate Random Forest algorithm in a cross-classification design.
That is, the algorithm was trained on features extracted in the blank
screen viewing condition and tested on cluster labels extracted during
the image-viewing task. The model showed an accuracy of 79%
(p < .001; 95% C.I. [71.3–87.0]) in predicting cluster labels from
features extracted from blank screen viewing (Fig. 7a; features
importance is shown in Supplementary Fig. 11). We also checked the
stability of viewing styles between image-viewing and blank screen
viewing conditions and we found that the individual viewing style was
maintained in 68% of cases (Supplementary Fig. 12). Inspection of the
between-subjects correlation matrix of eye movement features during
visual exploration and blank screen viewing shows that individuals
tend to correlate significantly more with members of the same cluster
(within) than with members of the other cluster (between; Fig. 7b, c;
all Bonferroni-corrected t-test p < .001). Moreover, the mean
correlation among subjects within the Static cluster was significantly
stronger than among subjects within the Dynamic cluster, both in
image-viewing (t[1451.1]= 8.76, p < .001) and blank screen viewing
(t[1422.9]= 6.59, p < .001). Importantly, the structure of the between-
subjects similarity in visual exploration (Fig. 7b, left matrix)
significantly correlated with that in blank screen viewing (Fig. 7b,
right matrix; Pearson’s r= 0.37, p < .001). These findings show that
the visual exploration style found during free viewing of natural
scenes is identifiable even in absence of visual stimuli.

Eye movement dynamics correlate with cognition and per-
sonality. The final analysis investigated whether eye movement
spatiotemporal features (as indexed by PC1 scores) were related to
individual characteristics, namely demographic information (i.e., age,
sex, and education), cognitive scores (i.e., inhibition, visuospatial and
verbal memory), and personality traits (i.e., Big Five scores).

Indeed, an emerging body of research suggests a link between
eye movements and personality traits16,36–39, with Openness
related to longer fixations37.

The full regression model (see Cognitive-Personality model in
Supplementary Table 5) included all test scores listed in
Supplementary Table 1 as predictors, with the exception of
depression and anxiety scores (DASS) and visuospatial construc-
tional abilities scores (copy of the Rey−Osterrieth Complex
Figure; ROCF). The DASS scores were not included in the model
since they were employed only to exclude participants with high
levels of anxiety, depression, and/or stress, to avoid biased eye
movement data. The copy of the ROCF was excluded because it
shows ceiling effect in healthy participants and for our purposes it
was administered only to test the delayed recall. The model was
significant (F[16,81]= 1.84, p= 0.03, adjusted-R2= 0.12) with a
significant effect of Age (t= 2.66, p= 0.009; Fig. 6c) and
impulsivity (i.e., Stroop test score; t=−2.36, p= 0.021; Fig. 6d),
and trend significance for the NEO-FFI subscale Openness
(t= 1.93, p= 0.057). Specifically, dynamic viewers were younger
(range of the whole sample: 19–34 years old), showed higher
impulsivity (i.e., lower inhibition of automatic responses at Stroop
test), and a non-significant tendency for being less open. The
model was validated using the split-half procedure described
above with 1,000 iterations (Fig. 6e).

Discussion
In this study, we measured eye movements in a large sample of
healthy participants during visual exploration of many real-world
scenes. We found that eye movement spatiotemporal parameters
were strongly correlated across pictures and participants, with
three components explaining roughly 60% of the variance of eye
movement dynamics. This low dimensional structure of eye
movement patterns, especially the duration and number of fixa-
tion (PC1) identified two viewing styles: static and dynamic. The
inter-individual variability of PC1 scores was significantly pre-
dicted by the similarity of gaze step length distribution to a
power-law, an intrinsic property of dynamical systems, but not by
the saliency or semantic content of the visual scenes. In addition,
static and dynamic viewers could be identified by the pattern of
eye movement features while participants looked at a blank
screen, and they differed in their cognitive profile.

Herein, we discuss two main results: the low dimensionality of
eye movement spatiotemporal features during visual exploration,
and the role of intrinsic dynamics vis-a-vis sensory salience and
semantic information in guiding visual exploration style.

