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Evidence of shared and distinct functional and
structural brain signatures in schizophrenia and
autism spectrum disorder
Yuhui Du 1,2,5✉, Zening Fu2,5, Ying Xing1, Dongdong Lin2, Godfrey Pearlson3, Peter Kochunov4, L. Elliot Hong4,

Shile Qi2, Mustafa Salman2, Anees Abrol 2 & Vince D. Calhoun 2

Schizophrenia (SZ) and autism spectrum disorder (ASD) share considerable clinical features

and intertwined historical roots. It is greatly needed to explore their similarities and differ-

ences in pathophysiologic mechanisms. We assembled a large sample size of neuroimaging

data (about 600 SZ patients, 1000 ASD patients, and 1700 healthy controls) to study the

shared and unique brain abnormality of the two illnesses. We analyzed multi-scale brain

functional connectivity among functional networks and brain regions, intra-network con-

nectivity, and cerebral gray matter density and volume. Both SZ and ASD showed lower

functional integration within default mode and sensorimotor domains, but increased inter-

action between cognitive control and default mode domains. The shared abnormalties in

intra-network connectivity involved default mode, sensorimotor, and cognitive control net-

works. Reduced gray matter volume and density in the occipital gyrus and cerebellum were

observed in both illnesses. Interestingly, ASD had overall weaker changes than SZ in the

shared abnormalities. Interaction between visual and cognitive regions showed disorder-

unique deficits. In summary, we provide strong neuroimaging evidence of the convergent and

divergent changes in SZ and ASD that correlated with clinical features.
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Schizophrenia (SZ) and autism spectrum disorder (ASD)
have both been characterized as disorders of altered neu-
rodevelopment that lead to lifelong disability. ASD is

characterized by the onset during early childhood with a spec-
trum of abnormalities including deficits in social communication
and interaction, and restricted and repetitive patterns of beha-
viors, interests, or activities. The onset of SZ often occurs in late
adolescence life and is associated with the development of psy-
chosis and cognitive and social deficits1. There is a considerable
overlap in the clinical presentation between SZ and ASD, leading
to an initial classification of ASD as “childhood-onset SZ”2. The
historical parallels and sharing of symptom patterns may be
caused in part by the sharing of deficits in the underlying neural
circuits. However, few studies have directly compared brain
function and structure between the two disorders. In this study,
we propose to use a multi-modality data-informed method
to comprehensively study the similarity and differences between
two disorders, aiming to provide statistically powerful evidence to
address the following questions: (1) what are the common
abnormalities between SZ and ASD in brain functional networks,
functional connectivity (FC), and gray matter volume and den-
sity? (2) What are the disorder-unique changes of the two dis-
orders in these neuroimaging measures? (3) Measured by these
biologically meaningful measures, to what extent ASD resembles
SZ?

The relationship between SZ and ASD is complex3,4. Although
there has been a separation between the two illnesses
since the International Classification of Diseases, Ninth Revision
(ICD-9) (1977) and the Diagnostic and Statistical Manual of Mental
Disorders, Third Edition (DSM-III) (1980), historically, SZ and ASD
were considered to be a developmental continuum of the same
disorder and both disorders were assumed to share the underlying
etiology. Recently, increasing evidence has supported their overlap in
social withdrawal, cognitive deficits, and communication
impairment2,5–7. Remarkably, Eack et al.8 found a high degree of
shared impairments between the two disorders in both social and
non-social cognitive domains, especially the slow processing speed
and inability to understand emotion. All the findings suggest the
possibility of common underlying neurological mechanisms in SZ
and ASD. In addition, both disorders may share copy number
variants9,10 and gene expression patterns11. Other evidence included
higher incidents of children with ASD in the families with a history
of SZ12 and higher rates of developing psychosis during adolescence
in children with ASD13–15. However, there are also notable differ-
ences between populations afflicted with the two disorders, especially
the presence of different atypical behaviors in them16. Patients with
SZ often experience hallucinations and delusional thoughts that are
uncommon in ASD. There is a greater likelihood of restricted and
repetitive behaviors17, stereotyped language, and seizures18 in ASD
than in SZ. Patients with SZ often show progressive loss of contact
but children with ASD lack contact from the start. Therefore, the
unique mechanism of the two disorders also needs to be further
explored.

The long-standing debate in terms of their relationship3,4,19,20 has
led to neuroimaging-based attempts to provide an unbiased quan-
tification of similarity and uniqueness between SZ and ASD. There
have been studies that evaluated the two disorders using a meta-
analysis and revealed overlapping reductions in limbic-
striatothalamic gray matter volume21–23. Whole-brain FC analysis
using resting-state functional magnetic resonance imaging (fMRI)
data has reported common and divergent connectivity impairments
largely in regions of the default mode (DM) and salience networks24.
Mastrovito et al.25 used a classification strategy on resting-state
effective connectivity to explore the two disorders, showing their
common impairments in connectivity within the DM and salience
networks, and the ASD-unique increases within visual (VI)

processing and DM networks. With a task design, seed-based FC
analysis supported that connectivity alterations are significantly
different between SZ and ASD26. Park et al.27 found significant
cortical thickness changes in both ASD and SZ in brain regions
relating to the frontoparietal and limbic networks; however, SZ was
found to show decreased cortical thickness, while ASD presented
increases in cortical thickness27. Haigh et al.28 used diffusion data to
study the two disorders, revealing SZ-specific changes in its greater
mean diffusivity than both ASD and healthy controls (HCs)28. To
sum up, both similarity and uniqueness have been disclosed to some
extent. However, studies comparing the two disorders using multi-
modal neuroimaging measures and large-sample data are still very
limited, and no existing study has quantified their overlap and
uniqueness yet.

In this study, we comprehensively investigate SZ and ASD using
large-sample brain functional and structural magnetic resonance
imaging data to explore their similarities and differences in the
neural substrates. We evaluate large-scale brain spatial functional
networks estimated from data-driven independent component
analysis (ICA), functional network connectivity (FNC) obtained
from ICA, and FC between brain regions of interest (ROIs) derived
from different brain atlases. In parallel, we perform the voxel-wise
analyses of gray matter volume and density. Our study’s contribu-
tions are at least twofold. (1) Our results show strong neuroimaging
evidence in terms of the convergent and divergent changing patterns
between SZ and ASD (relative to HCs) using multiple functional and
structural measures. (2) Our neuroimaging evidence provides
insights about the relationship between SZ and ASD, which have
intertwined historical roots.

Results
After data preprocessing and quality control, we estimated brain
functional measures from resting-state functional magnetic
resonance imaging (fMRI) data of 2980 subjects (1665 HCs, 537
SZs, and 778 ASDs), gray matter volume from structural mag-
netic resonance imaging (sMRI) data of 3148 subjects (1661 HCs,
517 SZs, and 970 ASDs), and gray matter density from sMRI data
of 3374 subjects (1789 HCs, 555 SZs, and 1030 ASDs). The
Supplementary Tables S1–S4 summarize the sample size, demo-
graphic information, and head motion measures of the selected
subjects. As outlined in Fig. 1, we then identified the disorder-
common and disorder-unique abnormalities for SZ and ASD by
investigating their changes relative to the HC group and their
differences from each other using multiple neuroimaging mea-
sures that reflect brain function and structure.

