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Tumor microbiome contributes to an aggressive
phenotype in the basal-like subtype of pancreatic
cancer
Wei Guo 1,2,5, Yuchao Zhang2,3,5, Shiwei Guo4,5, Zi Mei2, Huiping Liao2, Hang Dong2, Kai Wu2, Haocheng Ye2,

Yuhang Zhang2, Yufei Zhu2, Jingyu Lang 2, Landian Hu 2✉, Gang Jin 4✉ & Xiangyin Kong 1,2✉

Despite the uniform mortality in pancreatic adenocarcinoma (PDAC), clinical disease het-

erogeneity exists with limited genomic differences. A highly aggressive tumor subtype

termed ‘basal-like’ was identified to show worse outcomes and higher inflammatory

responses. Here, we focus on the microbial effect in PDAC progression and present a

comprehensive analysis of the tumor microbiome in different PDAC subtypes with resectable

tumors using metagenomic sequencing. We found distinctive microbial communities in

basal-like tumors and identified an increasing abundance of Acinetobacter, Pseudomonas and

Sphingopyxis to be highly associated with carcinogenesis. Functional characterization of

microbial genes suggested the potential to induce pathogen-related inflammation. Host-

microbiota interplay analysis provided new insights into the tumorigenic role of specific

microbiome compositions and demonstrated the influence of host genetics in shaping the

tumor microbiome. Taken together, these findings indicated that the tumor microbiome is

closely related to PDAC oncogenesis and the induction of inflammation. Additionally, our

data revealed the microbial basis of PDAC heterogeneity and proved the predictive value of

the microbiome, which will contribute to the intervention and treatment of disease.
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Pancreatic ductal adenocarcinoma (PDAC) is the most
common type of pancreatic cancer and the third most lethal
cancer worldwide1. Most patients with PDAC have a dismal

prognosis, with a 5-year overall survival of only 9%. Surgical
resection remains the main option for PDAC treatment; however,
the recurrence rate is relatively high, and most patients will
eventually die due to metastasis2,3. Despite uniform mortality,
clinical heterogeneity among patients has been discovered.
Among patients with surgically resectable tumors, some progress
to an advanced stage within months, while others stabilize for
long-term survival4,5. A molecular subtype of PDAC termed
‘basal-like’, which has worse outcomes and a more aggressive
phenotype, was identified by transcriptome analysis in a recent
publication6. Many genomic studies have attempted to elucidate
the mechanism of distinct disease progression; however, limited
mutational variations have been found7,8. The cause of the clin-
ical heterogeneity of tumors remains unclear.

In the past two decades, pancreatic cancer has been recognized
as an inflammation-driven cancer in which patients suffering
from chronic pancreatitis carry a 13-fold higher risk of PDAC
development9. Both innate and adaptive immune cell subsets
cooperate through various mechanisms to promote
tumorigenesis10. Consistently, an activated inflammatory stromal
response has been considered responsible for PDAC
progression11. However, the precise mechanisms underlying the
pathogenic role of inflammation are still unknown. Increasing
evidence suggests that the human microbiome is likely to play a
role in activating immune receptors and inducing cancer-
associated inflammation12. Past studies focusing on the gut
microbiome have confirmed the critical effect in intestinal tract
malignancies, including esophageal, gastric and colorectal
cancers13. Recently, the presence of intratumor bacteria in human
PDAC has been confirmed14. The presence of Gammaproteo-
bacteria in pancreas was proven to modulate tumor resistance to
gemcitabine. The diverse microbiota alterations have been found
in patients with PDAC compared to healthy subjects at oral,
gastrointestinal and intrapancreatic tissues15. Many studies have
found that oral or gut microbiota can translocate to pancreas and
play a pivotal role in pancreatic carcinogenesis through several
pathways including inflammation, immunity, metabolism, and
hormonal regulation16. Pushalkar et al. reported a 1000-fold
increase of intrapancreatic bacteria in PDAC and demonstrated
that the tumor microbiome promotes oncogenesis by inducing
immune suppression17. Moreover, Riquelme et al. demonstrated
that tumor microbiome composition is able to influence pan-
creatic cancer outcomes by activating antitumor immune
response18. The intratumor bacteria in pancreatic cancer were
also confirmed by Nejman et al., and they found that bacteria are
mostly intracellular and are present in both cancer and immune
cells19. Besides, the fungal mycobiome was shown to be impli-
cated in the pathogenesis of PDAC via activation of MBL by
Aykut et al. study20. The essential role of the microbiome in
immune regulation and oncogenesis was highlighted in recent
years that modulations of the microbiome can be profound for
the immunotherapy against pancreatic cancer21. These findings
suggest the implication of the pancreatic microbiome in tumor-
igenesis, inspiring us to investigate the effect of the microbiome
on the clinical heterogeneity of tumor subtypes.

The microbiome composition in human PDAC remains
incompletely studied, and whether it produces a favorable or
adverse contribution to disease progression demands further
exploration. In this study, we presented a comprehensive analysis
of the tumor microbiome in different molecular subtypes from 62
resected PDAC. In addition, we performed functional char-
acterization of microbial genes to elucidate the potential of a
specific microbiome in inducing inflammation. Our data

demonstrated the host-microbiota interplay and found a close
association between the microbiome and tumor progression. We
also discovered the influence of host genetics in shaping the
tumor microbiome. Overall, our work shows that specific
microbial compositions promote pancreatic cancer and con-
tribute to aggressive phenotypes by inducing inflammation.

