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Identification of distinct tumor cell populations
and key genetic mechanisms through single
cell sequencing in hepatoblastoma
Alexander Bondoc 1,7✉, Kathryn Glaser 1,7, Kang Jin 2,3,7, Charissa Lake1, Stefano Cairo 4,5,

James Geller6, Gregory Tiao1 & Bruce Aronow 2,3

Hepatoblastoma (HB) is the most common primary liver malignancy of childhood, and

molecular investigations are limited and effective treatment options for chemoresistant

disease are lacking. There is a knowledge gap in the investigation of key driver cells of HB in

tumor. Here we show single cell ribonucleic acid sequencing (scRNAseq) analysis of human

tumor, background liver, and patient derived xenograft (PDX) to demonstrate gene expres-

sion patterns within tumor and to identify intratumor cell subtype heterogeneity to define

differing roles in pathogenesis based on intracellular signaling in pediatric HB. We have

identified a driver tumor cell cluster in HB by genetic expression which can be examined to

define disease mechanism and treatments. Identification of both critical mechanistic path-

ways combined with unique cell populations provide the basis for discovery and investigation

of novel treatment strategies in vitro and in vivo.
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Hepatoblastoma (HB) is the most common primary hepatic
malignancy of childhood. The incidence of this tumor is
1.5 cases/million population/year or approximately 1% of

cancers for young children, but has been increasing over the last
30 years1. Current standard of care is multimodal and includes
neoadjuvant or adjuvant chemotherapy in conjunction with
surgical resection or liver transplantation2–6. To understand
the pathogenesis of HB, investigators have characterized the
molecular signatures of HB using whole genome, exome, and
RNA sequencing platforms7–11. Many signaling pathways
have been implicated in the development of HB, including WNT,
HH, NOTCH, YAP, and PI3K, but precise mechanisms are still
unclear12–14. PDX models are derived from unique human
tumors15–17, permitting nonhuman treatment trials designed
using clinically approved agents. PDX models can also aid in the
identification of novel treatments based on the specific molecular
biology of patient tumors18. We present here, HB PDX models
mirroring the human disease, including aberrant gene expression
allowing examination of the key drivers of tumor growth and
proliferation. The current study evaluates patient source tumor,
background liver, and PDX tumor to define tumor cell popula-
tions and key molecular pathways of HB that drive cancer growth
and proliferation.

From a mechanistic standpoint, the WNT pathway has been
implicated in the formation of pediatric liver cancer including
HB7. The most common genomic alteration occurs in beta-
catenin, so numerous studies have evaluated the importance of
the WNT pathway and family of genes as potential therapeutic
targets7,19.

Additionally, Cairo demonstrated that HB with a proliferative
phenotype, classified as C2 subtype, has a less favorable prognosis
and resistance to treatment7. Further classification of this high risk
group further defines C2a and C2b subtypes based on vimentin
expression, and shows that patients with C2b tumors have a better
outcome20. The patient tumors used for this investigation are
histologically heterogeneous and treatment resistant with features
of C1, C2a and C2b subtypes, and our PDX models demonstrate
exaggeration of the parent tumor proliferation rate. Also of note,
chromatin remodeling has been implicated in many malignancies,
specifically resistance to chemotherapy21,22. In agreement with
prior reports our single-cell RNA sequencing results demonstrate
an important role of chromatin remodeling in HB tumor
and PDX.

Together, WNT and PI3K/AKT signaling, in conjunction with
cell cycle progression, morphogenesis, and chromatin remodeling
in distinct tumor cell populations, may define the molecular
biology of HB initiation, vascularization, maintenance, and tumor
progression. The current literature does not clearly define the key
driver cells of HB, but others have begun to explore driver genes as
well23. There are reports to suggest that cancer stem cells play
a role, but it remains unclear24,25. Additional reports in HCC
implicate hepatocytes and microenvironment in tumor transfor-
mation, but still more investigation is warranted26. Our investi-
gation defines clusters of cells with genetically defined roles,
including a unique tumor-driving cell population not previously
defined. Tumor subpopulations and distinct genetic signatures
may be key to unraveling the factors driving liver cancer.

Results
PDX model mimics HB tumor expression and histology. In the
PDX models we have generated, patient tumors share genetic and
histologic characteristics with PDX tumors. Figure 1a and b
demonstrates the experimental workflow from primary tumor
and liver collection through pathway and tumor subclustering
analyses. We observed upregulation of GPC3 gene expression, a

known marker, in HB tumor relative to background liver and
nontumor liver (Fig. 1c). RNA sequencing (RNAseq) was per-
formed on two HB patient tumors, background liver and PDX
tumor over multiple passages (F0–F5) to evaluate maintenance of
HB tumor phenotype. Evaluation of raw gene transcripts per
million for key upregulated genes with strong upregulation in
tumor and PDX, and prior reported involvement in HB,
including GPC3, DLK1, and IGF2, showed robust increase in HB
tumor gene expression with further elevated expression in PDX
tumors (Fig. 1c). Using histological staining, we show an eleva-
tion of hematoxylin staining in HB primary tumor as well as
tissue disorganization, characteristic of HB. Both primary tumor
and PDX of HB17 and HB18 show cells that resemble developing
liver consistent with the epithelial (fetal/embryonal) histology
observed clinically (Fig. 1d, Table 1). A similar staining pattern
between HB primary tumor and PDX was observed, as well as
highly proliferative cells as indicated by immunohistochemistry
(IHC) staining for KI67 (Fig. 1d). PDX samples show elevation of
hematoxylin staining over primary tumor as well as prior
observed histologic features in tumor (Fig. 1d).

GPC3 upregulation was also seen at the protein level by
western blot with some variation in protein expression and
presence of heparin sulfate (HS) side chain or 40-kDa cleavage
product for some HB tumor and PDX samples (Fig. 1e).
Interestingly, for both HB17 and 18, patient tumor shows more
pronounced HS side-chain band than PDX tumors. Tumor
characteristics are often exaggerated in the PDX model and some
with passage (Fig. 1c, e, f). H&E and GPC3 histology show more a
robust cancer phenotype in PDX tumor models. GPC3 is also
elevated in tumor tissue by IHC, which is a clinical hallmark of
HB tumor and more pronounced in PDX (Fig. 1f).