SZ and ASD show shared and distinct changes in brain func-
tional networks. The large-scale brain functional networks were
estimated from fMRI data via our recently proposed NeuroMark
pipeline29, which automates the estimation of subject-specific
functional networks by leveraging group information-guided ICA
(GIG-ICA)30,31 with the reliable network templates obtained from
fMRI data of independent large-sample HCs as priors. The detailed
information of the network templates can be found in Supplemen-
tary Table S5. As displayed in Supplementary Fig. S1, the resulting
functional networks were assigned into seven functional domains,
including five sub-cortical (SC), two auditory (AU), nine sensor-
imotor (SM), nine VI, 17 cognitive control (CC), seven DM, and
four cerebellar (CB) networks. We evaluated the spatial similarity of
subject-specific functional networks and show the results in the
Supplementary Fig. S2, supporting that each functional network
(estimated from one same network template) was comparable across
different subjects and feasible for further statistical analyses among
groups. In addition, the network correspondence was relatively
stable across different datasets and groups.
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By using NeuroMark, each brain functional network is
represented by one spatial independent component (IC) consisting
of Z-score of each brain voxel, in which the voxels with greater Z-
scores have relatively higher intra-connectivity in the network.
Many studies have employed the voxel-wise Z-scores as intra-
network connectivity measures to study brain abnormality in
patients relative to HCs32,33 and distinguish patients with different
disorders30,34,35. In the work, consistent statistical analyses were
conducted on the neuroimaging measures (including the Z-score in
the brain functional network here), to identify the common and
unique brain abnormalities of SZ and ASD (relative to HC). The
analysis framework is shown in Fig. 2 and more details can be
found in the “Methods” section.

Disorder-common changes of SZ and ASD (relative to HC) in
brain functional networks. Our results (Table 1) suggest that
overall SZ and ASD showed more common changes (relative to
HC) than unique changes (relative to HC) in brain functional

networks. Among all 53 networks, 35.5% and 39.9% of brain
voxels that passed the analysis of variance (ANOVA) showed
common decreases and increases in the two disorders (relative to
HC), respectively. As shown in Fig. 3a, the common changes were
primarily found in the DM, SM, and CC networks, including the
common decreases in the posterior cingulate cortex (PCC; IC 94,
DM), inferior parietal lobule (IC 68, CC), precentral gyrus (IC 66,
SM), and subthalamus/hypothalamus (IC 53, SC), and the com-
mon increases in the middle frontal gyrus (IC 38, CC), superior
parietal lobule (IC 80, SM), hippocampus (IC 48, CC), and pre-
cuneus (IC 51, DM). Several CB regions (e.g., IC 4 and IC 7) also
showed a common decrease. Notably, as shown in Fig. 3b and
Table 1, for the voxels with common decreases in SZ and ASD
(relative to HC), 85.3% voxels showed weaker (smaller) changes
in ASD than SZ; for the voxels with common increases in SZ and
ASD (relative to HC), 94.4% voxels had weaker (smaller) changes
in ASD than SZ, supporting that in general ASD presented
weaker changes than SZ for the shared abnormalities.

Fig. 1 Analysis pipeline for identifying the common and unique brain changes of SZ and ASD (relative to HC). Multiple neuroimaging measures were
compared among the HC, SZ, and ASD groups. Brain functional measures included the spatial functional networks and functional network connectivity
(FNC) derived from independent component analysis (ICA), and also included the whole-brain functional connectivity estimated by region of interest (ROI)
based method using different brain atlases. Brain structural measures involved the gray matter volume and gray matter density. Group differences were
investigated between any paired groups (HC vs. SZ, HC vs. ASD, and SZ vs. ASD) to identify the disorder-common and disorder-unique abnormality for SZ
and ASD.
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Interestingly, the inferior frontal gyrus (IC 67), CB region (IC
4), and PCC (IC 94) showed common alterations between SZ and
ASD (relative to HC) in most voxels, with the decreases
dominating the impairments36. Moreover, ASD also showed
weaker abnormalities than SZ (relative to HC) in the most
commonly changed voxels for them.

Disorder-unique changes of SZ and ASD (relative to HC) in
brain functional networks. Our results revealed the uniqueness
of network abnormalities for SZ and ASD. SZ-unique decreases
(in which SZ decreased but ASD increased, relative to HC)
involved the middle occipital gyrus (IC 5, VI) and inferior parietal
lobule (IC 63, CC). Regions showing ASD-unique decreases (in

which ASD decreased but SZ increased, relative to HC) were
primarily located at the superior frontal gyrus (IC 96, CC), hip-
pocampus (IC 83, CC), and middle cingulate cortex (IC 37, SM).
The percentage of disorder-unique impairments (totaling < 25%),
with slightly more SZ-unique decreases, was much lower than the
percentage of disorder-common changes (Table 1).

SZ and ASD show shared and distinct changes in FNC
Disorder-common changes of SZ and ASD (relative to HC) in FNC.
We also evaluated group differences in the FNC using the same
strategy as the above functional network analyses (see Fig. 2), aiming
to investigate the shared and distinct changes of SZ and ASD in the
network interaction. The results of statistical analyses and their

Fig. 2 Statistical analysis outline for identifying and summarizing the common and unique brain abnormalities of SZ and ASD. The statistical analysis
procedure is consistent across all neuroimaging measures mentioned in Fig. 1. Regarding each measure, analysis of variance (ANOVA) and two-tailed two-sample
t-tests were first performed, resulting in group differences for HC vs. SZ, HC vs. ASD, and SZ vs. ASD. For the measures passing ANOVA, different types of
changes were then summarized, including the disorder-common decrease compared to HC (the voxels with T-values > 0 in both HC vs. SZ and HC vs. ASD), the
disorder-common increase compared to HC (the voxels with T-values < 0 in both HC vs. SZ and HC vs. ASD), the SZ-unique decrease (the voxels with both T-
values < 0 in HC vs. ASD, and T-values > 0 in HC vs. SZ), and the ASD-unique decrease (the voxels with both T-values < 0 in HC vs. SZ and T-values > 0 in HC vs.
ASD). For each of the four types of changes, the percentage was calculated as the number of neuroimaging measures relating to the change divided by the number
of measures passing ANOVA. Among the measures with the disorder-common decrease (or increase), the percentage of ASD-weaker decrease (or increase) than
SZ, which showed T-values < 0 in SZ vs. ASD in the disorder-common decrease (or showed T-values > 0 in SZ vs. ASD in the disorder-common increase), were
further summarized.
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summary can be seen in Figs. 4 and 5e. We found, in general, ASD
showed many common FNC changes (relative to HC) with SZ,
consistent with the findings from spatial brain functional networks.
The percentages measured by FNC were 42.5% for the common
decrease and 49.9% for the common increase (see Table 1). As shown
in Fig. 5a, b, the commonly decreased connectivity was observed
within the SM and DM domains, between SC and CB domains,
between SM and VI domains, between SM and AU domains, and
between CC and CB domains; the commonly increased connectivity
was observed between the DM and CC domains, between SC and
AU domains, between SC and SM domains, between SC and VI
domains, between SM and CB domains, and between VI and CB
domains. Notably, regarding >90% of the commonly changed FNCs
that showed similar changing trends in SZ and ASD relative to HC,
ASD showed weaker (smaller) changes than SZ in each of the FNCs
(see Table 1). The finding was consistent with that from the func-
tional network analyses.