Results
Basal-like tumors of PDAC demonstrate activated anti-
microbial immunity and inflammatory response. The molecular
classification of pancreatic cancer has been confirmed by several
studies6,22–24. Different tumor subtypes exhibit distinctive prog-
noses, which motivated us to explore the cause of tumor-specific
progression. Following the subtyping scheme by Chan-Seng-Yue
et al.23, we performed tumor subtype clustering using published
gene signatures on our cohort. For the 62 PDAC samples in the
cohort, clear clustering was revealed by 4 groups of tumor-related
signatures (Fig. 1a). The CDF demonstrated that k= 2 underfits
the dataset, whereas k= 4 or 5 overfits it (Fig. 1b). Therefore, we
chose k= 3 as the optimal number of clusters, and three main
tumor subtypes were identified in our cohort. Signatures 2 and 10
were defined as ‘basal-like’ signatures by Michelle et al., while
genes from signatures 1 and 6 corresponded to the ‘classical’
program described by both Michelle et al. and Moffitt et al.6,23.
Based on this evidence, the three subtypes were labeled ‘basal-
like’, ‘classical’ and ‘hybrid’. To validate our clustering, we applied
the subtyping model by Moffitt et al. to align the classification,
and almost identical subtyping results were obtained (Fig. 1c). We
conducted the survival analysis to compare the difference
between basal-like and classical tumors, and found a clear ten-
dency of worse survival in basal-like tumors (Supplementary
Fig. 1). This finding was consistent with previous studies that
have demonstrated the poor outcomes of basal-like subtype6,23.
By comparing gene expression in the basal-like versus classical
subtypes, we identified 2100 genes that showed significant dif-
ferences, among which 679 genes were upregulated in the basal-
like subtype (Fig. 1d). GSEA demonstrated that our basal-like
subtype was enriched for terms related to DNA replication (E2F
targets, G2/M checkpoint and MYC targets), TGF-β signaling,
epithelial mesenchymal transition (EMT) and inflammatory
response (Fig. 1e). These findings indicated a more aggressive
phenotype of basal-like tumors, which is consistent with previous
publications11,23. Given that increased TNFα and interferon-γ
response represent an activated antimicrobial immune status, we
next wondered whether immune infiltration differs between
tumor subtypes. We assessed immune cell distribution using
CIBERSORTx for each sample and found that the levels of
memory B cells, follicular helper T cells, and activated mast cells
were significantly elevated in basal-like tumors (Fig. 1f). These
data suggested that the aggressive progression of basal-like
tumors may be attributed to an excessive immune reaction and
inflammation induced by pathogens.

Basal-like tumors harbor distinctive microbial communities.
Increasing evidence has highlighted that the gut microbiota plays
a key role in the activation of the immune system and promoting
cancer-associated inflammation25,26. To explore the role of the
tumor microbiome in the progression of PDAC, we conducted
taxonomic assignment using metagenomic sequencing data to
build the microbial abundance profile (Supplementary Data 1). A
total of 365 distinct microbial genera were identified in our
cohort, and the predominant microbiota composition landscape
was depicted with the relative abundance of the top 15 taxa
(Fig. 2a, b). Tumors of different subtypes harbored a similar
component of predominant microorganisms; however, there were
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differences in abundance. The top genus, Pseudomonas, which is
related to infections and has been demonstrated to be associated
with short-term survival in PDAC patients18, showed an
increasing abundance in basal-like tumors. To extend the inves-
tigation of microbial compositions among tumor subtypes, we
measured the tumor microbial diversity using richness (the
number of observed taxonomic units), Shannon index of alpha-
diversity, and Bray-Curtis metric distance of beta-diversity. As
shown in Fig. 2c, the richness of the microbiome was significantly
higher in basal-like tumors than in classical or hybrid tumors
(p= 0.0017 and p= 0.0026), while the Shannon index was sig-
nificantly decreased in basal-like tumors relative to that in clas-
sical tumors (p= 0.017). Increased richness with a decreased
Shannon index indicated a microbial community with diverse
members but dominated by a few species with extremely high
abundance. We also observed that the Bray–Curtis dissimilarity
within basal-like tumors was much higher than that within
classical or hybrid tumors. A clear clustering between tumor
subtypes (basal-like versus classical/hybrid) was revealed by
PCoA, suggesting that the tumor microbiome showed

phylogenetic closeness within each tumor subtype (Fig. 2d).
Microbial abundance profiles at the species, family, order and
class levels were also built in this study (Supplementary Fig. 2).
The diversity measures at various taxonomic levels showed
similar tendencies across the three tumor subtypes. Based on
these data, we inferred that the tumor microbiome may in part
contribute to the specific progression of PDAC subtypes.

Basal-like subtypes of PDAC show a significant enrichment of
tumor microbiome. The relationship between tumor microbial
compositions and PDAC subtypes inspired us to further explore
the tumor-related microorganisms. To this end, we analyzed the
enrichment of the microbiome in each tumor subtype at various
taxonomic levels (Supplementary Data 2). We focused on the
microbial features at the genus level because the lower taxonomic
level of species showed relatively ambiguous results in estimating
accurate abundance. Interestingly, the microbiome in classical
and hybrid tumors were similar; however, basal-like tumors
harbored quite discriminative microbial communities. This
finding was consistent with our previous result in Fig. 2d. We
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Fig. 1 Identification of PDAC subtypes by gene signatures. a Heatmap of the three consensus clusters based on 4 groups of tumor-related signatures
determined by Chan-Seng-Yue et al.23. Expression values were scaled in the row direction. Signatures 2 and 10 are basal-related signatures, while
signatures 1 and 6 are classical-related signatures. Our PDAC samples were classified into basal-like (n= 17), hybrid (n= 23) and classical (n= 22)
tumors. b Cumulative distribution function (CDF) plot from consensus clustering for different k values in our RNA-seq cohort. We chose k= 3 as the
optimal cluster number. c Comparison of tumor clusters in (a) to the previous subtyping scheme by Moffitt et al.6. d Volcano plot showing differential gene
expression in basal-like tumors compared with classical tumors. The up- and down-regulated genes were determined by adjusted P value < 0.01 and log2
fold change >1 and <1, respectively. e Enriched pathways of differentially expressed genes identified by GSEA in basal-like versus classical tumors. The
length of bars denotes the normalized enrichment score of each category. f The boxplot denotes the proportion of five selected types of immune cells
among basal-like, hybrid and classical tumors by CIBERSORTx. P values were determined by the Kruskal–Wallis test. * indicates the significance level.
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identified 83 microbial genera that significantly differed in
abundance across different tumor subtypes. Among these genera,
most of them were significantly enriched in basal-like tumors,
suggesting potential microbiome signatures for basal-like tumors.
In contrast, microbial genera exhibiting enrichment in classical/
hybrid subtype seemed to be highly abundant only in particular
cases, indicating a negative finding of microbiome signature for
these two subtypes (Fig. 3a, b). It was clearly demonstrated that
basal-like tumors can be distinguished by a comparison heatmap
based on the abundance of selected microbial genera. Among
these basal-like enriched genera, three taxa with quite high
abundances and extreme significances drew our attention. As
shown in Fig. 3c–e, Acinetobacter, Pseudomonas and Sphingopyxis
showed significant enrichment in basal-like tumors, suggesting
that they may influence the tumor progression. We next stratified
PDAC patients into high versus low groups based on the abun-
dance of these three bacterial genera, and worse outcomes were
predicted for PDAC patients with higher abundance of Acineto-
bacter, Pseudomonas, and Sphingopyxis (Fig. 3f–h).