Table 1 outlines the clinical features for each HB patient
evaluated in this study. Of interest, the HB tumors that support
PDX growth are more complex, including HB17, 18, 21, 23, and
30 (Table 1). HB53 is still under investigation to determine if
PDX generation is possible. HB17, 30, and 53 were selected for
further in-depth analysis based on poor treatment response and
outcome or metastasis, as well as robust growth in the PDX
model in two samples.

RNAseq HB tumor phenotype is maintained, and gene
expression exaggerated in PDX. The heat map in Fig. 2a shows
dramatic expression changes from background liver samples
(HB17B, 18B) to patient tumor (HB17T, 18 T) to PDX (HB17,
18 F0–F5). In general, the expression pattern is conserved from
tumor to PDX with some fundamental differences (Fig. 2a). To
confirm RNAseq expression patterns, a panel of genes were
evaluated in six background liver and HB tumors including
HB18, which was included in the RNAseq evaluation. In gen-
eral, upregulation of GPC3, YAP1, SHH, CTNNB1, AXIN2, and
FANCD2 was observed with some variation from patient to
patient, with greater variability seen in YAP1 and beta-catenin
(Fig. 2b).

Single-cell transcriptome landscape of HB. Single-cell RNAseq
was used to further characterize the HB and PDX tumor com-
pared with background liver to determine integral pathways and
cell signatures in HB utilizing HB17, HB30, and HB53 samples
(the second passage (F2) was used for available PDX samples).
After preprocessing and quality control (see “Methods”), we
collected 67,111 cells across seven samples, including three
tumors, two background livers, and two PDX tumors. The single
nuclei RNA sequencing analysis workflow is graphically
demonstrated in Fig. 1b. Clustering was done, and eleven distinct
cell types were classified (Fig. 3a) with enriched pathways and
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canonical markers, such as CYP3A4, ALB, APOC3, and HPGD for
hepatocytes, FLT1 for endothelial cells, COL3A1 and COL6A3 for
hepatic stellate cells, CD68 and CD163 for Kupffer cells, and
PTPRC for immune cells (Fig. 3b, c, Fig. S1). Hepatocytes are the
dominant cell type in the background liver (Fig. S1), while tumor
cells account for the largest proportion of cells in the HB tumor
and PDX. We identified hepatic stellate cells, endothelial cells, NK
cells, and T cells in both background liver and the HB tumor.
Hundreds of mouse cells were found in the tumor environment
of PDX and were then removed from analysis. The top 200

differentially expressed genes were identified and organized by
sample, cell class, and gene module to show gene signatures that
define the relevant cell types examined (Fig. 3c) with ToppCell
(https://toppcell.cchmc.org/biosystems/go/index3/OncoMap)
toolkit for each cell type (Methods). Further analysis, such as
ToppGene enrichment analysis, as well as gene-interaction net-
work, was also done in the integrated browser-able tool in the HB
tumor. A heatmap of microenvironment cell gene expression
demonstrates upregulation of cell activation, vascularity, and
morphogenesis. Selected genes of cell-surface proteins, signaling

Fig. 1 Comparison of HB background liver to tumor and PDX. a Schematic of PDX model. Diagram showing the process of implantation of tumor, growth,
and experimentation, including cryopreservation, molecular analysis, generation of cell lines, drug testing, and database of effective treatments. Mouse
image demonstrates successful heterotopic tumor implantation with tumor growth. b Method and analysis workflow. Diagram of samples used for
scRNAseq, and data analysis workflow through tumor sub-clustering (computer monitor image is a stock image from Biorender). c Real time PCR validation
of GPC3 gene expression of human HB background liver (B) and tumor (T) compared with control liver (N) (control liver= nontumor liver) (statistical
analysis (student t-test) was performed on averaged data for N, B, and T samples, p < 0.05 for T vs N and T vs B. Each bar represents one patient sample).
Raw gene transcript (TPM) values in background liver, HB tumor and PDX tumor showing increased expression of GPC3 in tumor and PDX tumors (average
of PDX’s passage F0–F5) statistical significance determined by student t-test (SEM, *p < 0.05, **p < 0.005 relative to background of the same patient).
TPM—transcripts per million. d PDX-HB17 and 18. Histology of primary tumor and PDX tumor (F0) of HB17 and HB18 and representative background liver
(HB30) showing proliferation by H&E and KI67 (ma5-14520) (4x objective, scale bar 10 µM with zoomed-in 10 × 751 inlay, magnified 3x in KI67 panel). e.
Western blot comparing GPC3 (ab207080) protein expression in B and T to PDX passages (passages= F0–F6). Tumor and PDX samples have elevated
full-length, HS side, chain and cleaved N-terminal GPC3 fragments (the antibody does not detect C terminus). f Histology of background liver, primary
tumor and PDX tumor of HB21, 23, and 30 showing maintenance of histologic features and proliferation by H&E, as well as increased GPC3 expression in
tumor and even greater expression observed in PDX tumor (10x, scale bar 50 µM).
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ligands, and transcription factors among differentially expressed
genes (DEGs) in each cell type were used to build the interaction
network in the tumor environment to show crosstalk with tumor
cells. Tumor cells show interaction with the microenvironment,
including endothelial cells through DLK1 and BMP signaling, as
well as tumor interactions with hepatic stellate cells as well as
endothelial cells (Fig. S3a, c).

PDX maintains features of the HB patient tumor at the single-
cell level. We compared gene correlation, cell cycle phases,
upregulated genes, and enriched tumor-driven pathways across
the HB tumor and PDX. The relationship between background
liver, tumor, and PDX was evaluated by the correlation of gene
expression. Tumor and PDX show high correlation (R2= 0.902)
with background showing moderate correlation (R2= 0.629 and
0.540) (Fig. 4a, “Methods”). Not surprisingly, upregulated path-
ways in tumor and PDX highlight WNT signaling, cell cycle,
organ development, and morphogenesis (Fig. 4a). The Volcano
plots show similarities as well as differences between tumor and
PDX. We investigated upregulated genes in the HB tumor and
PDX and found that close to half of top DEGs were overlapping
(Fig. S2b)27. PDX and HB tumor are different in some perspec-
tives, for example, upregulated immune responses in tumor
relative to PDX, which might be influenced by tumor micro-
environment. This difference may be attributed to the lack of
immune system in immunocompromised mice and the filtering
of mouse cells removing the mouse microenvironment from this
analysis (Fig. 4b). Upregulation of tumor signatures, such as
GPC3, DUSP9, and CTNNB1 can be observed in tumor cells
and PDX (Fig. 4c). Predicted cell cycle scores (Fig. 4d)28 show
increased proliferation in both tumor and PDX samples. The

DEGs in the tumor cells of both HB tumor and PDX show sig-
nificant enrichment for WNT signaling pathway and tissue
morphogenesis (Fig. 4e). Besides those, tumor cells also exhibited
high activities in PI3K signaling pathway and C-MYC signaling
pathways, which have been proven to be closely related with HB
development7,29. Functional associations were examined between
genes upregulated in HB tumor and PDX, which demonstrated
WNT signaling, cell cycle regulation, PI3K signaling, C-MYC
signaling, and cell morphogenesis prominent in tumor cells
(Fig. 4f).