The low dimensionality of eye movements is not an entirely
novel result. Poynter and colleagues9, in a study on
n= 40 subjects, found that eye movement parameters correlated
across different laboratory tasks (e.g., sustained fixation, search,
Stroop), and could be summarized with a single factor, putatively
related to visual attention. Their factor loaded on the duration
and frequency of fixations, which is also an important component
of our PC1. Using a larger set of features, we separated two
clusters of observers, static and dynamic, who differed not only in
terms of the rate or duration of fixation, but also pupil diameter,
spontaneous viewing time, amplitude and number of gaze steps,
and number of gaze flips (Fig. 4). The assignment to one cluster
or the other was stable (>90% accuracy) across different sets of
images.

Static viewers showed less frequent but longer fixations, longer
exploration time, larger and more numerous gaze steps, more
gaze flips (i.e., change of gaze direction), smaller pupil diameter,
as well as a distribution of gaze steps closer to a power law.
Moreover, they spent less time on parts of the images that were
rich in semantic and saliency information. Dynamic viewers
showed the opposite pattern. Intuitively, static viewers better
approximated a power-law distribution because they showed
more small amplitude and relative few long-range gaze steps,
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Fig. 7 Subjects similarity in image-viewing and blank screen viewing. a Blank screen viewing eye movement features were extracted and used to predict
individual subject labels (Static vs. Dynamic) by means of a random forest classifier. The algorithm was trained on features extracted from the blank screen
viewing condition and tested on cluster labels extracted while participants were exploring visual scenes, in a cross-classification design. The model showed
79% accuracy in cluster classification from blank screen viewing features. b For each pair of subjects a Pearson’s r is computed between the vectors of z-
scored features extracted from the image-viewing task (right) and the blank screen viewing condition (left). X and Y axes indicate subjects. The colour of
each cell indicates the Pearson’s correlation value, while the coloured squares indicate the cluster (i.e., the visual exploration style; blue = static viewers;
red = dynamic viewers). c Boxplots showing the comparison between the mean correlation within each group (static= STA, n= 42; dynamic=DYN,
n= 72) and between groups (STA-DYN). STA = within-group correlation in static viewers; DYN=within-group correlation in Dynamic viewers; STA-
DYN: between-groups correlation. *= Bonferroni-corrected significant difference tested by means of a two-sample t-test.
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while dynamic viewers made a more balanced combination of
short and long gaze steps.

The covariance of fixation duration and gaze step distribution
is consistent with an interdependent control process40. At the
neural level, fixation and saccadic activity are inter-related at
multiple levels in the brain (frontal eye field, superior colliculus,
brainstem41–43). At the cortical level, different neural systems, the
dorsal and ventral attention networks44,45, control focal proces-
sing vs. re-orienting to novel locations.

Visual processing occurs during fixations, hence a longer
fixation time in static viewers may imply more-in-depth proces-
sing of fewer stimuli. Conversely, dynamic viewers may look
more rapidly, and more superficially, to more items in a visual
scene. This interpretation is also consistent with the observation
that PC1 scores were related to impulsivity, i.e., the ability to
inhibit an automatic response. Specifically, dynamic viewers tend
to be more impulsive than static viewers. This is in line with
previous literature linking impulsivity to voluntary control of
fixation behaviour46.

The presence of low dimensionality and individual styles in
human cognition that defines inter-individual variability is con-
sistent with other recent findings. For instance, a recent study
classified individuals along the Big-Five dimensions of personality
based on patterns of eye movements in real life (walking on
campus)16. Similarly, studies of human mobility have revealed
two distinct styles47 during walking from one location to another
in a city: “Returners” who tend to walk back-and-forth nearly
always taking the same trajectory, and “Explorers” who explore
more frequently new locations in their route. The authors showed
also a social bias in the mobility profile, with a tendency to engage
more socially individuals with a similar mobility profile.

In the field of reward, we have recently shown that the tem-
poral discount functions in a large group of healthy subjects
(n= 1200) show a Pareto optimality distribution that defines
three archetypes: people who always wait for larger rewards;
people who always take immediately; and people who take
immediately when the reward is large48. The existence of different
styles may reflect trade-offs in cognitive or physical traits that
have been selected during evolution to maximize specialized
performance, similarly to what is shown in other fields such as
animal behaviour49 or biological circuits50.