We then attempted to expand these three bacterial genera to
the species level and reveal the key species that may play crucial
roles in PDAC progression. In this cohort, we identified four

bacterial species which show significant enrichment in basal-like
tumors and belong to Acinetobacter genus: Acinetobacter pittii,
Acinetobacter junii, Acinetobacter baumannii and Acinetobacter
haemolyticus. In addition, seven bacterial species which belong to
Pseudomonas genus (Pseudomonas sihuiensis, Pseudomonas
stutzeri, Pseudomonas alcaliphila, Pseudomonas pseudoalcali-
genes, Pseudomonas sp. LPH1, Pseudomonas mendocina, Pseudo-
monas aeruginosa) and five bacterial species which belong to
Sphingopyxis genus (Sphingopyxis macrogoltabida, Sphingopyxis
fribergensis, Sphingopyxis granuli, Sphingopyxis sp. MG, Sphingo-
pyxis alaskensis) were identified to be enriched in basal-like
subtypes (Supplementary Fig. 3). Significantly worse outcomes
were predicted for PDAC patients with higher abundance of
certain species, suggesting that the specific tumor microbiome has
predictive value for PDAC prognosis (Supplementary Fig. 4).

To confirm the presence of intrapancreatic bacteria in PDAC
cases, we next performed several additional experiments. A subset
of Formallin-Fixed Paraffin-Embedded (FFPE) PDAC samples of
our cohort were applied to the fluorescence in situ hybridization
(FISH) using a specific probe that against bacterial 16S rRNA
sequences. 16S rRNA FISH indicated the presence of bacterial
DNA within PDAC tumors, and also demonstrated an increased

Fig. 2 The tumor microbiome shows significant differences among PDAC subtypes. a–b Barplots denote the relative abundance of predominant
microbiota constituents at the genus level for each sample (a) and for each subtype (b). c Boxplots of microbial diversity measures at the genus level,
including richness (observed genera), Shannon index and Bray-Curtis metric distance. P values were determined by ANOVA with post-hoc test. d PCoA
plot of the tumor microbiome at the genus level based on Bray–Curtis dissimilarity. The ellipses indicate the 90% confidence interval.
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load of bacteria in basal-like tumors compared with classical/
hybrid subtypes (Supplementary Fig. 5). Additionally, we
conducted immunohistochemistry (IHC) using antibodies against
bacterial lipopolysaccharide (LPS) to detect Gram-negative
bacteria in PDAC tumors, as previously performed19. Consis-
tently, bacterial LPS was detected in our FFPE PDAC samples,
confirming the presence of intratumor bacteria in PDAC and
displaying an increase in bacteria in basal-like PDAC (Supple-
mentary Fig. 6). Furthermore, to validate the presence of tumor-
related microorganisms and address the contaminations in our
study, we conducted 16S rDNA PCR to detect the presence of
target bacterial genera in PDAC tumors, pancreatic adjacent
tissues and several controls. The data showed the corresponding
amplification products of Acinetobacter, Pseudomonas and

Sphingopyxis, and the sequences turned out to match the 16S
rDNA gene by Sanger sequencing (Supplementary Fig. 7). These
results definitively confirmed the presence of Acinetobacter,
Pseudomonas and Sphingopyxis in PDAC tumors, and largely
proved that they were not laboratory-borne contaminations.

The microbial communities enriched in basal-like tumors show
inflammation-inducing potential. Considering that numerous
unknown microorganisms cannot be identified due to the
incomplete database of microbiome genomes, we attempted to
construct the microbial gene catalog in pancreatic tumors, which
contributes to revealing the potential functional roles in the
tumor microbiome of PDAC patients. We performed de novo

Fig. 3 The distinctive microbial communities were characterized in basal-like tumors. a Volcano plot showing differentially abundant microbial genera in
basal-like versus classical tumors. A two-sided Wilcoxon rank-sum test was used to determine significance (P value < 0.05). b Heatmap of selected
microbial genera with differential abundance across tumor subtypes; 83 genera (rows) are shown in the heatmap. c–e Abundance distribution of the genera
Acinetobacter (c), Pseudomonas (d) and Sphingopyxis (e) in PDAC tumors. The y-axis indicates normalized counts. P values are from the Kruskal–Wallis test.
f–h, Kaplan–Meier estimates for survival probability based on the abundance levels of three bacterial genera Acinetobacter (f), Pseudomonas (g), and
Sphingopyxis (h). The log-rank test was used to determine significance.
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assembly and constructed metagenomic contigs based on non-
human reads. Next, gene prediction was carried out, and a
nonredundant microbial gene catalog that contains as many as
229,282 genes with an average length of 530 bp was established.
We calculated the abundance of predicted genes using an in-
house pipeline and identified differentially abundant genes
through the Wilcoxon rank-sum test. Consistent with the pre-
vious findings in Fig. 3a, a large majority of differential genes
were specifically enriched in basal-like tumors. A comparison
heatmap based on 8960 basal-like enriched genes demonstrated a
relatively distinct stratification between basal-like and classical/
hybrid tumors (Fig. 4a). To further investigate the functional roles
of microbial genes in tumor progression, functional character-
ization of genes was performed using KEGG ortholog (KO) and
eggNOG ortholog groups (OG). The microbiome of basal-like
tumors showed enrichment in many terms related to metabolism
(transport and metabolism of amino acids, nucleotides, carbo-
hydrates and lipids), energy production and conversion, replica-
tion, defense mechanisms and cell membrane/envelope biogenesis
(Fig. 4b). At level 2 of the KEGG functional categories, increased
levels of metabolism, cell motility, and drug resistance to anti-
microbials were observed in basal-like enriched genes (Fig. 4c).
These functional categories represent the microbial abilities of
metabolic activity, cell motility and especially antibiotic resis-
tance, reflecting an improved pathogenicity and hostile microbial
environment. Our findings revealed the potential of the basal-
like-related microbiome in inducing inflammation, which helps
to elucidate the role of the specific microbiome in carcinogenesis.