Single-cell gene expression defines distinct tumor cell clusters.
The single-cell RNAseq data were also used to examine cell clusters
and explore the progression of gene expression state. Separate from
the prior clustering of individual cell types, we reclustered the
52,629 tumor cells in HB tumor and PDX and identified 12 distinct
clusters (Fig. 5a). Fig. 5b also shows the percentage of cells in each
tumor cluster present in HB tumor and PDX. All clusters identified
in tumor are present in some portion of the PDX tumor, except for
Tr10, which is a cluster with a neuronal gene expression signature.

Utilizing the top differentially expressed genes critical upregu-
lated pathways were defined to further characterize tumor cell
clusters (Fig. 5c). Differentially expressed genes critical upregu-
lated pathways were defined to further characterize tumor cell
clusters (Fig. 5c). GPC3 and HMGA2 are upregulated in all tumor
clusters compared with background liver. Other WNT pathway
genes as well as anti-apoptosis genes, metabolic genes, and PI3K/
AKT and C-MYC signaling pathways help to further suggest
distinct roles of cell clusters within the tumor.

The distribution of known genes in HB, expression pattern of
published signature genes, and the up- and downregulated

Fig. 2 RNAseq comparison of HB samples. a Heat map to demonstrate the expression differences between human background liver, source tumor, and
PDX tumor over time (passages F0–F5 demonstrate expansion of tumor through multiple sets of mice). Overexpressed genes in HB tumor are often
overexpressed to a greater degree in PDX and genes with lower expression can demonstrate further reduction in PDX. PDX tumor maintains a similar gene
expression profile through multiple passages. b Validation of upregulation in genes of interest. qRT-PCR validation of gene expression in human HB
background liver (B) compared with tumor (T). Each number—B/T represents matched samples from one patient. GPC3 is overexpressed in T vs. B. YAP1
shows some elevation in T, but expression is variable. SHH is generally overexpressed in T. Beta-catenin (CTNNB1) is variable but generally has moderate
elevation in T. AXIN2 and FANCD2 are elevated in many T samples and appear to correlate with PDX tumor-growth success.
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functions in key tumor cell clusters are shown in Figs. S3 and S4
to aid definition of cell clusters. The distribution of tumor types
by cell cluster is shown in Fig. S3a to show that most clusters are
present in tumor and PDX with cluster 10 being an exception.

Violin plots of the detected genes show the distribution of gene
expression across the defined clusters and suggest that clusters 1
and 4 have lower UMIs, which may be due to lower quality
(Fig. S3b). The gene expression distribution and location of known
markers in HB, including GPC3, VIM, and HMGA2, are shown in
Fig. S4a,b. The localization of cells from each patient tumor and
PDX is visualized by UMAP to show the sample distribution and
contribution of each patient tumor to our analysis. Each patient has
a distinct tumor with numerous differences, but we observe an
extensive overlap of the prominent clusters (Fig. S3c). To further
understand the key defined tumor clusters (Tr0, Tr2, Tr3, and Tr5),
the aberrant biological processes were defined from the top
differentially expressed genes (Fig. S3d).

We examined protein expression in B, T, and PDX samples for
CCND1, KI67, CD34, GPC3, YAP, and EZH2 to provide loose
validation of different tumor clusters. CCND1 is expressed in all

tumor clusters with more seen in Tr1 and Tr4. KI67 is expressed
in Tr2 and Tr8. CD34 has lower overall expression with the
majority of expressing cells in Tr4 and Tr1. GPC3 is expressed in
all tumor clusters and YAP1 is expressed in all clusters with a
slight increase in Tr0. EZH2 is localized to defined clusters with
expression most prominently in Tr2 (Fig. 5d, e). There are
localized regions of overlapping KI67 and EZH2 staining, high-
lighting the Tr2 driver cell population with staining of GPC3 and
YAP also in these regions of replication. The pattern of each
protein localizes to different regions of the tumor and correlates
with the gene expression level seen from scRNAseq, but
additional validation is required (Fig. 5d, e).

Additional genes within key pathways, including WNT,
NOTCH, PI3K/AKT, and C-MYC, are listed in Fig. S5, as well
as cyclin-dependent protein kinase activity genes, highlighting the
prominence of the overexpression seen in cluster Tr2. Tr2 has
high expression of FANCD2, RBL1, EZH2, and numerous WNT
pathway genes, Tr4/1 has elevated FLT1, CALCRL, VIM, and
VCAN30, Tr5 has high PTCH1, LEF1, and CD44 expression, and
Tr3 has elevated EGFR, CYP3A5, and IGFBP2 among many other

Fig. 3 Single-cell RNA sequencing characterization of background liver, tumor, and PDX. a UMAP of cell classes (Left) and sample groups (Right) of the
integrated data from background, tumor and PDX. Endo endothelial cell, Stellate hepatic stellate cell, Eryth erythrocyte, T/NK 774 T cell or NK cell, Cho
cholangiocyte, Prolif Hep proliferative hepatocyte. b Marker genes for common cell populations in liver and tumor were drawn on UMAP. DLK1 shows
tumor, HPGD identifies hepatocytes, FLT1 indicates epithelial cells, COL6A3 represents hepatic stellate cells, CD163marks Kupffer cells, and PTPRC indicates
immune cells. c The heatmap for 200 most upregulated genes for cell types within background liver, tumor, and PDX (Methods). Known markers were
shown on the left. Cell counts are shown in bar charts.
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defining expression patterns (Fig. 5c, Fig. S4). Tr0 cells have high
expression of WNT and NOTCH genes but to a lesser degree than
other clusters consistent with a more primitive or less active state.
The similarity matrix of the 12 clusters identified in tumor shows
how similar the clusters are and highlights prominent differences
in the Tr0, Tr2, Tr4, Tr5, and Tr3 populations. Tr4 and Tr3 show
the most notable transcriptome differences, but Tr4 also has
lower read depth, which may indicate poor cell quality (Fig. 5c).