Next, we asked: what controls the low dimensionality of eye
movement patterns across subjects? We first quantified sensory
salience using a classic saliency model1, while semantic infor-
mation was quantified based on a deep learning neural network28.
The amount of saliency and semantic information within fixated
locations were then used as predictors of PC1 scores, along with a
measure of visual scanning topography (Shannon entropy of eye
movements), and the distance of each individual eye movement
distribution to a power law (KSD; see “Methods” section). The
presence of power-law dynamics in behaviour (including eye
movements), as well as in neural systems24, is thought to reflect
intrinsic dynamics34,35. Surprisingly, we found that saliency or
semantic information did not predict significantly PC1 scores
(nor PC2). It is important to note that this result is not due to
averaging of saliency or semantic information across pictures,
thus leaving only shared information. Rather, estimates of sal-
iency and semantic information were computed fixation by
fixation (i.e., amount of saliency/semantic information collected
by the observer in each fixation), therefore taking into account
eye movement patterns in each picture separately.

On the other hand, saliency and semantic maps significantly
predicted the topography of fixations, as expected from previous
literature. Taken together these results support and extend pre-
vious literature suggesting that saliency models accurately predict
eye movements behaviour during free-viewing in terms of

fixation topography51–53. This is in line with the assumption that
when an observer is not engaged in a specific task eye movements
will be directed to regions of higher saliency51,52.

However, saliency plays a lesser role in predicting the spatio-
temporal properties of eye movements, i.e., their dynamics (as
previously shown for scanpaths51). Here, several results pointed
to the importance of endogenous factors. First, the components
mainly describing spatiotemporal eye movements features that
are independent of image content (e.g., image category). Sec-
ondly, the low influence of saliency and semantics in explaining
PC1 variability. Thirdly, the similarity of the spatiotemporal
latent variables during free viewing of static natural images and
blank screen. Importantly, we find that the distance of the dis-
tribution of gaze shifts from a power law (KSD) predicts about
20% of the PC1 score variability across subjects. In addition, KSD
also contributes albeit less strongly than saliency and semantic
information to the topography of fixations.

Power laws are ubiquitous in the world, as well as in the brain
where they are thought to reflect neurobiological constraints
imposed by anatomical connectivity and neural dynamics. Power
laws have been described in fMRI, EEG/MEG, local field poten-
tials, and single-unit activity54–56. Moreover, behavioural per-
formance fluctuations also follow a power law, including eye
movements40, and tend to correlate with slow and fast neuronal
activity. Interestingly, the power-law exponents of behaviour and
neural activity are correlated across individuals both during task
and rest57. Therefore, we posited that a similar link may occur
between eye movement dynamics and neural dynamics, even
spontaneously at rest (i.e., during blank screen viewing). This
implies that resting dynamics have an influence on how we move
the eyes during visual exploration, thus potentially revealing
stable, biologically determined, traits of the observer58.

This was confirmed in our recordings of eye movements to a
blank screen. We found, in this case, three components that
explained a similar amount of variance (~50%) with the most
variance explained by gaze step amplitude (gaze step length PC1:
29% variance), and the least variance explained by fixation
duration and frequency (PC3: 9% variance). Hence, the features
defining the three components resembled those found during
visual exploration, but their relative weight differed. During
exploration, eye movement variability was mainly explained by
fixation duration; during blank screen viewing, the variability of
eye movement spatiotemporal features was mainly explained by
the amplitude of gaze steps. This indicates that similar compo-
nents are active in both situations, but that visual exploration
gently moves the attractor space of eye movement parameters.
This finding is in line with the similarity of brain activity topo-
graphy at rest and during tasks59,60, with the relative correlation
within and between networks adjusted during different tasks60–62.
This is consistent with the idea that spontaneous neural dynamics
function as a spatiotemporal prior constraining the parameters
space of task-evoked activity63,64.

Our results are consistent with a previous small-scale study
(n= 15) in which visual exploration eye movements were com-
pared to eye movements recorded in darkness10. However, eye
movements in darkness could reflect several factors not directly
related to spontaneous visual exploration dynamics, such as
posture-related information65 or memory-related processing66.
Also, pupillary responses are not controlled in the darkness.
Other small-scale studies used a similar blank screen condition
during a memory retrieval task67 or while hearing sentences
about a previously presented scene68. To the best of our knowl-
edge, our work represents the first large-scale study in which
spontaneous eye movement dynamics are compared to those
recorded during exploration of many real-world visual scenes,
and the first to show that characteristics of eye movements at rest
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(i.e., during blank screen viewing) can be used to classify different
styles of visual exploration.