The microbiome in basal-like tumors is associated with carci-
nogenic gene expression programs. The gut microbiota can
influence intestinal physiology and disease by affecting tissue-
specific transcription of host genes27. Similarly, we wondered
whether aggressive progression and gene expression alterations
are attributed to the specific microbiome in pancreatic cancer. For
this purpose, we performed a general correlation analysis between
microbial genera and host functional modules. Based on the
differentially expressed genes identified in Fig. 1d, we constructed
several gene modules exhibiting significant enrichment in certain
terms of KEGG pathways, GO categories or hallmark gene sets.
The association analysis demonstrated that some microbial gen-
era, including Acinetobacter, Pseudomonas and Sphingopyxis,
were positively correlated with functional modules of response to
molecules of bacterial origin, response to lipopolysaccharide, and
complement system, reflecting a natural antibacterial reaction by
host immunity. In addition, we found that many cancer-
associated functions, such as Kras signaling, EMT and MAPK
signaling pathways also showed positive correlations with the
aforementioned bacteria. In contrast, host functions related to
bile acid metabolism, pancreatic beta cells and pancreatic secre-
tion were found to be negatively correlated with the abundance of
these genera (Fig. 5a). We presented a refined correlation network
to summarily describe the relationship between 4 types of host
functions and 3 key genera, which showed clear interplays that
activated response to bacterial pathogens accompanied by
increased levels of Acinetobacter, Pseudomonas and Sphingopyxis,
were positively correlated with DNA replication and Kras sig-
naling, and negatively correlated with bile acid metabolism
(Pearson’s correlation coefficient <−0.3 or >0.3, Fig. 5b). Fur-
thermore, the correlation analysis between host functions and
tumor microbiome was also conducted at the species level.
Consistently, we found that the basal-like-enriched bacteria,
especially the species belonging to Acinetobacter, Pseudomonas
and Sphingopyxis, showed significant association with carcino-
genic gene expression programs. The predominant bacterial

species Acinetobacter junii, Pseudomonas sihuiensis, and Sphin-
gopyxis fribergensis displayed a positive correlation with Kras
signaling, DNA replication and pancreatic cancer-related path-
ways (Supplementary Fig. 8). Together, these data revealed the
influence of the tumor microbiome on host cell function and
supported the crucial roles of the tumor microbiome in
tumorigenesis.

Correlation between host genetic variation and microbiome
composition. The composition of microorganisms in and on the
human body varies widely across individuals and has been proven
to be closely associated with host genetic variation28,29. The
pivotal role of host genetic factors in shaping the gut microbial
community has also been highlighted in recent years30,31. Based
on these findings, we asked whether the diverse microbial com-
positions of PDAC tumors among patients were influenced by
host genetic factors, which may confer a higher risk for the
colonization of specific pathogenic microbiota and result in
cancer progression. To this end, genome-wide genotyping of each
individual was performed based on DNA sequencing data, and
next, we estimated the genetic dissimilarity between individuals
using Jaccard distance, a measure of how dissimilar two sets are,
with a range from 0 to 1. We correlated microbial beta-diversity
(Bray–Curtis metric distance) with genetic dissimilarity (Jaccard
distance), and a significantly positive correlation was found
(R2= 0.14, p= 4.36e−07, Fig. 6a). This result indicated that
individuals with similar genetic variations were found to harbor
similar microbial compositions, supporting that host genetics
may play a role in shaping the microbiome.

To further explore the key genetic variations related to
microbiome regulation, we performed a targeted analysis of the
association between genetic variations and microbial genera.
Several filtering steps were carried out to avoid the bias of testing
(see methods). A total of 134 association pairs involving 97 SNVs
and 29 genera were identified at P < 5 × 10−8 (Fig. 6b, Supple-
mentary Data 3). The variation showing the strongest significance
was located at chromosome 21 position 10,440,242, an intronic
region of the BAGE gene, and was associated with the abundance
of the genus Paucibacter. Notably, serveral SNVs related to gene
CXCL1 were found a significant association with bacterial
abundance. We next re-screened the SNVs that were associated
with microbiome using a less stringent threshold (P < 10−6), and
39 genes were identified from these loci. Next, we performed GO
term and KEGG pathway enrichment analyses against the
background of immune response-related genes. The functional
enrichment for GO terms demonstrated that the potential
microbial-regulatory genes are involved in interferon-γ-
mediated signaling pathway and peptide antigen binding. More-
over, enrichment in KEGG pathways of Kaposi sarcoma-
associated herpesvirus infection, natural killer cell-mediated
cytotoxicity and TNF signaling pathways was also observed
(Fig. 6c, d). To better visualize the interplay between host
functional variation and the microbiome, we produced a
correlation network consisting of 6 functional terms and 25
microbial genera (Fig. 6e). A similar targeted association analysis
was also carried out at the species level, and 53 genes were
identified from the QTLs associated with the abundance of
species using the threshold of P < 10−6. The functional enrich-
ment analysis demonstrated a consistent result that these QTLs
are involved in interferon-γ-mediated signaling pathway and
infection-related pathways. The correlation network between host
functional variation and the species was presented in Supple-
mentary Fig. 9. Taken together, these findings indicated the
potential association of immune-related functional alterations
with microbiome compositions, which generated a possible
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Fig. 4 Microbial genes enriched in basal-like tumors display higher pathogenicity. a Heatmap of microbial genes with differential abundance across all
PDAC samples. The heatmap contains 8960 genes (rows) and 62 samples (columns). b Comparison between the Basal-like enriched and background
genes on OG functional categories. c Comparison between the Basal-like enriched and background genes on level 2 of KEGG functional categories.
Significance was determined by Fisher’s exact test.
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relationship between genetic variations and microbiome
communities.