Disorder-unique changes of SZ and ASD (relative to HC) in FNC.
Only a few FNCs showed disorder-unique changes, as shown in
Figs. 4 and 5c, d. The percentages of SZ-unique decrease and ASD-
unique decrease were both 3.8% (see Table 1). The SZ-unique
decreased connectivity included that between DM and SM (e.g., IC
94-PCC and IC 9-postcentral gyrus), between DM and VI (e.g., IC
51-precuneus and IC 5-middle occipital gyrus), between CC and SC
(e.g., IC 33-insula and IC 98-putamen), between CC and SM (e.g., IC
33-insula and IC 2-paracentral lobule), and the connectivity within
CC domain (e.g., IC 33-insula and IC 88-middle frontal gyrus).
Primary ASD-unique decreased connectivity was found between VI
and CC (e.g., IC 12-middle occipital gyrus and IC 88-middle frontal
gyrus), between VI and SC (e.g., IC 8-lingual gyrus and IC 99-
caudate, IC 15-cuneus and IC 99-caudate), between SM and CC (e.g.,
IC 9-postcentral gyrus and IC 83-hippocampus), and between SM
and CB (e.g., IC 66-precentral gyrus and IC 13-cerebellum).

Group differences are reliable. To verify our finding, we also per-
formed a permutation test to examine group differences in FNCs.
Our results support that group differences were reliable to different
analysis methods (see Supplementary Fig. S3 and Fig. 4 for a com-
parison). In addition, the overall results were replicated in a meta-
analysis using separate datasets, as shown in the Supplementary
Fig. S4.

FC findings are consistent for using ROI-based approaches. FC
impairments in the two disorders were validated via the ROI analysis,
defined by Automated Anatomical Labeling (AAL)37 and
Brainnetome38 atlases. Using AAL atlas, SZ and ASD had over 40%
overlap in both decreased and increased FC alterations, and SZ was
more severely affected than ASD for the most commonly impaired
FCs (>90%) (see Table 1). The percentage relating to the disorder-
unique change was relatively low (14.3%). Comparing Figs. 6 and 4,
we found that in general the group differences obtained from dif-
ferent FC analysis methods showed similarity, especially the inter-
action between the SC domain and other domains (e.g., cerebellum,
SM, and VI regions), between the cerebellum and other domains
(e.g., SM, VI, CC, and DM regions), and the interactions within the
VI domain and within the DM domain. Using Brainnetom atlas, our
results (Supplementary Fig. S5) provided further evidence that the
hypothesis-based FC analyses supported the findings from the data-
driven ICA.

SZ and ASD show shared and unique changes in gray matter
volume and density
Disorder-common changes of SZ and ASD (relative to HC) in gray
matter volume and density. In addition to the brain functionalT
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measures, we assessed brain structural changes of the two disorders.
We found that the percentage of the common change between SZ
and ASD (relative to HC) was smaller in the brain structural mea-
sures compared to the brain FC measures. Measured by the original
T-values of two-sample t-tests, both SZ and ASD showed overall
decreased gray matter volume (40.2% overlap) and density (89.8%
overlap) compared to HC (Table 1). As displayed in Fig. 7, which
shows the group differences after multiple comparison correction,
the regions with the commonly decreased gray matter volume pri-
marily involved the middle occipital gyrus and cerebellum (see the
Supplementary Table S6), and the regions with the commonly
decreased gray matter density primarily involved the precentral
gyrus, frontal gyrus, occipital gyrus, postcentral gyrus, temporal
gyrus, cerebellum, insula, thalamus, parahippocampal gyrus, super-
ior parietal lobule, supramarginal gyrus, and angular gyrus (see the
Supplementary Table S7). In contrast to the shared decrease, there
was a low percentage in the disorder-common increases (2% overlap
in gray matter volume) primarily relating to the cerebellum. Notably,
ASD also had weaker impairments than SZ in those common
changes.

Disorder-unique changes of SZ and ASD (relative to HC) in gray
matter volume and density. Regarding the disorder-unique struc-
tural changes, 57.8% and 10.1% of voxels had increased values in
ASD but reduced values in SZ for the gray matter volume and
density measures, respectively. As summarized in Supplementary

Tables S6 and S7, the regions showing the SZ-unique decrease pri-
marily included the temporal gyrus, frontal gyrus, and cingulate
gyrus, identified by the gray matter volume. For the gray matter
density, there were only some scattered voxels showing the SZ-
unique decrease. Strikingly, no brain regions showed increased gray
matter in SZ but decreased gray matter in ASD for both measures.

Brain changes are associated with symptom scores and are not
correlated with medication. To evaluate the relationship between
neuroimaging measure and symptom score (i.e., the positive and
negative syndrome scale (PANSS)-positive score and PANSS-
negative score for SZ, autism diagnostic observation schedule
(ADOS) total score, and social responsiveness scale (SRS) for
ASD), we computed both Pearson’s correlation and Spearman’s
rank correlation between them for the SZ and ASD groups,
separately. We found that some important neuroimaging mea-
sures were linked to the symptom scores.

As shown in the Supplementary Fig. S6, two FNCs showing the
disorder-common decreases were negatively correlated with the
symptom scores (p-value < 0.01 in both Pearson’s and Spearman’s
correlations) such as ADOS and SRS in ASD. Interestingly, they
were all from the within-domain connectivity (SM and CC). In
sum, our results suggest that decreased connectivity strengths
between brain regions within the SM and CC domains may relate
to worse clinical presentations in disorders.

Fig. 3 Results of the brain functional network analysis using ICA. a Percentages of the common and unique changes of SZ and ASD in each functional
network. The common changes corresponded to the commonly decreased (Co_De) and commonly increased (Co_In) Z-scores of network voxels in SZ and
ASD, relative to HC. The SZ-unique decrease (SZ_De) represented decreased Z-score in SZ but increased Z-score in ASD, compared to HC. The ASD-
unique decrease (ASD_De) represented decreased Z-score in ASD but increased Z-score in SZ, compared to HC. In a, three exemplar networks are shown
for visualization of common decreases. b Percentages of voxels in which ASD showed weaker changes than SZ within the disorder-common changes.
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Five disorder-common increased FNCs, including those
between SM and CB, SC and VI, SC and DM, and CC and
DM, were positively correlated with the symptom scores in ASD
and SZ. That means that increased strengths in those connections
(such as the connectivity between CC and DM) could result in
worse clinical presentations for both SZ and ASD.

Two disorder-unique FNCs showing decreased strengths in
ASD but increased strengths in SZ were also found to be
correlated with the SRS in ASD and PANSS-positive scores in SZ.
Notably, each was a connectivity between the VI and CC
domains, again indicating the unique property of VI impairment.
Moreover, the correlation trends were consistent with the group
difference results.

In addition, we did not find significant associations between
the neuroimaging measures and medication as assessed via
chlorpromazine (CPZ) dosage equivalents for SZ patients, using a
multiple linear regression model.

Brain changes show consistency using the subjects with mat-
ched age and the subjects with no motion difference. As more
data help to generate reliable findings, we used all available data in
the above-mentioned statistical analyses. In our work, we also
investigated group differences in FNC using two additional sample
sets. The two sets had different age ranges of subjects and each set
only included age-matched three groups. In addition, we selected
some subjects with no motion difference in fMRI data to test the
group differences. Our results (shown in the Supplementary Fig. S7)
suggest that the group differences using age-matched subjects or no-
motion-difference subjects tended to show similar patterns with the
results using all available subjects (shown in Fig. 4), supporting that

the nuisance effects (such as age and motion) had been carefully
removed out and our findings were robust.