Utilizing gene expression data, a heatmap of upregulated
functions was defined in tumor clusters from HB tumor and
PDX. Distinct cell clusters display unique functional roles by
pathway enrichment (Fig. 5f). Tr2 has high cell cycle function and
replication, and also showed downregulation of other cell
functions suggestive of an initiation state. Tr5 demonstrates a
role in morphogenesis, as well as higher levels of cell migration-
related genes. Tr3 has a high metabolic role, with Tr11 also
having an increase. Tr4/1 has prominent expression in response
to stimulus, immune regulation, apoptosis, and secretion as well
as others as shown in Fig. 5f31. Tr0, Tr2, Tr6, Tr7, Tr8, and
Tr9 share similarity to many other clusters. Tr11 has similarities
to both Tr0 and Tr3 (Fig. 5c). Examination of pathways,
transcription factors, and cluster gene expression data (Fig. 5c,
e, f) support an initiating/driving role of Tr2 through gene
expression, including EZH2 and RBL1, and upregulation of cell
cycle and cell division, tumor development for Tr5 through LEF1

and PTCH1 expression and increased morphogenesis and
development, loose support for endothelial nature of Tr4 through
DLK1, FLT1, and VIM signaling, and tumor maintenance for Tr3
through strong metabolic signature and EGFR and IGFBP2
expression. To aid in definition of tumor subtype and prognosis, a
genetic signature was previously established. A heatmap was
generated to show the tumor cluster expression of the 16 gene
signatures used predominantly in the field of HB to define tumor
subtype. Interestingly, the expression profile generally corre-
sponds to previous reports with varied expression in some
clusters (Tr3, Tr4, and Tr5) (Fig. S4d)7. Heatmaps of the
individual sample gene expression signatures are shown in Fig. S6,
to highlight both the consistent and variable expression
inindividual tumor samples. Core proliferative signatures are
well preserved across samples, while individual patient differences
are still observed in replicating and nonreplicating tumor cells.
The key features that are specific to each individual will provide
the framework of future studies.

Identification of cell cluster progression and tumor cell cluster
targets. Utilizing UMAPs of HB tumor and PDX, RNA velocity
was predicted with scVelo to extrapolate differential flow from
one cell cluster to the next32,33. RNA velocity shows little
movement in central clusters, with flow down from Tr0, which

Fig. 4 Maintenance of features across the tumor and PDX. a Scatter plots for normalized expression values of all detected genes in hepatocytes of
background liver versus tumor cells of tumor (Left), hepatocyte of background liver versus tumor cells of PDX (Middle), and tumor cells of tumor versus
tumor cells of PDX (Right). R-square values were calculated after fitting data into linear-regression models. Some markers of tumor cell and hepatocytes
are highlighted. b Volcano plots (Left) and gene enrichment results for top 200 DEGs (Right) of comparisons in (A). Representative enriched pathways
were shown, and gene enrichment scores were calculated using −Log10 (adjusted enrichment p value). c Violin plots showed distributions of normalized
expression levels of several important tumor genes across background hepatocytes and tumor cells in tumor and PDX. d Cell cycle scores, including scores
of phase S (Left) and G2M (Right) of three main cell types showed that tumor cells had significantly higher proliferation activities. e Genes involved in the
upregulated pathways of tumor cells in (B) were shown on the heatmap (Table S5). Normalized expression values were used. f Functional association
network showing upregulated genes of tumor cells in HB T and PDX and their associations with tumor development-related pathways in (b and e) using
ToppCluster (Methods).
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may be a precursor population to other clusters including Tr2
and 5 (Fig. 6a). Tr4 demonstrates flow into additional tumor cell
clusters with Tr4 more prevalent in primary HB than in PDX. Tr1
has a similar signature to Tr4, but is derived from the male
patient in this cohort. The significance of this variation is unclear.
We propose based on gene expression, pseudotime trajectory, and
RNA velocity that cluster Tr0 is a precursor cell, Tr2 is a potential
initiating/driver population that differentiates in to Tr5 and Tr3
cell populations, and the Tr4 endothelial-type cluster works with
other tumor cells to drive HB tumor (Fig. 6b). Tr3 also shows
expression and velocity toward Tr0, which may suggest that this
cluster has some place between normal liver and tumor initiation,
but more data are needed.

UMAPs of tumor and PDX mapped with background liver
further clarify the flow of tumor cells (Fig. 6a). Figure 6c displays
a heatmap of potential driver and targetable genes in tumor cell
clusters compared with cell clusters in background liver.
Numerous genes have elevated expression in tumor clusters
often with even greater expression in Tr2. This heatmap also
highlights unique genes that are expressed only in more critical
cell clusters. Network analysis was conducted to further evaluate
driver genes prominent in Tr2 to identify treatment targets and

generate hypotheses for future studies (Fig. 6d). WNT signaling
and cell cycle show prominent expression and interconnectedness
within this network.

Complex signaling network between tumor cells and the tumor
microenvironment. Further interactions were characterized by
evaluating the network of signaling pathways between tumor cell
clusters and tumor microenvironment cells (Fig. 7). The gene
expression changes in each cluster and the differential signaling
network demonstrate different functions of cell subclusters as
they become more differentiated tumor cells that may support
tumor growth and maintenance. The signaling patterns between
subclusters and support cells were inferred using CellChat and
highlight four patterns of expression. Pattern one and four
highlight the expression changes from Tr0 to Tr5/7 supporting
the RNA velocity seen in Fig. 6a (Fig. 7a). Prominent pathways
present within these patterns are also defined and include WNT,
NOTCH, HH, and numerous others. The interactions between
each cluster are shown in Fig. 7b. Using SHG imaging, we further
explored the vascular signature by visualizing the collagen in
tumor compared with background, demonstrating a similar
expression of collagen in both with vast disorganization seen in