Regarding the present study’s limitations, the sampling rate of
the eye tracker (i.e., 120 Hz) did not allow us to investigate in
detail the dynamics of microsaccades that are an important
mechanism of fixation. Visual exploration could be also studied
in more natural conditions without the use of a chin-rest support
using algorithms for head movements correction, or wearable
eye-trackers. The blank screen viewing period of observation was
short (30 s prior to the presentation of the first image) so that we
cannot rule out that some degree of expectation did influence the
results. Also, longer blank screen viewing periods would allow the
detection of slower fluctuations of eye movement patterns, as well
as pupillary responses that are related to vigilance fluctuations
and could significantly impact intrinsic activity69.

In conclusion, eye movement features during free visual
exploration are correlated across subjects, and cluster people in
two phenotypes depending on their style of exploration. The
degree to which the distribution of gaze steps length resembled a
power-law was the strongest predictor of the visual exploration
style. We speculate that this could suggest the existence of neu-
rological constraints that drive visual exploration behaviour and
predict individual differences, e.g., patterns of anatomical con-
nectivity and/or neural dynamics.

Another related implication of this work would be its potential
application in clinical populations. For instance, some authors
have shown that neurodegenerative disorders are associated with
specific patterns of eye-movements features70, but these studies
have mainly used laboratory tasks (e.g., anti-saccades tasks), with
some investigations during reading71,72, and not focused on
intrinsic dynamics. It is possible that alterations of eye movement
intrinsic patterns may represent an early biomarker of
neurodegeneration.

Methods
Subjects. A sample of 120 students was recruited at the University of Padova
(mean age = 23.4, SD= 2.42; 49 M). All participants had normal or corrected-to-
normal (i.e., glasses, n= 54) vision. We excluded individuals with excessive data
loss, defined as less than 50% of usable data in more than 25% of trials (n= 3
individuals excluded). Moreover, two further participants were excluded due to the
interruption of the experimental session for a panic attack in one case, and for eyes
irritation in the other case. Finally, one participant was excluded because of colour-
blindness revealed after the experimental session was completed. Thus, 114 out of
120 participants were included in the final sample (mean age= 23.52, SD= 2.45,
67 F). All participants signed an informed consent before the experimental session
and after it, they received a remuneration of 10€ for their participation. The study
was approved by the Ethical Committee of the University of Padova.

Experimental design. Each participant took part in a single session composed of
five phases (total duration: 2 h). In the first phase, participants were asked to look
at a grey screen without any stimulation for 30 s. Participants were just told to
freely move their eyes within the screen boundaries.

In the second phase a set of 185 images of scenes selected from the Places 365
database (see the Stimuli paragraph for details about the dataset and the stimuli
selection). Stimuli subtended 27.1° × 20.5° (width × height) degrees of visual angle
on a screen subtending 31.6° × 23.9°. Participants were instructed to freely look at
the pictures in a self-paced design (for min 2,000 ms−max 10,000 ms; 1500 ms ITI)
and to move to the next trial by pressing the spacebar. Moreover, they were
informed that they would be asked some questions at the end of the task. After the
first half of the images was presented, participants had a 10 min break to let them
relax and rest their eyes. Once all the pictures were presented, participants had
another 5 min break before the third phase in which they were asked to recall the
five repeated images. Participants were requested to describe each image for 3 min
as accurately as possible while their verbal description was recorded by means of a
voice recorder. During the recall, participants were presented with the same grey
screen adopted in phase 1. For the purpose of the present paper, only phases 1 and
2 have been considered.

Stimuli. The stimuli used in the present experiment were real-world scenes selected
from the Places dataset28, a scenes dataset designed to train artificial systems for
image recognition. Specifically, the dataset we used in this experiment is the
validation set of the Places365-Standard dataset (the dataset can be downloaded

here: http://places2.csail.mit.edu/download.html). All images in the dataset were
categorized according to three hierarchical levels. Level 1 was the most general and
subdivided the images into three categories: indoor, outdoor man-made, and
outdoor natural. In Level 2, each of the categories in Level 1 was split into four to
six subcategories (e.g., for Level 1 category “indoor”, Level 2 subcategories exam-
ples are “shopping and dining” and “home or hotel”). Finally, Level 3 encoded
365 specific categories describing the type of scene (e.g., art gallery, bakery
shop, etc.)