Brain changes can successfully distinguish SZ and ASD. We
were also interested in whether the identified brain changes
can represent promising biomarkers to distinguish the two
disorders. As described in the “Methods” section, we used the
disorder-unique measures and the ASD-weaker measures
within the disorder-common changes as the features for
classification. Our results support that FNC measures per-
formed well in classifying SZ and ASD patients. Table 2
includes the classification results from 12 classification
experiments that took different datasets as the training and
testing data for a comprehensive evaluation. The mean accu-
racy, sensitivity, and specificity across all classifications were
75%, 83%, and 63%, respectively. The best results reached up
to 80.0% accuracy, 90.0% sensitivity, and 68.0% specificity.
The most frequently used features across classifications
included the unique changes of connectivity between SC (e.g.,
putamen, caudate, and thalamus) and SM (e.g., superior par-
ietal lobule and paracentral lobule) domains, and also inclu-
ded the ASD-weaker changes in the common changes of
connectivity between SC and VI/CB domains, and between SM
and VI domains. In our work, relatively lower specificity
(compared to sensitivity) meant that SZ patients were more
likely misdiagnosed as ASD using these connectivity measures.

Discussions
SZ and ASD are recognized as distinct illnesses following a long-
standing nosological development4,20. Their similarity in clinical
symptoms characterized by social and communication deficits

Fig. 4 Results of the functional network connectivity (FNC) analysis using ICA. Upper subfigures: T-value maps showing the group differences in FNCs,
obtained by two-sample t-tests for HC vs. SZ, HC vs. ASD, and SZ vs. ASD. Taking HC vs. SZ, e.g., positive T-values represented that HCs showed higher
connectivity strengths than SZs. Lower subfigures: T-value maps of FNCs after Bonferroni (BFN) corrections.
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and sensory abnormalities8 may originate from the sharing of
functional and structural alterations22,39. Therefore, it is greatly
needed to unravel how SZ and autism are related and unique in
brain abnormality. This is so far the largest study that investigates
the commonality and specificity between SZ and ASD in both
brain FC and gray matter impairments by investigating them
simultaneously and directly, showing neuroimaging evidence to
help elucidate their neural substrates (see Fig. 8 for a summary).

Shared functional abnormalities between SZ and ASD. Our
work provides evidence that SZ and ASD have a large common
overlap (76–93%) in the functional changing patterns relative to
HCs, primarily involving the DM, CC, and SM circuits. Although
some studies have suggested that the two disorders are functionally
related24,40, our work provides quantitative evaluation supporting
they are largely overlapped in brain functional abnormality.

In particular, we found that the decreased interaction between
regions in the DM domain was prominent in both SZ and ASD,
although previous studies have shown the DM dysfunction for them
separately41,42. We also observed reduced intra-connectivity in the
PCC and increased intra-connectivity in precuneus for both illnesses,
aligning with previous findings36. Interestingly, we revealed that the

integration within the SM domain was also diminished in both
disorders, supporting their SM abnormality43–46.

In addition to the within-domain dysfunction, our results supported
that the interactions between CC and DM regions were commonly
increased in SZ and ASD. As one previous study47 observed that
schizophrenic patients’ FC between DM and executive control was
increased and related to hallucinations severity, this work confirmed
the similarity of the two disorders regarding this aspect. Our study also
found that other inter-domain interactions displayed shared altera-
tions in both disorders, including the decreased connectivity between
the CB and SC/CC domains and between the SM and VI/AU
domains, and the increased connectivity between the SC and AU/SM/
VI domains and between the CB and SM/VI domains. Although
previous studies5,48 already reported cortico-SC FC abnormality in
ASD relative to HC, our work highlights that cerebellum receiving
information from the sensory systems and also participating
cognition49,50, SC regions involved in memory and emotion, and
vision-related regions were similarly impaired in both disorders.

Shared structural abnormalities between SZ and ASD. SZ and
ASD showed similar structural alterations in the brain that can be
mainly summarized as regional reductions in gray matter volume

Fig. 5 Visualization of the FNC results. a–d Visualization of the FNCs with the disorder-common decrease, the FNCs with the disorder-common increase,
the FNCs with SZ-unique decrease, and the FNCs with ASD-unique decrease after Bonferroni (BFN) corrections. For each of these FNCs, the mean FNC
strength in the HC group is shown here. e Summary of the disorder-common and -unique FNC changes.
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and density. Prominent regions with reduced gray matter volume
included the middle occipital gyrus and cerebellum, and the
regions with decreased gray matter density involved more regions
such as the precentral gyrus, frontal gyrus, occipital gyrus, post-
central gyrus, temporal gyrus, cerebellum, insula, thalamus,
parahippocampal gyrus, superior parietal lobule, supramarginal
gyrus, and angular gyrus. Many studies support our findings. A
previous study revealed decreased gray matter density in the
frontal gyrus, occipital gyrus, and temporal gyrus in SZ compared
to HC51. Jiang et al.52 found that compared with HC subjects, SZ
patients showed reduced gray matter volume in the frontal lobe,
precentral gyrus, postcentral gyrus, temporal gyrus, occipital
cortex, and cerebellum, and did not found regions with increased
gray matter volume. Regarding ASD, Foster et al.53 found that
gray matter of ASD decreases near the temporoparietal junction
compared to typically developing children and Liu et al.54 found
that pediatric ASD individuals showed significant gray matter
decreases in the left cerebellum and left postcentral gyrus, com-
pared to HC subjects. As for the cerebellum, it is associated with
both motor and cognition function impairments in SZ and ASD,
which has been confirmed by previous studies50,55. In addition,
our finding supports that the cerebellum showed both disorder-
common decrease and disorder-common increase in gray matter
volume, which may be an instruction for the subdivision of the
cerebellum. Taken together, our study provided important evi-
dence about the shared brain structural impairments between SZ
and ASD.

ASD-weaker changes compared to SZ in the disorder-common
changes. Another interesting finding in this study is that
patients with ASD showed a smaller magnitude of impairment
than patients with SZ for most of the shared neuroimaging

changes. Within the common changes, 85.3~96.4% across FC/
network and 41~100% across gray matter measures were
altered less in ASD than SZ. Taking together, our findings
provide multi-modal evidence that ASD and SZ had a con-
siderable overlap in deficits and the ASD-weaker impairments
were evident, which might account for their complex historical
relationship that ASD was ever considered as the early
phase of SZ.