Discussion
Cancer is classically considered a disorder attributed to aberra-
tions in the genome32. However, emerging evidence has shown
that the microbiome also makes substantial contributions to some
types of cancer; for example, the gut microbiota was demon-
strated to play a regulatory role in liver cancer via bile acid
metabolism33. In other sites beyond the gut, microbial dysbiosis is
being increasingly recognized for its role in oncogenesis34. Our
study presents the first research to explore the influence of the
tumor microbiome in different PDAC subtypes. Current sub-
typing schemes can identify prognostic subgroups by tran-
scriptome analysis23. Guided by these studies, our samples were
split into three subtypes labeled ‘basal-like’, ‘classical’, and
‘hybrid’. Basal-like tumors are thought to be more aggressive,
with worse outcomes6. The main distinguishing genes (signature
2) are related to squamous differentiation, suggesting that basal-
like tumors may involve the squamous malignancies. Squamous
expression programs usually accompany TP53 and KDM6A
mutations and exhibit poor prognosis35. Comparatively, the
default path of pancreatic pathogenesis is considered to cause the
classical phenotype. The signatures for classical tumors are rela-
ted to pancreatic lineage differentiation. Clinically, classical
tumors are more frequent in early stage23. The single-cell analysis
demonstrated that most tumors harbor both basal-like and clas-
sical programs, which lead to a mixed transcriptional profile at
the bulk RNA-seq level, and hybrid tumors may be the outcome
of this issue23. Consistent with these findings, we found that
basal-like tumors were enriched for DNA replication, TGF-β
signaling, and EMT. Interestingly, our data demonstrated that the

inflammatory response and interferon-γ response were elevated
in basal-like tumors. The immune infiltration analysis also
showed an increasing level of activated mast cells and M1 mac-
rophages in basal-like tumors. M1 macrophages are able to
secrete pro-inflammatory cytokines and play roles in direct host-
defense against pathogens36. Additionally, mast cells interact
directly with bacteria and are involved in allergic inflammation37.
All these signs indicate that pathogen-induced inflammation is
critical for aggressive progression in basal-like tumors.

Inflammation is relevant as a risk factor for PDAC develop-
ment and progression. Lipopolysaccharide (LPS) can hyper-
stimulate Kras and lead to the initiation of carcinogenesis38,39.
We inferred that the tumor microbiome may produce procarci-
nogenic effects through perpetual inflammation induction rather
than direct mutagenic effects. In this study, we identified dis-
tinctive microbial communities in basal-like tumors, and notably
increasing levels of Acinetobacter, Pseudomonas and Sphingopyxis
were observed. Acinetobacter and Pseudomonas are common
opportunistic pathogenic bacteria and are able to cause serious
infections40,41. Notably, the increased abundance of Pseudomonas
was also observed in PDAC patients with short-term survival by
Riquelme et al. study, which confirmed the protumorigenic effect
of Pseudomonas as revealed in our study18. Besides, Pushalkar
et al. identified Pseudomonas as the most abundant bacterial
genus that translocated from gut to pancreas in PDAC patients17.
As demonstrated by the comparison of pancreatic microbiome
between PDAC and wild-type mice, higher level of Acinetobacter
was observed in PDAC mice. The presences of predominant
genera such as Elizabethkingia, Delftia, Agrobacterium, and
Sphingomonas by our analysis were also detected in PDAC
patients by previous studies17,18. The microbial family Sphingo-
monadaceae (the upper level of Sphingopyxis) is a gram-negative
bacterium that contains glycosylceramides in the outer

Fig. 5 The tumor microbiome is associated with host functional modules. a Heatmap of Pearson’s correlation between 21 functional modules (columns)
and 43 bacterial genera (rows). The color represents the coefficient of correlation. + denotes the p values <0.05, and * denotes the p values <0.01. b
Correlation network between 4 functional modules and 3 key genera refined from (a). Red and blue edges denote Pearson’s correlation coefficients >0.3
and <−0.3, respectively.
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membrane and can be detected in some human fecal samples but
is not abundant or highly pathogenic42. NKT cells were shown to
be stimulated after exposure to bacterial glycosphingolipids from
Sphingomonadaceae, suggesting a classical innate immune
response by pattern antigen recognition43,44. In addition, we
performed functional characterization of the microbial genes

enriched in basal-like tumors and found enrichment of metabo-
lism, energy production, replication, cell motility, defense
mechanisms and cell membrane/envelope biogenesis, indicating
improved microbial activity and pathogenicity45. These findings
revealed the inflammation-inducing role of the specific micro-
biome in basal-like tumors. Importantly, we found few

Fig. 6 Host genetic variation can influence the composition of the tumor microbiome. a Genetic dissimilarity defined by Jaccard distance between
patients is correlated with microbial beta-diversity (Bray–Curtis metric distance). Linear regression was used to evaluate the significance and coefficient of
determination. The 95% confidence interval is shown. b Manhattan plot illustrating QTLs for microbial genus abundance. Each dot denotes an association
pair between genetic variation and a microbial genus. The number labeled beside denotes the significance rank of QTLs. The red line corresponds to a
significance threshold of 5 × 10−8 (FDR < 0.01) c Gene ontology enrichment for genes identified from loci associated with the abundance of genera. d
KEGG pathway enrichment for genes identified from loci associated with the abundance of genera. The color and size of each bubble denote enrichment
significance and the number of genes enriched in the functional category, respectively. e Correlation network showing the association between selected
enriched GO terms or KEGG pathways and microbial genera. The functional terms were manually classified into 3 types. Lines denote the association, and
colors represent the types of functions.
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enrichments of microbiata in classical/hybrid subtype, which may
imply that abundant presence of microbiota in pancreas likely
generates a protumorigenic effect rather than a common
commensal role.