For the purposes of the present work, only Level 1 categorization was chosen,
moreover, images were coded through an additional dimension, that is whether
they depicted human beings or not. Thus, six categories were finally considered
(i.e., indoor manmade with humans, indoor manmade without humans, outdoor
manmade with humans, outdoor manmade without humans, outdoor natural with
humans, outdoor natural without humans) and 30 images for each category were
chosen (e.g., outdoor manmade with humans; Supplementary Fig. 2). The final set
of images was composed of 180 items with the add of five further images for the
recall phase purpose. These images were taken from all the above-described
categories but outdoor natural images without humans as this type of images
showed a very low number of recallable details. Details about the image selection
process are reported in Supplementary Fig. 1.

Assessment of behaviour and personality. Participants were tested after the eye-
tracker data acquisition was completed. For the cognitive assessment, we decided to
focus on memory (visuospatial long-term memory, working memory) and
executive functions (inhibition/impulsivity) as these domains seem to mainly
influence visual behaviour73.

The cognitive tests employed to assess the described domains were the Digit
Span (forward and backward)74, the brief version of the Stroop Test75, and the
ROCF76. Moreover, we asked participants to fill a form sent by e-mail which
included three questionnaires. One of these was a personality questionnaire based
on the Five Factor Model77, the Neo Five Factors Inventory (NEO-FFI)78 which
evaluates the following factors: Extraversion, Agreeableness, Conscientiousness,
Neuroticism, and Openness to Experience. A number of studies have shown a link
between personality factors and several aspects of eye-movement such as the
pattern of fixations79, the number of fixations, their duration, and dwelling time37.
Starting from this point, in a recent paper16 authors demonstrated that personality
traits can be predicted from a set of visual features by means of a multivariate
machine-learning approach. This result suggests an important role of individual
characteristics on visual behaviour. Furthermore, in the present study, we assessed
impulsivity in complex behaviours by means of the behavioural approach
system and behavioural inhibition scale (BIS-BAS)80. The relation between
impulsivity and eye-movements has been previously pointed out in literature37.
The information extracted from this questionnaire can be seen as complementary
to those taken from the Stroop Test, thus, taken together, they allow to investigate
impulsivity both from cognitive and behavioural points of view. Finally, the 21-
items version of the Depression Anxiety Stress Scale (DASS-21)81 was used to
control for participants’ state anxiety, as it can have influence visual behaviour82.
None of the participants was discarded for excessive state anxiety score. Moreover,
since some participants were students of psychology, we checked their knowledge
of the administered tests using a three-point scale (0=No knowledge;
1= Theoretical knowledge; 2= Theoretical and Practical knowledge). No effects of
previous knowledge emerged on the subsequent models.

Eye-tracker data acquisition, pre-processing, and features extraction. The eye-
tracker adopted was the Tobii T120 (Tobii Technologies, Danderyd, Sweden)
which allows to acquire gaze data with a 120 Hz sampling-rate (or every 8.3 ms).
Participants were seated at a fixed distance of 60 cm from the screen, and their
head-movements were limited by a chin-rest.

Raw eye-tracking data were minimally pre-processed. We included in the
analysis only gaze samples in which both eyes were assigned the highest validity
value (i.e, validity code of 0, indicating that the eye is found and that the tracking
quality is good). Then, we extracted a large set of features encoding various
characteristics of eye-movements to describe visual behaviour in an exhaustive way,
as done in other recent studies16.

For each participant, a set of 58 features was extracted (Supplementary Table 2)
which encoded four main sources of information: fixations, pupil diameter, gaze
steps, and exploration time. Statistics over fixations (e.g., mean duration) are
frequently employed in eye-tracking studies37. In the present study, fixations were
detected using a velocity-based threshold algorithm83 (detection threshold lambda
= 15), which is considered adequate and robust across several testing conditions84.
From a cognitive point of view, fixations represent information processing and
their duration is correlated with the depth of cognitive processing85. Pupil diameter
(e.g., mean pupil diameter of the left eye) was considered since it is not only related
to environmental light and vigilance, but also to a variety of cognitive processes
such as attention86 and cognitive load87. Gaze steps statistics (e.g., mean gaze step
length, number of flips on x and y axes) were computed after extracting gaze
steps from raw gaze data as the Euclidean pixel distance between two consecutive
gaze positions18. Notably, the use of this metric allows to avoid the distinction
between saccades and microsaccades, as both types of eye movements are thought
to be controlled by the same neuronal mechanisms43. Finally, statistics describing
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exploration time were taken into account (e.g., mean duration of pictures’
exploration). Moreover, for fixations and gaze steps, additional features were
extracted which encoded their temporal course (e.g., mean fixation duration in the
first, second, third, and fourth quarter of exploration time). This set of features is
largely overlapped with those adopted in previous studies that examined the
relationship between eye movements and individual characteristics16. The choice of
these features was made to capture the spatiotemporal features of eye movements
and fixations rather than their spatial distribution.