Fig. 5 Gene expression defines initiating cell potential and other functional roles in tumor cell clusters. a The UMAP visualization showed the clusters
found in the tumor cells from tumor and PDX after integration and reclustering. Cells in different states are labeled. Tr1 and Tr4 are clusters with relatively
low sequencing depth. b UMAP visualization of sample-group distribution (Top) and percentages of clusters in each sample group (Bottom). c A heatmap
was drawn for 200 most upregulated genes per tumor cluster in each sample group. Cell types in background liver and tumor microenvironment are shown
as the reference. Normalized values were used for expression levels. Key signature genes in some clusters are shown on the right. Similarity matrix of
tumor clusters was calculated with Pearson correlation based on a combined gene list from (c). Hierarchical clustering was applied for rows and columns. d
IHC was conducted in B, T, and PDX samples from HB30, B and T from HB53, and PDX from HB17 to show localization of CCND1, KI67, CD34, GPC3, YAP,
and EZH2 to differing regions of tumor (20X, scale bar 50 µM). e Violin plots of gene expression for the corresponding genes in (d) are shown to show the
expression patterns in each tumor cluster. Dots are only shown in the violin plot of CD34 due to its relatively sparse expression in the single-cell data. f A
heatmap of gene set enrichment scores (−log10Padj) of each cluster by ToppGene enrichment using genes in (c). Tumor-association enrichment terms in
Gene Ontology (Biological Process) were selected and grouped into several categories. Hierarchical clustering was applied for rows and columns.
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the tumor samples consistent with immature vessels (Fig. 7c).
Further exploration of complex pathways shows overexpression
of receptors and ligands to promote signaling between tumor
subclusters and the microenvironment (Fig. 7d). We have high-
lighted BMP, FGF, and CXCL signaling pathways due to the
robust signaling network and the overexpression of ligands and
receptors in clusters with potential to support tumor. BMP has
classically been suggestive to be tumor repressive, but recent
reports suggest a role in EMT34.

Clusters Tr0, 6, 7, 10, and 11 have high expression of BMP
ligands with vast expression of BMP receptors in most clusters
and support cells. FGF signaling has been reported in numerous
other cancers to promote growth and tumor progression35,36. In
line with these reports FGF2 is upregulated in Tr2, which has
been reported to drive tumor and circulate in tumor
microenvironment36. CXCL signaling is also of interest based
on a reported role in metastasis and interaction with endothelial
cells37. Our data show high expression of ligand in many tumor
clusters, including high CXCL12 in Tr11, CXCL2 in Tr3, and
CXCL16 in Tr10 with high CXCR4 receptor expression in tumor
endothelial cells supporting prior reports (Fig. 7d). By focusing
on endothelial cell interactions, we offer further support that
tumor cells are interacting to support tumor growth and

vascularity. There is a high level of differential signaling between
the different cell subtypes, including tumor endothelial cells and
prominent clusters.

Discussion
Utilizing scRNAseq, we have clearly defined cell populations from
tumor and PDX from HB patients in contrast to the cell clusters
representative of normal liver identified from background liver.
Our data demonstrate preservation of prominent tumor features
in PDX even though heterotopic implantation does not wholly
preserve the tumor microenvironment. The supporting cells that
were isolated from tumor show differences from cells in back-
ground liver, particularly endothelial cells and NK/T cells. These
differences seem to indicate a greater degree of activation in the
tumor microenvironment. Although PDX models, including our
subcutaneous model, have limitations such as lack of tumor
microenvironment, the preservation of key driving pathways
demonstrates the value of this model system to recapitulate HB
molecular signatures and serve as a model to conduct murine
clinical trials to evaluate the effectiveness of current therapies, as
well as discover and evaluate novel treatment strategies in real
time. The gene expression data from HB PDX models also suggest

Fig. 6 Definition of cell-cluster progression and molecular targets. a RNA velocity of tumor clusters is shown on the UMAP. Streams indicate the
predicted tumor transitions across clusters (Methods). We only focused on clearly identified clusters and removed clusters with low sequencing depth (Tr1
and Tr4) since RNA velocity is easily biased by technical noise58. b Diagram of proposed tumor cell cluster progression from precursor (Tr0) to initiating
cells (Tr2) to progression (Tr5) and maintenance cells (Tr3) with integration of potential angiogenic/endothelial cell population (Tr4). c Heatmap of
potential driver or targetable gene sets in tumor cells, background liver, and tumor environment. Differentially and highly expressed (maximal row levels
are greater than 0.5) anti-apoptosis genes, ligands, and receptor genes and transcription factors in tumor cells are selected and shown (GO:0043066:
negative regulation of apoptotic process; GO:0048018: receptor-ligand activity; GO:0004888: transmembrane signaling receptor activity; GO:0000976:
transcription-regulatory region sequence-specific DNA binding). Endo endothelial cells, Cho cholangiocytes, HSC hepatic stellate cells, Kup Kupffer cells, B
B cells, NK NK cells, T T cells, Hep hepatocytes, Mono monocytes, T/NK T cells or NK cells. d Network showing driver genes (c) and associations with
tumor-related terms enriched in ToppCluster. The size of hexagon indicates the gene expression level in tumor cluster Tr2. Key functional associations,
such as morphogenesis and Wnt signaling pathway, are highlighted in different colors.
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that AXIN2 and FANCD2 overexpression signatures may serve as
markers for successful PDX generation.

The tumor clusters have gene signatures, which indicate cell
populations with five distinct phenotypes: precursor, initiating/
driving, endothelial-like, progressive, and maintenance cells. Our
tumor and PDX samples demonstrate the presence of a potential
initiating or driver cell population (Tr2), as well as distinct tumor
cells, which were further subdivided into clusters with varying
genetic signatures to highlight genes and pathways, which may
serve as future treatment targets. The distinct cell populations
that have been identified in tumor show known genetic signatures
identified in HB tumor samples, but better suggest specific roles
each tumor cell cluster may play in development and differ-
entiation of HB. Our single-cell RNAseq data highlight clusters a
global genetic signature consistent between source and PDX
tumor, as well as initiating and transitional cell features including
replicative capability that can support tumor growth and stability.
Specifically, increased expression of GPC3, DLK1, and HMGA2
are genes that define the driving pathways of HB, and these genes
have also been previously reported as cancer stem cell markers in
HB7,38. Together, these and other overexpressed genes highlight
the importance of the WNT, NOTCH, C-MYC, PI3K, and MAPK
pathways. Replicative cells from tumor are preserved in PDX
demonstrating the presence of a potentially tumor-initiating
population (Tr2)39,40. The gene signature of this cell cluster