It has been reported that microbiota dysbiosis can induce
transcriptional alterations in intestinal epithelial cells27. We next
aimed to explore the relationship between the host and tumor
microbiome. Our data demonstrated that the abundance of spe-
cific bacteria, including Acinetobacter, Pseudomonas and Sphin-
gopyxis, positively correlated with host functions of the
antibacterial immune response (complement system, response to
lipopolysaccharide, and response to molecules of bacterial origin),
presenting the interaction between microbial invasion and host
immunity. Moreover, many cancer-associated signaling pathways,
such as Kras signaling, MAPK signaling and the Wnt/β-Catenin
pathway, also displayed significant correlations with these
microbiota constituents. The facilitation effect of inflammatory
insults, such as LPS in Kras signaling, has been described
previously38,39. Experimental evidence also suggested that bac-
terial infection can induce malignant transformation by activating
the AKT and MAPK signaling pathways46. Interestingly, our data
demonstrated that the pancreatic tumor microbiome may give
rise to dysfunction of bile acid metabolism. The role of bile acid in
liver cancer has been widely studied, and the gut microbiota has
an important impact on the composition of bile acids33. However,
the role of bile acid in pancreatic cancer remains unclear. Our
work provided some insights into the effect of the pancreatic
microbiota on bile acid metabolism and pancreatic cancer. Col-
lectively, this study depicted a detailed relationship between host
cell function and the tumor microbiome, which helps to elucidate
the tumorigenic role of the specific microbiota.

An essential question is what determines the microbiome
composition. We wondered whether host genetics have impacts
on shaping diverse microbial communities, which may confer a
higher risk for the colonization of the specific pathogenic
microbiota and result in carcinogenesis. Our findings demon-
strated the remarkable relevance of host genetic factors and
microbiome compositions, proposing a possible role of host
genetics in shaping the microbiome. In addition, we found that
genetic variations related to immune dysfunction, such as com-
promised function of interferon-γ signaling or NK cell-mediated
cytotoxicity, are associated with the abundance of bacteria. This
analysis led to a possible hypothesis that independent of micro-
environment conditions, host antimicrobial immunodeficiency
may induce microbiome imbalances and give rise to the invasion
of a specific pathogenic microbiota that promotes carcinogenesis.

It is important to note that our cohort is comprised only of
resectable pancreatic tumors due to difficulty in obtaining spe-
cimens from metastatic patients. This caused a limitation that our
finding may be not applicable to advanced stage PDAC with
metastatic tumor. Further study is required to take entire cancer
population into the consideration. Interestingly, the tumor
microbiome seems to have the dual effect of promoting immune
suppression or activation by previous studies. Pushalkar et al.
reported that ablation of the tumor microbiome was protective
against cancer progression via immune activation17. However,
several studies suggested that the presence of microbiome in gut/
tumor may boost the cancer immunity and be linked to favorable
immunotherapy responses or tumor-fighting efforts18,26. The
complex interplay among microbiome, immune cells and pan-
creatic tumorigenesis remains unsolved. It is quite difficult to
answer the precise mechanisms of microbiome in immunity by
our results. In this study, we focused on the effect of persistent
inflammation induced by tumor microbiome in PDAC, and
suggested that the activated inflammatory response in basal-like
subtype serves as a facilitator in pancreatic carcinogenesis. In

conclusion, our study delineated the intrapancreas microbiome
profile of resected PDAC and found that the distinctive microbial
communities in basal-like tumors may play an inflammation-
inducing role and contribute to pancreatic carcinogenesis. We
detailed the interplay between host cell function and the tumor
microbiome, suggesting the tumorigenic role of specific micro-
biome compositions. We also demonstrated the effect of host
genetics on PDAC microbiome. Our work highlighted the
microbial basis of PDAC heterogeneity and supported the
potential that microbial signatures may be useful as predictors of
patient outcomes. Treatment targeting the PDAC microbiome
may be promising.

Methods
Patients and samples. Patients with a confirmed PDAC diagnosis were recruited
from ChangHai Hospital, Shanghai. All patients gave written informed consent for
collection and use of the samples. In this study, patients who received antibiotic
treatment within the past month were excluded. A total of 62 resectable tumors
were obtained from surgical specimens and immediately frozen at −80 °C prior to
nucleic acid extraction. All samples were collected between 2015 and 2016, and
only fresh tumors were used in this study. All procedures conformed to the Code of
Ethics of the World Medical Association (Declaration of Helsinki) and were
complied with the guidelines of the institutional review committee of the Shanghai
Institute of Nutrition and Health, Chinese Academy of Sciences.

DNA/RNA extraction and sequencing. Frozen tumor tissues were aseptically
sliced into appropriate sizes and placed in 1.5 ml sterile tubes. We utilized β-
mercaptoethanol and a rotor-stator homogenizer to disrupt the tissue and
homogenize the lysate. Metagenomic DNA and total RNA were simultaneously
extracted using QIAGEN Pathogen Lysis Tubes and QIAGEN AllPrep DNA/RNA
Mini Kit. DNA/RNA was quantified for concentration and purity using a Nano-
Drop spectrophotometer and stored at −20 °C. DNA samples were applied to
library construction and whole-genome sequencing on the Illumina platform and
yielded 2 × 150 bp paired-end reads. After discarding the adaptor contamination
and low-quality reads, an average of 80 Gb of clean data per sample was obtained.
Meanwhile, samples of RNA were sequenced for the whole transcriptome on the
Illumina platform (paired-end, 2 × 150 bp reads) and yielded an average of 15 Gb
of clean data per sample.