Eye-movements data reduction. A principal components analysis (PCA) was
performed on the features matrix (114 subjects × 58 features) to reduce it to fewer
meaningful components. Oblique rotation (Promax) was adopted because of the
correlation between the features. To select the optimal number of components we
adopted the Kaiser’s criterion88 and selected only components with eigenvalues
higher than 1. In addition, to be selected a component had to account for a
percentage of the variance of at least 10%.

For the image-viewing task, according to the selection criteria and after visual
inspection of a scree plot, a three-component solution was chosen. The first three
components globally explained roughly 60% of the variance. The first component
(explained variance: 31.1%) mainly loaded on fixations duration, the second
component (explained variance: 16.5%) mainly loaded on exploration time,
number of steps, and number of flips (i.e., changes of direction on X or Y axis),
finally, third component (explained variance: 12.2%) mainly loaded on steps’
length.

For the blank screen viewing phase, a separate PCA analysis was done after
computing the same set of features as before. The reason of this is that in the blank
screen viewing condition the exploration time was basically the same for all
participants. Since fourteen participants showed missing data in some fixation-
based features (e.g., due to a single central fixation), only 100 participants were
included in this analysis. Moreover, exploration time-based features were removed,
as blank screen viewing had the same duration (30 s) for all subjects. Thus, the
PCA on blank screen viewing data was performed on 100 subjects and 53 features.

Moreover, in the PCA on the blank screen viewing features, we decided to
include the first three components regardless of the amount of explained variance,
to match the structure of the previous PCA on the image-viewing task. The first
component (explained variance: 23.4%) mainly loaded on the number of steps,
number of flips, and steps’ length variability. The second component (explained
variance: 19%) mainly loaded on pupil diameter and steps’ length, while the third
component (explained variance: 8.4%) mainly loaded on fixations duration
(Supplementary Fig. 10).

Interestingly, the most important features in the blank screen viewing condition
were mainly included in the third component extracted from the image-viewing
task. This suggests that the importance of fixation-related features was lower if
compared to the image-viewing condition, while more importance was assigned to
pupil diameter and steps’ length.

Detection of clusters in visual behaviour and their interpretation. Pre-
liminarily, the Silhouette method89 was applied to identify the optimal number of
clusters in a data-driven manner, and suggested the existence of two clusters in our
data. Then, a k-means cluster analysis with a k value of 2 was carried out. The
reliability of the two clusters solution was tested by comparing different clustering
solutions obtained from k-means and hierarchical clustering algorithms, using
several distance metrics. The similarity between the clustering solutions was
quantified by means of the Jaccard index (Supplementary Fig. 3) and revealed that
the two clusters solution was the most reliable across different methods. Figure 3
shows the participants scores in the three-dimensional space defined by the first
three principal components, coloured according to the cluster participants belon-
ged to. The PC1 scores accounted well for the differences between the two clusters
which were represented by a continuum. Subsequently, we wanted to investigate
whether the different visual exploration styles were associated with differences in
the topography of the visual exploration pattern (i.e., entropy), in the distribution
of gaze steps (i.e., more power-law-like), and in the informational content of
fixations (i.e., whether subjects paid more attention to saliency or semantic
information).

First, for each participant, 185 heatmaps were created (i.e., one for each
presented picture) representing the empirical gaze maps encoding the normalized
number of times the gaze was centred in each pixel. The Shannon entropy was
calculated for each heatmap.