Disorder-unique changes of SZ and ASD. We identified unique
changing patterns of the two disorders to provide informative
clues on the disorder-specific etiology and pathophysiology.
Functionally, our results supported that the interaction between
DM and VI functions, and the interaction between DM and SM
functions showed decreases in SZ but increases in ASD, sup-
porting that different manifestations in the communication
between self-related processing and VI/SM functions underlie the
differences between SZ and ASD. It has been known that both
disorders experience VI processing abnormalities; however, they
have different phenotypes. For example, VI hallucinations occur
relatively frequently in SZ56,57 and ASD often presents an atypical
pattern in eye contact58. A previous work by Park et al.59 used
cortical anatomy measures to investigate SZ, ASD, and attention
deficit hyperactivity disorder (ADHD), and found that different
subcomponents of the extended VI network are affected in SZ
patients compared with those with ASD and ADHD, supporting
our finding in terms of their different VI function deficits.
Although these studies suggested their specificity in vision, our
work further provides evidence that the way how the visual
processing interacts with social understanding may be different.
Regarding the SM presentation, the two disorders also have dif-
ferent diagnostic features, as ASD patients often show repetitive

Fig. 6 Results of functional connectivity (FC) analysis using ROIs of Automated Anatomical Labeling (AAL) atlas. Upper figures: the original T-value
maps representing group differences in FCs revealed by two-sample t-tests for HC vs. SZ, HC vs. ASD, and SZ vs. ASD. Lower figures: the T-value maps of
FCs after Bonferroni (BFN) corrections.
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motor movements43 that are less observed in SZ. The differences
in SM function have also been disclosed by data analysis methods.
For example, by comparing the fMRI response to somatosensory
stimuli, a study from Haigh et al.60 confirmed that differential
sensory fMRI signatures were present between SZ and ASD, with
SZ having smaller responses amplitude and ASD having less trial-

to-trial reliability. Except for the discrepancy in the SM system,
our work observed their unique impairments in terms of the
interaction between DM and SM regions, highlighting the
importance of motor systems and their interaction with high-level
association systems in mental disorders.

Fig. 7 Group differences in the gray matter volume and density measures after multiple comparison correction. For gray matter volume and density, the
T-value maps from two-sample t-tests (p < 0.01, false discovery rate corrected) for HC vs. SZ, HC vs. ASD, and SZ vs. ASD are shown.
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The disorder-specific abnormality identified in our study also
involved the communication between the VI and CC functions
showing decreases in ASD but increases in SZ. Indeed, the
important relationship between VI processing and social percep-
tion and cognition in both SZ61 and ASD62 has been reported.
From a data analysis angle, Eack et al.63 investigated differences

between SZ and ASD using fMRI data under a design of a VI
perspective-taking task and revealed their unique frontotemporal
connectivity changes compared to the healthy group. Although
these studies have indicated the disorder differences in VI and
cognitive functions, our results support that the interaction
between VI and cognitive regions had divergent alterations in the

Table 2 Classification result evaluation of distinguishing SZ and ASD patients using different datasets as the training and
testing data.

Training data Testing data Accuracy Sensitivity Specificity

SZ datasets (N) ASD dataset (N) SZ datasets (N) ASD dataset (N)

BSNIP & FBIRN (319) ABIDEI (398) COBRE & MPRC (218) ABIDEII (380) 75.8% 84.2% 61.0%
BSNIP & COBRE (250) ABIDEI (398) FBIRN & MPRC (287) ABIDEII (380) 73.9% 85.3% 58.9%
BSNIP & MPRC (332) ABIDEI (398) FBIRN & COBRE (205) ABIDEII (380) 78.1% 80.5% 73.7%
FBIRN & COBRE (205) ABIDEI (398) BSNIP & MPRC (332) ABIDEII (380) 67.4% 88.7% 43.1%
FBIRN & MPRC (287) ABIDEI (398) BSNIP & COBRE (250) ABIDEII (380) 78.9% 84.7% 70.0%
COBRE & MPRC (218) ABIDEI (398) BSNIP & FBIRN (319) ABIDEII (380) 80.0% 90.0% 68.0%
BSNIP & FBIRN (319) ABIDEII (380) COBRE & MPRC (218) ABIDEI (398) 77.9% 80.2% 73.9%
BSNIP & COBRE (250) ABIDEII (380) FBIRN & MPRC (287) ABIDEI (398) 77.2% 85.4% 65.9%
BSNIP & MPRC (332) ABIDEII (380) FBIRN & COBRE (205) ABIDEI (398) 73.1% 76.4% 66.8%
FBIRN & COBRE (205) ABIDEII (380) BSNIP & MPRC (332) ABIDEI (398) 70.4% 88.2% 49.1%
FBIRN & MPRC (287) ABIDEII (380) BSNIP & COBRE (250) ABIDEI (398) 73.8% 78.1% 66.8%
COBRE & MPRC (218) ABIDEII (380) BSNIP & FBIRN (319) ABIDEI (398) 71.7% 77.9% 63.9%

N represents the subject number.

Fig. 8 Summary of the common and unique brain changes between SZ and ASD (relative to HC). For both the brain functional changes and the gray
matter changes, we summarize the disorder-common decreases, the disorder-common increases, the SZ-unique decreases (i.e., SZ-unique decreases), and
the ASD-unique decreases (i.e., SZ-unique increases). Regarding each kind of change, we include the related brain connectivity or brain regions, as well as
its percentage. We also include the percentage of ASD-weaker change in the disorder-common abnormalities.
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two disorders. Measured by spatial functional networks, SZ-
unique decreases related to the VI and sensory information
processing in the middle occipital gyrus and inferior parietal
lobule, and the ASD-unique decreases involved higher cognitive
functions such as the superior frontal gyrus. Overall, our findings
suggest that unique neural mechanisms may be more related to
the VI function intertwined with cognition and SM.

Regarding the brain structural abnormality, we found that the
SZ-unique decreases (i.e., ASD-unique increases) related to the
temporal gyrus, frontal gyrus, and cingulate gyrus, whereas no
voxels showed increased gray matter in SZ and decreased gray
matter in ASD (relative to HC). These unique structural
abnormalities were among sensory receptive and cognitive areas.
Remarkably, one work by Katz et al.64 supports our findings, as
they also noted significant gray matter volume increases in ASD
compared with SZ for several cognition-related regions but did
not find gray matter increases in the SZ group relative to the ASD
group. Given relevant neuroimage-based studies directly compar-
ing SZ and ASD are very rare, our work using multi-modal data
demonstrates the value of neuroimaging in identifying subtle
differences between the two disorders.

Association with clinical symptoms. Some disorder-common
and disorder-unique neuroimaging measures were associated
with the clinical symptom scores such as the ADOS and SRS in
ASD and PANSS scores in SZ. Interestingly, the commonly
decreased connectivity correlated with the symptom scores was
all from the within-domains including the SM and CC domains,
suggesting that lower integration ability in these functions may
relate to worse clinical presentation in the two disorders. The
commonly increased connectivity correlated with clinical symp-
toms primarily linked different domains (e.g., the connectivity
between DM and CC). Our finding indicated that stronger
interaction between the DM and CC functions could account for
greater social and cognitive impairments.

The disorder-unique connectivity measures correlated with the
symptom scores were all between VI and CC domains, again
highlighting that the unique changes in the functional interaction
between VI and CC functions are prominent. ASD patients with
higher symptom scores showed lower functional interaction between
VI and CC domains; conversely, SZ patients with higher symptom
scores presented higher functional interaction between them.