RNA-seq analysis. Clean RNA sequencing data from 62 pancreatic tumors were
aligned into human genome reference (GRCh38) using HISAT2 with default
options47, and then we used HTseq to count reads for each gene based on the GTF
file, which provides gene structure information48. The gene count matrix was
normalized using DESeq2 size factors determined by median ratios49. Differential
gene expression analysis between different subtypes (basal-like versus classical) was
performed with DESeq2 based on the negative binomial distribution model. The
significantly differentially expressed genes (p value <0.01) were ranked based on the
log2 fold change. Gene set enrichment analysis (GSEA) was next performed against
the hallmark gene set from MSigDB using the R package clusterProfiler50,51. The
normalized enrichment score was assessed for each set.

Tumor subtype clustering. Guided by the Michelle et al. study23, we performed
consensus clustering to identify tumor subtypes using the tumor expression sig-
natures from their non-negative matrix factorization (NMF) results. We selected
the top 25 ranked gene signatures from each of the four malignancy-related NMF
components (1, 2, 6, and 10) and utilized the R package ConsensusClusterPlus for
tumor subtyping52. For clustering, we used Pearson correlation distance and the
hierarchical cluster algorithm with 10,000 resamplings to generate the final con-
sensus. According to the cumulative distribution function (CDF) plot, a flatter
middle segment represented a lower value of the proportion of ambiguous clus-
tering (PAC). Therefore, we chose k= 3 as the optimal clustering number. Finally,
three main subtypes were identified in our cohort.

To validate the clustering result, we performed another subtyping using gene
signatures from the Moffitt et al. study6. The top 25 ranked genes from each of two
NMF components (basal-like and classical) were selected. Consensus clustering was
performed with the same parameters as in the previous method, and the samples
were divided into 3 different subtypes based on the optimal CDF.

Evaluation of immune cell infiltration by CIBERSORTx. CIBERSORTx is a
computational approach that accurately resolves the relative fractions of diverse cell
subsets using gene expression data53. Combined with the leukocyte gene signature
matrix, which is termed LM22, CIBERSORTx was used to estimate the fractions of
22 immune cell types in our study. The differential expression proportion of
immune cell types was evaluated using the Kruskal-Wallis test across tumor
subtypes.
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Survival analysis. Overall survival was defined as the time from tumor resection to
death from any cause. Patients who did not experience death were censored at date of
last follow-up. The survival information of PDAC patients were collated, and some
clinical data were obtained (14 basal-like, 21 hybrid, and 18 classical). We utilized the
log-rank test to assess the difference in survival between different groups.

Bacterial 16S rDNA PCR, 16S rRNA FISH and LPS immunostaining assays. For
16S rDNA PCR, metagenomic DNA from PDAC tumors was detected using genus-
specific primers targeting Acinetobacter, Pseudomonas and Sphingopyxis. The pri-
mer sequences used in this study were: 5′-CGGACGGGTGAGTAATGCTT-3′,
5′-CAGACCCGCTACAGATCGTC-3′ (Acinetobacter); 5′-CAAGGCGACGATCC
GTAACT-3′, 5′-ATGGCTGGATCAGGCTTTCG-3′ (Pseudomonas); 5′-AGGCGA
CGATCTTTAGCTGG-3′, 5′-ACGCCCAGTAATTCCGAACA-3′ (Sphingopyxis).
We introduced four types of negative controls to address contaminations in this
study, including DNA from pancreatic adjacent tissues using the same extraction
process, environmental control (samples from the same freezer), DNA extraction
control (buffers of extraction kit), and PCR no-template control.

Ribosomal RNA (rRNA) fluorescence in situ hybridization (FISH) was executed
using the EUB338 16S rRNA gene probe labeled with the fluorophore 5’-Cy3
(extinction wavelength, 555 nm; emission wavelength, 570 nm; Molecular
Probes)54. FFPE tumor tissues were hybridized to detect the bacterial colonization
within pancreatic tisues.

FFPE PDAC tissues were stained for bacterial LPS (Lipopolysaccharide Core,
mAb WN1 222-5, HycultBiotech, 1:1000 dilution) with the automated slide stainer
BOND RXm (Leica) using the Bond polymer refine detection kit. Heat induced
epitope retrieval was done by a 20 min heating step with the epitope retrieval
solution 1 (BOND).

Microbial taxonomic assignment and abundance calculation. After sequence
trimming and duplicate filtering by Fastp55 and Super-deduper (https://github.com/
dstreett/Super-Deduper), the passing reads were aligned to the human reference
(GRCh38) using Bowtie256 to preliminarily remove the host DNA sequences. The
remaining reads were processed for taxonomic assignment using Kraken257. A
customized database, which consists of reference libraries of bacteria, viruses, fungi,
archaea, plasmids, UniVec and human from the NCBI database, was constructed for
taxonomic classification in Kraken2. To avoid mistaken matching generated by
repeated sequences, a confidence score threshold of 10% was set to improve the
accuracy of classification. Combined with the Kraken2 classifier, we utilized
Bracken58 to estimate the counts of reads originating from every taxon present in
the sample based on Bayesian probability and produced a relatively accurate
abundance profile at the species, genus, family, order and class levels. The microbial
count matrix was normalized by DESeq2 sizefactors49, and the relative abundance
of the microbiome was calculated. Alpha-diversity (Shannon index) and beta-
diversity (Bray–Curtis metric distance) analysis and principal coordinates analysis
(PCoA) utilized the R package vegan59. Differential abundance analysis of the
microbiome utilized the Kruskal-Wallis test among tumor subtypes. The false dis-
covery rate (FDR) was used to correct for multiple hypothesis testing.