includes HMGA2, EZH2, and FANCD2, as well as robust increase
in cell cycle. These markers can be found in other tumor clusters
as well but with less prominence. Tr2 cells may be the beginning
of tumor formation, which gives rise to the signatures found in
Tr5 and Tr3. There is also evidence of regional variation of
replicating cells by KI67, which supports the potential of an
initiating role for the Tr2-replicating cell cluster. Based on genetic
profile and upregulated pathways, we suggest that Tr5 has a role
in tumor progression and Tr3 has a role in tumor maintenance.
The signaling of CXCL12/CXCR4 may implicate Tr11/3 as having
metastatic potential as well. Cluster Tr0 has features resembling a
type of cancer stem cell or primitive driver cell with expression of
most markers in other clusters but to a lesser degree with less
pronounced cell cycling. Our data suggest maturation of distinct
tumor clusters from initiating tumor cells into postmitotic sup-
port cells with roles in morphogenesis, adhesion, and vasculo-
genesis. Additional validation is required to determine if
replicating cells drive tumor progression, and if nonreplicating
cells can also differentiate into tumor driver cells. Lineage-tracing
studies may clarify this question.

Additional evaluation in other patient tumors as well as in vitro
studies is needed to clarify and validate these results, but there
seems to be a transition from normal liver to Tr0/Tr2, with
transformation to additional clusters being less clear, but Tr2 has
a clear replicative/cell cycle role, and Tr5 is involved in migration

Fig. 7 Differential signaling between tumor cell clusters and microenvironment cells. a Signaling pathways were predicted using CellChat to show
interaction patterns between tumor subclusters and microenvironment cells. Four main patterns of ingoing and outgoing signals were identified, and
associated pathways shown. b A network of signaling interactions of upregulated genes between tumor cell clusters and supporting tumor
microenvironment cells shows crosstalk between cells in tumor. Gene–gene interactions were inferred using ToppCluster and interaction pairs between
tumor cells and microenvironment cells were highlighted. Node size represents normalized expression levels of genes in each cell type. Node shape
represents ligands (triangle) and receptors (circle). c Second harmonic generation (SHG) microscopy of tumor and background liver. Left to right, SHG (red
—SHG, green—autofluorescence), KI67, and H&E staining demonstrates disorganized vessel structure in tumor samples. 20X Plan APO, 1024 × 1024
resolution, scale bar 50 µM. d Heatmaps and CellChat chord diagrams of upregulated pathways with indicated receptor/ligand interactions are highlighted.
Extensive BMP, FGF, and CXCL signaling networks are shown. Lowly expressed genes in each pathway (maximal row values less than 0.5) were removed
from the heatmap.
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and morphogenesis. Tr3 has a metabolic role as well as greater
response to the stimulus, and Tr0, Tr2, Tr7, and Tr9 shares roles
with many other clusters. Tr4/1 has a unique signature and may
be a key tumor endothelial population that helps tumor angio-
genesis. It is also possible based on some differentiation and
apoptosis markers that this population of cells is the result
of stress response or cell death or simply a result of low read
depth. These clusters suggest five distinct cell groups within the
tumor with precursor, initiating/driving, endothelial, progressive,
and maintenance phenotypes based on gene expression
signatures23,41. The vast signaling network demonstrating com-
munication between tumor subclusters and support for micro-
environment cells demonstrates that tumor subclusters have
extensive crosstalk to support the growth and differentiation of
each unique cluster to maintain and protect the tumor. FGF,
BMP, and CXCL signaling as well as numerous other pathways in
Fig. 7 are key to formation of this stable interaction network
within the tumor. These interactions will guide future exploration
into the mechanism of how these clusters support vascularity and
stemness within the tumor.

Our HB17, HB30, and HB53 tumors and PDX models have
some genetic features consistent with all three (C1, C2A, and
C2B) subtypes as previously described20, highlighting the need
to clearly define HB tumor cell functions. There are many gene
expression differences between each patient tumor and between
tumor and PDX, which require further exploration. These dif-
ferences suggest a path for development of personalized medi-
cine; however, our global analysis of multiple patient tumors
highlights genetic similarities of potentially targetable cell clus-
ters. This study is a step toward a more complete understanding
of constituent HB cell subtypes and provides insight into a path
forward to formulate more effective treatment algorithms based
on cell signatures, as well as guide generation of additional
model systems42.

Targeting the upregulated genes in Tr2 and Tr5 as well as
Tr3/11 may elicit a favorable response in tumors of this subtype,
by preventing replication and reducing tumor structure and
stability. Isolation and culturing of Tr2 cells and others based on
the unique genetic signatures will allow examination of cluster
tumorigenicity and inhibition. Pathways exaggerated in different
clusters can be exploited to identify novel treatment candidates
or combination therapies. As demonstrated in Fig. 6d, char-
acterization of individual tumor complexity by scRNAseq may
eventually and optimally provide real-time data to assist phy-
sicians in clinical decision-making but only after extensive
investigation and clinical trials.

Examination of cell cycle in single cells demonstrates
enhancement of proliferation in tumor and further exaggera-
tion of proliferation in PDX. Enhanced proliferation and the
progression of this increase in PDX models will allow these
models of HB to more effectively guide identification of novel
therapies for patients with relapsed or refractory disease. Given
the unfavorable prognosis and chemoresistant phenotype
demonstrated by HB tumors with the C2 and C2b subtype,
which also defines the majority of samples from which we have
successfully generated PDX models, having a model with even
greater propensity to proliferate will allow for robust evaluation
of the effectiveness of treatment options. These features of PDX
will lend to characterization and analysis of tumor cell types, as
well as better treatment outcome for patients in the future43,44.
The identification of a tumor driver cell cluster (Tr2) as well as
tumor-sustaining cell populations, predominantly Tr0, Tr3,
Tr5, and Tr4/1, in primary HB tumor and PDX, will drive
future studies to better understand how to control tumor
growth and actively target the cancer-causing cells identified in
HB tumor.