Second, the distance (i.e., Euclidean distance) covered in each gaze step (i.e.,
gaze step length) was calculated and the distribution of their length was computed.
Then, the subject-specific gaze step length distribution was fitted to a power-law
distribution and their similarity was quantified by means of the Kolmogorov
−Smirnov test, a well-known nonparametric test that is used to compare
distributions90. Specifically, in our case, this test was used to investigate whether an
empirical probability distribution (i.e., the subject-based distribution of gaze steps
length) disagreed from a reference distribution (i.e., the power-law distribution), by
quantifying the distance between these two distributions (KSD). The lower the
KSD, the higher the similarity between the empirical distribution and the reference
power-law distribution. Importantly, this procedure was applied to each individual

gaze steps distribution independently, leading to a different power-law exponent
for each participant.

Third, we wanted to quantify the influence of saliency and semantic
information in shaping general properties of visual exploration of real-world
scenes. To this end, we created two types of heatmaps for each image: (1) a saliency
map created using the classical saliency model by Itti and colleagues1 implemented
in the graph-based visual saliency (GBVS) Matlab toolbox91; (2) a semantic map
created by means of a recently published algorithm based on a convolutional neural
network (CNN: residual network)28. These maps were used to quantify, fixation by
fixation, the quantity of saliency and semantic information included. We, therefore,
calculated the mean amount of saliency and semantic information fixated by each
subject. Supplementary Fig. 6 shows a graphical explanation of this procedure. All
computed heatmaps were spatially smoothed using a 2° full width at half maximum
(FWHM) Gaussian Kernel.

Three nested linear regression models were built with PC1 scores (obtained in
the image-viewing task) as a dependent variable, and the measures described above
as predictors. Specifically, the first model (M1) included only saliency in fixations,
then in M2 we added semantic information, in M3 also Shannon Entropy of visual
exploration was included, and finally, M4 included all previously mentioned
predictors as well as KSD. The models were compared by means of a likelihood
ratio test (LRT) to highlight the most plausible model given the data. The resulting
best model (M4) was then tested on the whole sample, and its reliability and
generalizability were tested by randomly splitting the sample into two halves, fitting
the model on one half (i.e., the training set), and testing its prediction (i.e.,
PC1 score) on the other half data (i.e., the test set). This procedure was repeated
1,000 times and each time the correlation between actual and predicted PC1 values
was collected (Fig. 6B).

Furthermore, we built a further linear regression model with the aim to
investigate whether visual exploration styles (PC1 scores) were predicted by
demographic information (i.e., age, sex, and education), cognitive (i.e., inhibition,
visuospatial, and verbal memory) or personality traits (i.e., Big Five scores). The full
regression model (i.e., including all predictors; Supplementary Table 5) was tested
and validated by applying the same split-half validation procedure used before
(with 1,000 iterations; Fig. 6E).

Prediction of fixation topography from saliency, semantic information, and
KSD. In this analysis, we aimed to test whether KSD could predict the topography
of fixations. To this end, we first computed a FDM for each image and for each
subject (resulting in 185×114 FDMs). A Gaussian kernel (FWHM= 2°) was then
applied to approximate the width of the visual field saw by the fovea and to match
the other maps. Then, we computed spatial KSD maps as follows: (1) since KSD is
computed on a distribution of gaze-steps, it could not be computed at the pixel-
level, thus we subsampled the image space (512 × 683 pixels) to a smaller (10 × 10)
matrix; (2) from raw gaze data we extracted the vector of gaze-steps amplitude
within each cell while watching an image at the subject-level, and we calculated
corresponding KSD values, resulting in a 10 × 10 KSD matrix. This procedure was
applied to all images and all subjects resulting in 114 × 185 KSD maps. Then,
FDMs, saliency, and semantic maps were subsampled to match the size of the KSD
maps. Finally, the resulting set of matrices were vectorized, concatenated, and used
to build three mixed-effect models (MM1, MM2, and MM3) to quantify the
contribution of saliency, semantic information, and KSD in describing the spatial
distribution of fixations (FDMs). A graphical representation of this method is
shown in Supplementary Fig. 9.

Each model included a random intercept for both images and subjects, and
nested sets of fixed effects: MM1 included only saliency maps; in MM2 we added
semantic maps, and in MM3 also KSD maps were included. The models were
compared through LRT as described in the previous paragraph and the results of
the best model (MM3) were discussed. Notably, the model comparison was run
also within each subject independently, by building the same models with random
intercept only for images.