Microbial gene catalog construction and functional characterization. Reads
without human-associated contaminants were assembled by the MEGAHIT
assembler, which shows improved performance for large and complex metage-
nomics assembly60. We utilized MetaGene61 to predict prokaryotic genes in contigs
with lengths larger than 300 bp. A nonredundant gene catalog was constructed by
removing redundancies that aligned to others with over 95% identity and more
than 90% coverage using Cd-hit62. Taxonomic assignment of predicted genes was
performed using Diamond63 with the BLASTX algorithm against the NR database
of NCBI. Alignment hits with e-values larger than 1e−5 or query coverage less than
80% were filtered, and the best match was retained for the subsequent annotation
of each gene. If one gene was equally matched to multiple alignments with the same
score, the taxonomic assignment was determined by the lowest common ancestor
(LCA) algorithm. The abundance of the predicted gene was estimated using an in-
house pipeline in which nonhuman reads were aligned against the customized
nonredundant gene catalog using Bowtie2, and the gene length was used to cal-
culate the abundance by dividing counts. Differential abundance analysis of pre-
dicted microbial genes was performed using a two-sided Wilcoxon rank-sum test,
and p values were adjusted with the FDR algorithm. The functional characteriza-
tion of predicted genes was performed on the basis of KEGG ortholog and eggNOG
ortholog groups with the application of BlastKOALA and eggNOG-mapper,
respectively64,65. Due to the very low number of basal-like depleted genes, we
compared the gene proportion of each functional category between the basal-like
enriched gene set (n= 8960) and background gene set (all microbial genes,
n= 229,282). Significance was determined by Fisher’s exact test.

Correlation analysis between host functional modules and the microbiome.
On the basis of differentially expressed genes identified in RNA-seq analysis, we
performed gene enrichment analysis against several functional categories, including
KEGG pathways, GO terms and the hallmark gene set, using a hypergeometric test by
clusterProfiler51. The level of functional modules was identified in three steps. First, the

significant enrichment categories were selected according to the p values (p < 0.05).
Second, for each enrichment category, the enriched genes were used to build the
expression profile. Third, we estimated the first principal component (PC1) to
represent the general expression level of the functional module. Microbial genera with
an abundance of zero in more than 80% of samples were excluded, and 122 genera
were left for the correlation analysis. The correlation coefficient was calculated using
the Pearson algorithm in the R package psych, and p values were adjusted by FDR for
multiple comparisons. Visualization was performed using the R package corrr.

Genotype calling, filtering and annotation. Genetic profiles in the form of single
nucleotide variants (SNVs) and short insertion/deletions (InDels) were identified
using the Genome Analysis Toolkit (GATK) version 4.0 pipeline. Clean DNA
sequencing data from 62 pancreatic tumors were aligned to human reference
(GRCh38) using BWA-MEM with default parameters66, and we utilized Picard
tools to process the postalignment procedures, including sorting and indexing
(https://broadinstitute.github.io/picard/). Briefly, the bam files yielded by align-
ment were submitted to mark duplicates, base quality score recalibration (BQSR),
SNV calling, and variant filtration by the Java programs in GATK. Over 3,500,000
SNVs per sample were identified after quality control, and we utilized
ANNOVAR67 to perform gene annotation based on the ENSEMBL database.

Association analysis between host genetics and the microbiome. First, a large
integrated genotype matrix of all 62 PDAC samples was constructed based on the
SNV profiles, which consisted of 14,692,240 rows (SNVs) and 62 columns (sam-
ples). We excluded SNVs with minor allele frequencies (MAFs) less than 0.1,
resulting in a smaller genotype profile with 4,778,023 SNVs. Jaccard distance, also
known as the complement of the intersection over union, was calculated based on
the genotype matrix in R using vegan59. We used linear regression to evaluate the
correlation between Jaccard distance and microbial Bray–Curtis metric
distance in R.

To link the microbial genera to genetic variation, we treated the abundance of
genera as quantitative traits, and quantitative trait locus (QTL) mapping was carried
out using the R package MatrixEQTL68, which provides ultra-fast eQTL analysis for
large matrix operations. We chose a linear model based on the assumption that
genotypes have only additive effects on microbial abundance. To reduce the multiple
test burden, we defined a region of 250 kb around the immune-related genes
according to the gene list (total 770 genes) supplied by NanoString69. We selected
SNVs located at this region for the targeted association analysis. After filtering, a final
genotype matrix consisting of 171,561 targeted SNVs was yielded for downstream
analysis. Only microbial genera present in at least 20% of samples were included. For
the association analysis, about 107 pairwise tests were performed between roughly
105 SNVs and approximately 100 microbial genera. We identified significant
associations using a stringent threshold of P < 5 × 10−8, which corresponds to the
FDR < 1%. We found 134 associations at this level of significance.

In order to investigate the impact of identified SNVs on function. We re-screened
the associations with a less stringent cutoff of P < 10−6, and a total of 340
associations were found. The SNVs were annotated to genes based on their
chromosome locations, and a total of 39 potential microbial-regulatory genes were
identified. We performed GO term and KEGG pathway enrichment analyses against
the particular background gene list from NanoString69, which was used for screening
in the previous steps. We linked the functional category to microbial genera if the
enriched genes from this functional category were associated with the microbial
genera. The correlation network was visualized by Cytoscape version 3.670.

Statistics and reproducibility. All statistical analyses were carried out using R
v3.6.3 with corresponding packages. P values < 0.05 were considered significant.
The FDR was used to adjust p values for multiple hypothesis testing. The selections
of statistical methods were described in each steps.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All sequence data of RNA-seq have been uploaded to NCBI Gene Expression Omnibus
database under accession number GSE172356. The raw data for microbiome analysis is
available on NCBI BioProject Accession Number: PRJNA719915. The raw unedited gel
images are provided as Supplementary Figures. The processed data are available in
Supplementary Data 1–3. Source Data are provided in Supplementary Data 4.

Code availability
The custom codes used in this study are provided via Github at https://github.com/
withered-leaf/TM-pipeline.
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