Methods
Human subjects. We have collected background liver and tumor samples from
patients with HB under conditions appropriate for characterization and further
generation of PDXs with institutional review board approval (IRB # 2016-9497)
and informed patient consent. Data from 15 patient tumors and PDXs generated
from five of these HB patient samples are reported. Primary tumor and background
liver were used to examine gene expression by real-time PCR, protein expressionby
western blot and histology, and a small subset of these samples were used for bulk
RNAseq and scRNAseq, as well as the corresponding PDX tumor samples. PDX
tumor samples were also examined by western blot and histology. The workflow of
this methodology is depicted in Fig. 1a, b. Primary tumor and background liver
were used to examine gene expression by real-time PCR, protein expression by
western blot and histology, and a small subset of these samples were used for bulk
RNAseq and scRNAseq, as well as the corresponding PDX tumor samples. PDX
tumor samples were also examined by western blot and histology.

Animal studies, PDX generation, and monitoring. We used female NOD SCID
GAMMA C-/-(NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ) (NSG) mice, 6–8 weeks old and
surgically implanted human HB tumor heterotopically into the subscapular fat pad
of the mouse15,45,46. Tumor growth was monitored, and volume was measured by
caliper as described by Kats et al.47. All animal studies are completed with Insti-
tutional animal care and use committee (IACUC) approval and the following
criteria defined by the “Guide for the Care and Use for Laboratory Animals”
(IACUC # 2019-0077). Mice were fed irradiated diet and housed in a modular air-
caging system with corncob bedding and nesting enrichment.

Immunohistochemisty and second harmonic generation microscopy. Immu-
nohistochemical (IHC) staining of paraffin sections for hematoxylin and eosin
(H&E), GPC3 (790-4564, 1:200 dilution; Roche), KI67 (MA5-14520, 1:300;
Thermo Fisher), CD34 (AB8536, 1:200; Abcam), Cyclin D1 (790-4508, 1:200;
Roche), YAP (AB52771, 1:200; Abcam), and EZH2 (3147, 1:200; Cell signaling)
was performed on deparaffinized and rehydrated tissue sections with antibody
diluted in phosphate-buffered saline (PBS) containing 2% BSA and 0.05% tween
20. Tissue sections were incubated overnight at 4 °C, washed with PBS+ 0.05%
tween 20, and then visualized with Vectastain elite ABC HRP (vector labs) per
protocol instructions. IHC staining was performed in the Cincinnati Children’s
Hospital Research Pathology Core. Serial sections were imaged where indicated in
the figure legends.

Second-harmonic generation (SHG) microscopy was conducting utilizing two
photos to visualize fibrillar collagens48,49. SHG samples were deparaffinized and
rehydrated and coverslips applied with PBS. Imaging was conducted using a Nikon
FN1 confocal upright microscope with pulsed, IR laser at 1024 × 1024 resolution
with 20x APO plan objective and 840-nm wavelength. Serial sections of tumor and
background liver were used to capture SHG, KI67, and H&E staining.

Real-time PCR expression and Western blot analysis. Transcriptional gene
expression was measured by quantitative reverse-transcription polymerase chain
reaction. RNA was isolated from tumor and background liver tissue using the
RNeasy Plus Mini Kit from Qiagen. cDNA was prepared using the VILO cDNA
synthesis kit from Invitrogen. Polymerase chain reaction was performed on diluted
DNA (1:20) using RT2 SYBR green master mix (Qiagen) in a CFX Connect real-
time thermocycler (BioRad). RT2 primer assay gene primers were purchased from
Qiagen and are listed in Table S1. Assays were performed in triplicate on each
independent sample. For protein analysis, cell lysates were prepared using RIPA
lysis buffer (Invitrogen) and aliquots were fractionated on gradient 4–15% poly-
acrylamide gels. Protein was blotted onto nitrocellulose and detected by the
treatment of membranes with rabbit anti-human GPC3 (ab207080; Abcam) or
mouse anti-human GAPDH (10R-G109A; Fitzgerald) and HRP-conjugated anti-
rabbit (1706515; BioRad) or anti-mouse (1706516, BioRad) secondary antibody
followed by ECL clarity HRP peroxide solution (BioRad). Viewing was accom-
plished with a ChemiDoc MP Imager (BioRad). All antibodies used are listed in
Table S2.

Bulk RNA sequencing. RNA was isolated from tissue samples using Qiagen
RNeasy Plus Mini kit following the manufacturer’s protocol. HB17 and HB18
tumor, background, and PDX tumor from multiple passages were used for this
analysis. About 150–300 ng of total RNA as determined by Qubit (Invitrogen)
measurement was poly-A selected and reverse transcribed. RNAseq libraries were
prepared using TruSeq polyA-stranded library preps from Illumina, and sequenced
with paired-ends, with 100-bp parameters on the NovaSeq 6000 instrument.
Sequences were aligned against GRCh38 and Ensembl annotation. Quality-control
evaluation of the fastq files was performed using FastQC. RNA and nuclei in
suspension were provided to the CCHMC DNA Sequencing and Genotyping Core
for this analysis.

Single-cell sequencing and read processing. Background liver, tumor, and PDX
tissues (25–30 mg each) were pulverized with liquid nitrogen and nuclei prepared,
sorted, and counted as described by Wu et al. with addition of 0.04% BSA/PBS in
the final buffer50. Three tumor samples (HB17, HB30, and HB53), two background
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liver samples (HB17 and HB53), and two PDX tumors (HB17 and HB30) were
used for this analysis. Single-cell RNA sequencing of nuclei was done by 10X
Genomics with chemistry v3. FASTQ files were aligned to GRh38 reference gen-
ome and processed with Cell Ranger version 3.1.0 to obtain the unique molecular
identifier (UMI).

Preprocessing, integration, and clustering of single-cell data. Cell ranger
output of single-cell data was loaded using Seurat version 4 (3.9.9.9010). Cells with
fewer than 500 expressed genes or 800 UMIs, or greater than 10% mitochondrial
counts were removed. Single-cell data of background liver sample from HB30 were
removed because of low quality. In the end, 67,111 high-quality cells were har-
vested from seven samples for downstream analysis. The total UMI counts per cell
were normalized to 10,000 and the data were log2-transformed. Top 2000 highly
variable genes were selected using the “vst” method of FindVariableFeatures
function in Seurat. Data were scaled and principal component analysis (PCA) was
conducted using highly variable genes with functions ScaleData and RunPCA,
respectively. Principal components were used for integration of data from different
samples using RunHarmony function of package Harmony51. Neighbors were
found with top 30 components of Harmony-corrected cell embeddings using
shared nearest-neighbor (SNN) graph implemented in the function FindNeighbors.
Clustering was conducted using Louvain algorithm. Different resolutions, including
0.5, 1, and 2, were used to identify both general and fine-grained clusters. Uniform
Manifold Approximation and Projection (UMAP) was calculated in the PCA space
for visualization in the reduced dimensions. Cell classes were annotated for each
cluster based on gene expression levels of known markers and markers from a
human liver cell atlas52 (Supplementary Data 1–3). Enriched pathways of differ-
ential expressed genes were also used for further cell annotations. Scanpy was used
for stacked violin-plot visualization of marker genes53.