Validation of the finding. In this study, we validated our findings
using all available subjects, age-matched subjects, and no-motion-
difference subjects. In addition, we further verified our results by
performing a meta-analysis based on separate datasets. Our
findings are reliable, as the group differences obtained using
different manners showed consistent patterns. We also found that
the FNCs with disorder-unique changes and the FNCs with ASD-
weaker changes in the disorder-common abnormalities per-
formed well in distinguishing the two disorders. Satisfactory
performances were reliably achieved even under the situation of
different datasets as the training data/testing data with varied
sample sizes. The connectivity between the SC domain and other
domains such as SM, VI, and CB areas, as well as the connectivity
between the SM and VI domains played an important role in
distinguishing the two disorders, which indicates potential bio-
markers between the two disorders. To the best of our knowledge,
this is the first study applying large-sample multi-site fMRI data
to perform the direct classification between SZ and ASD. Our
work achieved relatively higher classification accuracy than a
previous study25, which also directly classified the two disorders
using FC features. They trained a classifier on 72 SZs and 37
ASDs, and resulted in 75% classification accuracy on independent

5 SZ and 27 ASD patients. A recent study from Yoshihara et al.40

employed FC features to explore the complex relationship
between SZ and ASD as well. In their work, dual classifiers were
applied to discriminate ASD (or SZ) from HC to investigate the
two disorders using a dimensional method, demonstrating the
overlapping but asymmetrical relationship between ASD and SZ.
Interestingly, they found that SZ subjects showed increased
classification certainty for the ASD dimension, while the ASD
subjects did not for the SZ dimension. The findings are consistent
with our classification results to some extent, as SZ was more
likely to be misclassified into ASD than the opposing situation in
our classification experiments.

Limitations and future directions. Our study has some limita-
tions that should be considered in future work. In this work, we
used the age-matched subjects to validate the group differences in
FNC and also employed a classification strategy to show the
effectiveness of the identified differences in differentiating the two
disorders. However, we did not explore other measures using
these procedures due to limited space. Further validations on
other functional and structural measures can be conducted in
future work. Another limitation is the effects of “noisy” factors.
Minimizing the influences of age, gender, site, and motion is often
a difficulty. As there is no ground truth of the group differences, it
is hard to judge whether these “noises” were fully regressed out.
In our study, comprehensive processing was implemented to
handle those covariates. Our results also validated the reliable
differences using age-matched subjects. However, more advanced
algorithms are still needed to deal with those effects. The third
shortcoming lies in the comparison among different neuroima-
ging measures. In our work, both data-driven and hypothesis-
derived FC measures were investigated. However, it was not easy
to compare the FC results due to their various parcellations and
preprocessing procedures. In addition, we only summarized the
relation between functional and structural changes according to
the affected brain regions. Fusion or more advanced methods27

may be better for a cross-modal link in a direct manner. Another
point that needs more concern is that the biomarker-symptom
associations in this work were not very significant (correlations
were about 0.2). In the future, validation using independent data
may be needed to further validate the associations. For another
possible future direction, we think the identified brain similarity
and uniqueness in our study could help develop new biotypes
within the two disorders, as an interesting work65 has shown
greater differences between biotypes than original DSM-driven
categories among SZ, ASD, and bipolar disorders.

Summary. Our work provides strong evidence that SZ and ASD
are substantially similar in both functional and structural brain
abnormalities. The primary overlap is linked to DM, CC, and SM
circuits, but also expands to other domains. The disorder-unique
changes were found in regions such as VI and CC domains. In
addition, these affected neuroimaging measures are correlated
with clinical symptoms, with a consistent trend with the identified
group differences. Our finding can help elucidate the links
between the two disorders, which has been a long-standing
unsolved issue.

Methods
Data and preprocessing. Resting-state fMRI and sMRI data were from six multi-
site datasets including the Bipolar-Schizophrenia Network for Intermediate Phe-
notypes phase I (BSNIP-1), Function Biomedical Informatics Research Network
(FBIRN), Centers of Biomedical Research Excellence (COBRE), Maryland Psy-
chiatric Research Center (MPRC), Autism Brain Imaging Data Exchange phase I
(ABIDEI), and ABIDEII. Among those datasets, BSNIP, FBIRN, COBRE, and
MPRC included HC and SZ subjects, and ABIDEI and ABIDEII included HC and
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ASD subjects. We preprocessed the fMRI and sMRI data using the statistical
parametric mapping toolbox (SPM12).

For fMRI data, we removed the first six time points and then performed the
rigid body motion correction to correct the subject head motion, followed by the
slice-timing correction to account for timing difference in slice acquisition. The
fMRI data were subsequently warped into the standard Montreal Neurological
Institute (MNI) space using an echo-planar imaging template and were then
resampled to 3 × 3 × 3mm3 isotropic voxels. The resampled fMRI images were
further smoothed using a Gaussian kernel with a full width at half maximum
(FWHM)= 6 mm. The smoothed fMRI data were used for ICA66,67. For the ROI-
based method, the smoothed fMRI data were further detrended and band-pass
filtered with [0.01–0.15 Hz], followed by regressing out nuisance covariates
including six head motion parameters, white matter signal, cerebrospinal fluid
signal, and global mean signal68.

For sMRI data, the T1-weighted images were first segmented into gray matter,
white matter, and cerebrospinal fluid by using the standard unified segmentation
model69. The Diffeomorphic Anatomical Registration Through Exponentiated Lie
Algebra (DARTEL) algorithm was employed to create a group template for spatial
normalization of the segmented images of each subject. Then, the flow fields
generated by DARTEL were used to estimate individual-subject images. After that,
individual-subject gray matter images were spatially normalized to the MNI space,
modulated or unmodulated, resliced (1.0 mm isotropic voxels), and smoothed
(6 mm FWHM Gaussian kernel). Finally, the obtained gray matter volume
(modulated data) and density (unmodulated data) were used for voxel-based
morphometry analysis.

In the study, we set out criteria to select fMRI and sMRI data separately,
resulting in high-quality data and brain masks for further analysis. Regarding the
fMRI data, we selected subjects with the following properties: (1) data with head
motions <3° rotations and 3 mm transitions along the whole scanning period; (2)
data with >120 time points in fMRI acquisition; and (3) data providing a successful
normalization in the full brain. For the third point, as good normalization of fMRI
data to standard brain template is necessary to group ICA, we proposed a method
to evaluate the normalization quality of fMRI data by comparing the individual
brain mask with the group brain mask. Our method was inspired by the Group
ICA of fMRI Toolbox (https://trendscenter.org/software/gift/) in which a group
brain mask is usually obtained based on the individual brain mask and fMRI data
within the group brain mask are used for ICA. As such, the similarity between the
individual brain mask and group brain mask can be used to reflect the quality of
individual fMRI data and then select the subjects. Our method was applied to each
dataset’s fMRI data, separately. First, using the three-dimensional image in the first
time point of fMRI data, the individual mask was calculated for each subject by
setting the brain voxels showing greater values than 90% of the whole-brain mean
to 1. Then, we generated a group mask by setting voxels included in >90% of the
individual masks to 1. After that, the spatial correlations between the group mask
and the individual mask were evaluated for each subject. The spatial correlations
were calculated using the voxels within the top ten slices of the mask, within the
bottom ten slices of the mask, and within the whole mask, respectively, resulting in
three correlation values for each subject. If a subject had correlations >0.75 for the
top 10 slices, >0.55 for the bottom 10 slices, and >0.8 for the whole mask, we
included this subject for further fMRI analysis. Finally, the group brain mask of
each dataset was computed again based on the selected subjects’ brain masks.

For sMRI, we chose the data with good quality by comparing the individual
structural image with the group mean structural image. This processing was
applied to each dataset’s modulated or unmodulated sMRI data, separately. First,
we calculated the group mean structural image across all subjects and then
computed a group mask by preserving the voxels that have values greater than a
constant threshold of 0.2, consistent with previous work by others70. Next, for each
subject, we calculated spatial similarity between the group mean structural image
and the individual structural image within the group mask. The spatial correlations
were calculated using the voxels within the top ten slices of the mask, within the
bottom ten slices of the mask, and within the whole-brain mask, resulting in three
correlation values for each subject. If a subject had correlations >0.6 for the top
10 slices, >0.6 for the bottom 10 slices, and >0.8 for the whole mask, we included
this subject for further sMRI analysis. Finally, the group mask of each dataset was
computed again based on the selected subjects.