Machine-learning classification analysis of cluster labels from blank screen
viewing eye-movements’ features. We investigated whether the features
extracted during blank screen viewing were informative about the visual explora-
tion styles that emerged while watching real-world scenes. To do so, we trained a
Random Forest classifier to predict the two cluster labels (Static vs Dynamic, as
determined in the image-viewing condition) from the blank screen viewing mul-
tivariate pattern of eye-movement features. We used a 10-fold cross-validation
design, i.e., data were split into 10 folds, nine of which were used as training set,
and one was left out and used as test set. This procedure was repeated for 10
iterations until each fold was used once as test set, resulting in a mean accuracy
value indicating the proportion of participants correctly labelled.

Moreover, we computed a features correlation matrix between subjects, thus
testing the interindividual similarity in the pattern of eye-movement’s features
(Fig. 7B). As shown in the figure, the correlation is higher for participants falling
within the same cluster (i.e., Static viewers or Dynamic viewers) than between
participants with different visual exploration styles. Then, to test the reliability of
this pattern of between-subjects similarity between blank screen viewing and
image-viewing conditions, the Pearson’s correlation between the two matrices was
computed.
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Statistics and reproducibility. Principal component analysis (PCA): performed
on scaled and mean-centred full set of features extracted from the gaze data
acquired during the exploration of images (n= 114), and during blank screen
viewing (n= 100). Control analyses (PCA on image-viewing data): (I) splitting the
images in odd/even, running a PCA on each subset and correlating the obtained
PC1 scores with those found on the whole images set; (II) reconstructing the
original features matrix (as well as individual patterns of features) from PC1, PC2,
and PC3 scores and testing the accuracy of the reconstruction; (III) computing
PC1 scores from features extracted from different image-categories (i.e., indoor,
outdoor natural, outdoor manmade, with/without humans) and applying PC1
loadings calculated on all images to make scores comparable.

K-means cluster analysis: on the same input of the PCA, after computing the
optimal number of clusters (k) given the data, using the silhouette method. Control
analysis: the chosen k was validated by comparing different clustering solutions
(i.e., different k values) and different distance measures (e.g., Euclidean,
Manhattan, etc.) and testing the similarity of different solutions, with the
hypothesis that if applying different distance measures would give similar results
(i.e., individuals clustered together), it would suggest a more reliable solution.

Linear regression models (visual exploration features): a set of models was built
to explain PC1 scores. Specifically, four nested models were compared by means of
a LRT which allows to determine whether adding a predictor to a simpler model
would significantly improve model fit. Control analyses on the best model resulting
from the LRT: (I) split-half reliability design in which 57/114 participants were
randomly selected to fit model parameters and the other half was used as test set.
This was repeated for 1,000 iterations and for each iteration the Pearson’s r
coefficient between actual and predicted PC1 scores was collected; (II) the
reliability of the main effect of the model (i.e., KSD) was checked by recomputing
KSD using different gaze-step thresholds (0.2°−8.1°), that is gaze-steps smaller
than each threshold were iteratively removed from the computation.

Linear regression model (demographic, cognitive, and personality information):
only the full regression model including all test scores and demographic
information was built. Control analysis: the model was validated using the split-half
procedure described above with 1,000 iterations.

Linear mixed-effects models: we built a set of mixed-effects models to predict
fixations topography (i.e., FDMs) from KSD, saliency, and semantic maps. Three
nested models were compared by means of a LRT and pointed out that adding KSD
to a model including saliency and semantic information improved model
explanatory power of the topographical distribution of fixations. Each model
included a random term (i.e., random intercept) for both individuals and images.
Control analysis: in order to assess reproducibility, the effects of interest were also
measured at the individual level (i.e., within each subject separately). The same
models were built with the only difference that the random intercept was set only
for images.

Machine learning classification: we classified subjects as Static vs. Dynamic
viewers from features computed while viewing a blank screen by means of a
multivariate Random Forest classifier. Control analyses: (I) we checked the stability
of viewing styles between image-viewing and blank screen viewing conditions by
computing PC1 values obtained in the two conditions (applying loadings obtained
in the image-viewing condition to make scores comparable); (II) we compared the
between-subjects correlation of eye movement features (during visual exploration
and blank screen viewing) with members of the same cluster vs. with members of
the other cluster.

Finally, to foster reproducibility, in all seed-based analyses (e.g., PCA) we used
seed= 1234.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author on reasonable request. The source data used for the main figures are available at
https://osf.io/2rkx9/.

Code availability
All codes used for data analysis are available from the corresponding author on
reasonable request.
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