Tumor cell clustering. Finer resolution of tumor subpopulations in the inte-
grated data was achieved by extracting 52,629 annotated tumor cells from 5 HB
tumor and PDX samples (HB17 tumor, HB17 PDX, HB30 tumor, HB30 PDX,
and HB53 tumor). In order to remove batch effect between samples, we per-
formed the reciprocal PCA procedure in Seurat, which is faster for large-dataset
integration than the standard procedure. First, data were normalized, and highly
variable genes were identified for each sample. Then variable features for the
integration were selected using function SelectIntegrationFeatures. Then data
were scaled, and principal component analysis was performed for each sample
using integration-variable features. Integration anchors were found, and data
were integrated using FindIntegrationAnchors and IntegrateData respectively.
Then data scaling and principal component analysis were performed again on
the integrated data. Top 30 principal components were used to find neighbors.
Louvain clustering was done with FindCluster function under Resolution = 0.3.
Among 11 identified clusters, clusters Tr1 and Tr4 have abnormally low
UMIs and detected genes (Fig. S3), which might be low-quality cells. Upregu-
lated genes and enriched pathways were used to define tumor clusters (Fig. 5)
(Supplementary Data 4–7).

RNA velocity. Velocyto (PMID: 30089906) was used to measure spliced and
unspliced transcripts in the sequencing data, which was further used for RNA-
velocity computation in scVelo package33. Data normalization was done using
pp.filter_and_normalize. Then, first- and second-order moments among nearest
neighbors (n_neighbors= 30) in PCA space (top 30 principal components) using
pp.moments. Stochastic model of RNA velocities was built using tl.velocity. Then
velocities were projected onto a lower-dimensional embedding using tl.velocity_-
graph. Velocity flows were drawn using pl.velocity_embedding_grid.

Cell cycle scoring. Cell cycle scores, including S score and G2M score, were
computed using the sum of scaled expression values of genes participating in S
phase and G2M phase54 (Supplementary Data 6). Student t-tests were used to
evaluate the significance of cell cycle score difference between cell types.

Transcriptional profile correlation evaluation. Linear regression (lm function in
R) was applied for mean-normalized expression values between cell types,
including background hepatocytes and tumor cells in tumor and PDX (Fig. 4).
Coefficient of determination (R2) was computed after linear regression to evaluate
transcriptional correlation between cell types.

Differential gene expression and gene enrichment analysis. Gene expression
signatures for each cell type and subtype within each sample group (Fig. 3, Fig. 5)
were computed from the Seurat-processed dataset using iteratively applied student
t-tests embedded in the ToppCell portal (https://toppcell.cchmc.org/biosystems/go/
index3/OncoMap). Besides, the same protocol was applied for tumor subclusters in
each tumor sample for investigation of the individual tumor sample variation
(Fig. S6). ToppCell provides easy user access to modularized representations of
cell-type-specific gene expression signatures per sample group and provides a
means of visualizing and carrying out post hoc analyses of the landscape of these
modularized gene set signatures across all cell classes, subclasses, and samples and

sample groups. Default ToppCell signatures correspond to the top 200 genes of
each comparison per sample group, cell class, and subclass. Gene modules are
arranged hierarchically according to the cell annotations, each of which can be
combined and compared for downstream biological annotation feature analysis
using ToppGene and ToppCluster. More details can be seen in the tutorial of
ToppCell. Additionally, the Scanpy function rank_genes_groups is used to com-
pute differentially expressed genes between specific cell groups using student t tests
(Fig. 4b)53. Gene enrichment analysis was done by ToppGene to identify top
enriched biological pathways, functions, and coregulatory associations.
ToppCluster55 was applied to compare different enrichment results of multiple
gene modules across cell classes and tumor clusters. Various knowledge sources
were used for enrichment, including gene ontology, as well as databases for
interaction, drug, pathway, and human and mouse phenotype information.
Adjusted p values of enrichment were calculated using the Benjamini–Hochberg
procedure. They were used for the computation of gene enrichment scores
(–log10(Padj)), which evaluate the strength of associations between a gene list and
an enrichment term. Volcano-plot visualization was generated using package
EnhancedVolcano56.

Network analysis. ToppCluster allows researchers to draw both functional
enrichment networks and interaction networks. In our analysis, genes from dif-
ferent pathways (Fig. 4e) or various categories (Fig. 6d) were sent to ToppCluster
for functional enrichment. The associations between genes and pathways in dif-
ferent groups formed into a network, which shows shared and exclusive genes in
each group. Apart from the gene-pathway association network, we also inferred
gene-interaction network in ToppCluster using ToppCell gene modules (Fig. 7,
Fig. S2). Ligands and receptor genes were selected from gene modules and inter-
actions were inferred based on curated-interaction database in ToppCluster. Fur-
ther network analysis was supported by Cytoscape57.

Statistical evaluation and reproducibility. Graphing and statistical calculations
were performed using GraphPad Prism 8 software. Error bars denote standard
error of the mean (SEM) and statistical significance was determined by unpaired,
two-sided student t-test. Additional details are located in the figure legends. Data
were confirmed in multiple human tumors, background liver, and PDX models to
ensure robust and reproducible analyses.

Biological material availability. Patient-derived xenograft tumor is available if
sufficient quantities are available based on successful tumor growth in vivo.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequencing data that support the findings in this study have been assigned Gene
Expression Omnibus accession number GSE180666. Figures 1–7 and Figs. S1–S6 contain
bulk or single-cell RNA sequencing data with associated GEO files. Single-cell RNA
sequencing data analysis is in Supplementary Data 1–7. Raw data for real-time PCR and
western blots (blots and analysis) are available in Supplementary Data 8–10.

Code availability
The code used to analyze the datasets and draw figures is available at github: https://
github.com/KANG-BIOINFO/scRNA-seq_Hepatoblastoma.
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