After the quality control, the fMRI data of 2980 subjects including 1665 HCs,
537 SZs, and 778 ASDs, the modulated sMRI data of 3148 subjects (1661 HCs, 517
SZs, and 970 ASDs), and the unmodulated sMRI data of 3374 subjects (1789 HCs,
555 SZs, and 1030 ASDs) were remained. As different criteria and thresholds were
used for the quality control of fMRI and sMRI data, the selected subjects were
slightly different among the three types of data (fMRI, modulated sMRI, and
unmodulated sMRI). However, the sample sizes of the remaining subjects were
comparable. As mentioned above, detailed information of the selected subjects is
included in the Supplementary Tables S1–S4. There were no significant group
differences (p-value < 0.01) in head motion for each dataset, except the head
motion transition measure in the ABIDEI (p-value= 0.0084), measured by two-
sample t-tests. If combining the subjects from all datasets together (totally
2980 subjects), there were some group differences in the head motion measures
among the HC, SZ, and ASD groups, tested by ANOVA. However, the absolute
difference across three groups in the mean motion translation was <0.05 mm and
the absolute difference across the three groups in the mean motion rotation was

<0.07°. Furthermore, we regressed out the head motion effects from the
neuroimaging measures before statistical analyses. As mentioned above, the fMRI
data were preprocessed by regressing out six head motion parameters before the
ROI-based FC estimation. Regarding functional networks estimated from ICA,
motion-related noises were removed out by decomposing the data into different
components including motion-related components31. For the FNC from ICA, we
also regressed out the motion effects from the time series of functional networks
before computing the FNC.

As the selected subjects had group differences in age and gender, and the data
were collected from different sites, we carefully regressed out the influences of age,
gender, and site effects for each subject from the estimated functional and
structural measures. The regression procedure included three steps. In the first step,
we regressed out the age, gender, site information, the interaction between age and
site, and the interaction between gender and site for all subjects in each dataset
(e.g., FBIRN). In the second step, we estimated the data effects using HCs’
measures for the six datasets. The third step was further regressing out the data
effect from each subject’s measures that already removed the age, gender, and site
effects. The processing is consistent with our previous work29 and is also similar to
some other studies71.

Investigating brain functional networks revealed by ICA. Figure 1 shows the
basic analysis pipeline that utilized multiple neuroimaging measures including
brain functional networks, multi-scale FC, and cerebral gray matter measures to
identify shared and distinct brain abnormalities between SZ and ASD. In this
section, we describe how we investigated brain functional networks.

We compared the HC, SZ, and ASD groups to identify their group differences
in brain functional networks that were derived by a data-driven spatial ICA
method. In spatial ICA, each functional network is indicated by a spatial IC72. In
this study, we applied our recently proposed NeuroMark pipeline29 that leverages
the GIG-ICA30,31 with prior network templates as guidance to estimate the subject-
specific brain functional networks for each of the 2980 subjects. The network
templates were obtained by performing ICA on two independent large-sample
groups (i.e., 823 HCs in the human connectome project and 1005 HCs in the
genomics superstruct project), followed by the selection of reproducible and
meaningful group-level networks as the network templates. Guided by 53 network
templates, 53 corresponding subject-specific networks were obtained for each
subject using a multiple-objective optimization framework in GIG-ICA. Each
resulting subject-specific functional network includes brain regions with high intra-
connectivity, with higher Z-scores meaning higher intra-connectivity.

We evaluated the spatial similarity across the corresponding subject-specific
functional networks to verify that the functional network patterns were consistent and
comparable across different subjects. In particular, for the functional networks estimated
under the guidance of the same network template, we computed Pearson’s correlation
coefficients between any two subject-specific functional networks and then averaged all
coefficients to reflect the inter-subject similarity of the functional network. After that,
the inter-subject similarity values of all 53 functional networks were further
summarized. To investigate whether the inter-subject similarity of functional networks
is relatively stable across different data, we performed the above processing for the
subjects in each dataset or each group in one dataset.

As the functional networks are comparable, we investigated abnormalities of SZ
and ASD (relative to HC) in each functional network, aiming to explore which
networks showed similar changes between the two disorders and which networks
had disorder-unique impairments. Regarding each functional network, voxel-wise
right-tailed one-sample t-tests (p < 0.01, Bonferroni (BFN) corrected) were first
used to extract significant voxels showing positive Z-scores, consistent with our
previous work73. Then, ANOVA on the three groups (p < 0.05) followed by two-
tailed two-sample t-tests on any pair of groups, including HC vs. SZ, HC vs. ASD,
and SZ vs. ASD (p < 0.05, false discovery rate correction), were performed to each
significant voxel’s Z-score in networks to identify group differences. As mentioned
above, the age, gender, and site effects were regressed out prior to ANOVA and
two-sample t-tests.

Next, based on the results from two-sample t-tests, we summarized the
disorder-common and disorder-unique changes. In terms of the voxels passing
ANOVA in each network, the voxels with T-values > 0 in both HC vs. SZ and HC
vs. ASD reflected the disorder-common decreases compared to HC, and the voxels
with T-values < 0 in both HC vs. SZ and HC vs. ASD reflected the disorder-
common increases compared to HC. The disorder-unique changes included SZ-
unique decrease (i.e., ASD-unique increase) and ASD-unique decrease (i.e., SZ-
unique increase). The SZ-unique decrease involved voxels with both T-values > 0 in
HC vs. SZ and T-values < 0 in HC vs. ASD. That means for these voxels, the
network Z-score showed a decrease in SZ compared to HC, but showed an increase
in ASD compared to HC. Similarly, the ASD-unique decrease corresponded to the
voxels with both T-values < 0 in HC vs. SZ and T-values > 0 in HC vs. ASD. After
that, we computed the voxel percentage for each of the four types of changes within
all voxels showing group differences in ANOVA. Furthermore, among the voxels
showing a disorder-common decrease, we summarized the percentage of the voxels
that had weaker decreases in ASD than SZ (i.e., T-values < 0 in SZ vs. ASD), and we
called the type of change as ASD-weaker decrease within the common decrease.
Similarly, we obtained the associated results for ASD-weaker increase within the
common increase. The procedure is outlined in Fig. 2.
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Investigating FNC revealed by ICA. We also identified shared and distinct
changes of the two disorders in FNC74 representing the interaction between dif-
ferent networks. FNC matrix of each subject was obtained by computing Pearson’s
correlation coefficients between the post-processed time series of networks. Each
time series was processed by the Z-score transformation, regressing motion, de-
trending, de-spiking, and band-filtering with 0.01–0.15 Hz before computing cor-
relations. Thus, each element of the FNC matrix (size: 53 × 53) represented tem-
poral connectivity between two functional networks. FNC strengths were
transformed to Fisher’s Z-score for further statistical analyses. For each FNC
strength in the FNC matrix, we regressed out age, gender, and site effects, and then
performed ANOVA on the three groups (p < 0.01, BFN correction) and two-
tailed two-sample t-tests on any pair of groups to investigate group differences
(p < 0.01, BFN correction). Similar to the functional network analyses (Fig. 2), we
calculated the percentages/numbers of the disorder-common and disorder-unique
FNC changes within all FNCs passing ANOVA and also summarized the per-
centages/numbers of the ASD-weaker FNC changes within the common FNC
changes.

To examine whether group differences are sensitive to the statistical analysis
method, we also conducted a permutation test (with 1000 permutations) instead of
the above-mentioned direct two-sample t-test, to investigate group differences.
Taking HC vs. SZ as an example, we introduce how the permutation test was
applied. In each of 1000 permutations, we randomly rearranged the subjects (all
HC and SZ subjects) into two dummy groups, each of which had the same number
of subjects as the original group, and then applied two-sample t-tests on the
dummy groups to evaluate the group differences in FNCs. After that, for each FNC,
we calculated the occurring frequency of the case where the p-value obtained from
the two-sample t-test using the dummy groups was smaller than the corresponding
p-value obtained from the two-sample t-test using the original groups, and then
took the frequency as the final p-value for the FNC. Smaller frequency represents a
lower possibility of false positives of the identified group differences. The final p-
values of FNCs were corrected by BFN correction.

In addition, we evaluated brain changes found using another meta-analysis,
aiming to validate whether the group differences found using the whole data
consistently exist when using data from separate datasets to investigate the
abnormality of SZ or ASD (e.g., HC vs. SZ differences using FBIRN; HC vs. ASD
differences using ABIDEI) and using data from any two datasets involving SZ and
ASD to investigate their differences (e.g., SZ vs. ASD differences using SZ data from
FBRIN and ASD data from ABIDEI). For this, we performed two-sample t-tests
using separate datasets and then employed a meta-analysis to summarize the group
differences from separate analyses. Supplementary Table S8 includes all our
investigations about how we identified group differences using separate datasets.
Taking HC vs. SZ as an example, we performed two-sample t-tests on FNC
measures using each of the four datasets (BSNIP, FBIRN, COBRE, and MPRC) and
then combined the p-values from the four comparisons using Fisher’s method.
Regarding the combined p-value, we performed multiple comparison correction
(p < 0.01, BFN correction) and then show the mean T-value (from the four
comparisons) for each FNC passing the correction.

Investigating FC estimated using ROI-based methods. In addition to the above
data-driven functional network analysis method, we also employed a ROI-based con-
nectivity analysis method to explore whether the differences in the FC between whole-
brain regions supported a consistent relationship with the altered FNC. In this study,
two brain atlases including AAL (116 regions)37 and Brainnetome with the cerebellum
(274 regions)38,75 (http://atlas.brainnetome.org/download.html) were utilized to define
ROIs separately. The ROIs were also grouped into seven functional domains for
comparison with FNC measures. Regarding each atlas, we averaged the time series of
voxels within each ROI to yield a representative time series for the ROI, and then the
ROIs whose representative time series have very low variances and mean values across
most subjects were excluded from the following analyses. Next, we obtained FC
strengths between the remaining ROIs by computing Pearson’s correlations using their
representative time series. Thus, an FC matrix (size: 110 × 110 for AAL atlas and
261 × 261 for Brainnetome atlas) was computed for each subject. For each connectivity
value in the FC matrices, we regressed out age, gender, and site effect first, and then
performed ANOVA on the three groups (p < 0.01, BFN corrected) and two-tailed two-
sample t-tests between any two groups to examine the group differences (p < 0.01, BFN
correction). Finally, we obtained summary evaluations of the convergence and diver-
gence between SZ and ASD in whole-brain FC.

Investigating gray matter volume and density. In addition to studying the brain
functional abnormalities of the two disorders, we explored their brain structural
measures and the associations between the functional and structural impairments.
We included gray matter volume and density for analysis. For the gray matter
volume (or density) of each voxel, ANOVA (p < 0.05) and two-tailed two-sample t-
tests (p < 0.05, false discovery rate correction) were performed after regressing out
age, gender, and site effects, to evaluate the brain structural differences between
these groups. As we expected to investigate how the changes in gray matter support
or complement the findings from using brain functional measures, we calculated

the disorder-common and disorder-unique percentage for each of two brain
structural measures, and also summarized the brain structural changes in related
brain regions according to the AAL atlas.

Exploring the association between the neuroimaging measures and symptom
scores. To link the identified brain values with clinical symptoms, we calculated
the Pearson’s correlation between the values of each neuroimaging measure and the
symptom severity ratings for the SZ group and the ASD group, respectively, to
explore the association between network measures and symptoms. Spearman’s
rank correlation between them was also computed for reliability. For SZ, the
symptom scores included the PANSS-positive score and PANSS-negative score.
The symptoms of ASD consisted of ADOS total score and SRS. The significance
level was set to p < 0.01 for the correlation analyses.

Exploring the association between the neuroimaging measures and medica-
tion. For SZ patients with available dose-level medication data, we converted all
available anti-psychotic data to their respective CPZ dosage equivalents, as
described by Andreasen et al.76. We then used a multiple linear regression model to
evaluate associations between CPZ measures and each neuroimaging measure
(p < 0.05 with BFN correction, i.e., p-value threshold= 0.05/(the number of mea-
sures)). For ASD patients, we compared their neuroimaging measures between
medicated and unmedicated subjects using two-sample t-tests (p < 0.05 with BFN
correction).

Exploring brain changes using subjects with matched age and subjects with
no motion difference. As the onset of ASD often occurs during early childhood
and the onset of SZ is more observed in adults, the data used in the above analyses
had some differences in age between the two disorders. To address this issue, we
also investigated group differences by only using age-matched groups (with no
significant group difference in age, tested by ANOVA). More interestingly, we
selected two sample sets with varied age ranges (see the Supplementary Table S9 for
details). For each sample set, the HC vs. SZ, HC vs. ASD, and SZ vs. ASD dif-
ferences in FNC measures were evaluated using an analysis method in Fig. 2.
Finally, we compared the brain changes obtained using these age-matched subjects
with the results obtained from all available subjects.

In the work, there were some group differences in head motion while
combining subjects from all datasets, although in general there were no significant
group differences in motion for each dataset. Therefore, from the large-size sample,
we selected some subjects with no motion differences (see the Supplementary
Table S10 for information) and verified the group differences using the same
analysis method.

Classifying SZ and ASD using identified brain changes. It is important to
examine whether the identified brain changes can be used as biomarkers to dis-
tinguish the two disorders. To avoid bias, we conducted two-class (SZ and ASD)
classification by taking different datasets for training and the remaining datasets for
testing based on the FNC measures. As there were 4 datasets relating to the SZ
group and 2 datasets relating to the ASD group, in total we performed 12 classi-
fication experiments using different data assignments. Feature extraction and
model training were implemented only using the training data and then the testing
data were classified and compared with their true class labels. Regarding feature
selection, we first implemented the above-mentioned statistical analyses on the
training data, and then took the FNCs with disorder-unique changes (i.e., SZ-
unique decrease and ASD-unique decrease) and the ASD-weaker changes within
the disorder-common changes (i.e., ASD-weaker decrease within the common
decrease and ASD-weaker increase within the common increase) as the features. A
linear support vector machine with a Bayesian optimization technology77 to
optimize the parameter was applied for the model building. Finally, the classifi-
cation results were evaluated using accuracy, sensitivity, and specificity.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Restrictions apply to the data use, as we applied for the use of the raw fMRI and sMRI
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