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Early alterations of large-scale brain networks
temporal dynamics in young children with autism
Aurélie Bochet 1,4✉, Holger Franz Sperdin 1,4✉, Tonia Anahi Rihs2, Nada Kojovic1, Martina Franchini1,

Reem Kais Jan3, Christoph Martin Michel2 & Marie Schaer1

Autism spectrum disorders (ASD) are associated with disruption of large-scale brain net-

work. Recently, we found that directed functional connectivity alterations of social brain

networks are a core component of atypical brain development at early developmental stages

in ASD. Here, we investigated the spatio-temporal dynamics of whole-brain neuronal net-

works at a subsecond scale in 113 toddlers and preschoolers (66 with ASD) using an EEG

microstate approach. We first determined the predominant microstates using established

clustering methods. We identified five predominant microstate (labeled as microstate classes

A–E) with significant differences in the temporal dynamics of microstate class B between the

groups in terms of increased appearance and prolonged duration. Using Markov chains, we

found differences in the dynamic syntax between several maps in toddlers and preschoolers

with ASD compared to their TD peers. Finally, exploratory analysis of brain–behavioral

relationships within the ASD group suggested that the temporal dynamics of some maps

were related to conditions comorbid to ASD during early developmental stages.
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H igh-density electroencephalography (EEG) represents a
powerful mean to explore the brain’s physiological
activity at a large-scale level in pediatric population1.

Nevertheless, recording the brain activity during a task or at rest
in very young children with autism spectrum disorders (ASD) is
challenging. However, early identification of brain alterations is
important as it provides insights onto the brain mechanisms that
lead to their clinical behavioral phenotype. Ultimately, increasing
our understanding on how differently the brain develops during
childhood years can help clinicians to adapt and use more tai-
lored therapies early in life when the brain is most plastic and
thus responsive to behavioral treatment.

Recently, by combining high-density EEG and eye-tracking, we
found that alterations in the directed functional connectivity
between brain areas in the theta and alpha frequency bands are a
core component of brain development at early stages of ASD2.
Higher activity within key nodes of the social brain3,4 for some
toddlers and preschoolers with ASD was related to better visual
exploration, and thus may represent a compensatory mechanism
for ASD at such a young age2,5. Here, we used a data-driven,
reference-free EEG microstate approach6 to examine differences
in the spatial organization and temporal dynamics of whole-brain
neuronal networks in a large sample of toddlers and preschoolers
with ASD and age-matched typically developing (TD) peers (N=
113, 3 years of age on average). EEG microstates represent the
sub-second coherent activation within global functional brain
networks and are usually defined in the literature as short-lasting
periods (approximately 100 ms) of quasi-stable topographies of
the electric potentials in the ongoing EEG7,8. Interestingly, these
rapidly changing EEG microstates are closely related and
described as the electrophysiological correlates of functional MRI
(fMRI) resting-state networks9–11. It is a commonly used method
in the EEG field to study variations in the spatial organization and
temporal dynamics of large-scale brain networks at rest or during
a task. Microstate analysis has provided important insights on
how differently the brain processes information in populations
with brain disorders6,12. For example, numerous studies indicate
that changes in the spatial and/or temporal characteristics of
specific microstates represent critical markers for several brain
disorders, indicating that these spatial and temporal modulations
may mirror the information processing divergence in individuals
with a neurodevelopmental condition compared to TD
population12–17.

Here, we hypothesized that the toddlers and preschoolers with
ASD would show differences in the spatio-temporal properties of
some microstates as well as the differences in transition prob-
abilities compared to their TD peers. Considering the large het-
erogeneity in ASD in terms of autism symptom severity,
developmental level and possible comorbid symptoms, we
investigated brain–behavioral relationships between the temporal
characteristics of the microstates and clinical phenotype. Finally,
we used a bootstrapping approach18 to examine the stability of
our findings. Post hoc power analyses depending on the observed
effect sizes were made to estimate the relationship between the
sample size of our group and the observed statistical power. The
bootstrapping procedure served to estimate the likelihood of
finding the true result we observed in our full cohort from smaller
sample sizes of participants.

Results
Microstate analysis. The k-means cluster analysis across all
participants identified five dominant maps, which explained
80.1% of the total variance (Fig. 1). The topographies of these five
cluster maps corresponded to the canonical microstate classes
previously reported in the literature and were labeled accordingly

(map A, B, C, D, and E)6,19. We also applied a k-means cluster
analysis across toddlers and preschoolers with ASD and TD peers
separately and extracted the five cluster maps for both groups. For
both groups, the five cluster maps also corresponded to the
canonical microstate classes previously reported in the literature
and were therefore labeled accordingly (map A, B, C, D, and E).
The five cluster maps extracted from ASD group explained 80.8%
of the total variance of EEG recordings of this group, and the five
cluster maps extracted from TD group explained 81.9% of the
total variance of EEG recordings of this second group. The five
cluster maps extracted from both groups separately were highly
similar (Pearson’s spatial correlations coefficients for map A=
0.992, map B= 0.986, map C= 0.996, map D= 0.958, and map
E= 0.985) and were retained for further analysis (Fig. 2).

When looking for group differences in temporal parameters for
the five maps, we found major differences in the temporal
parameters of map B between toddlers and preschoolers with
ASD and their TD peers (Fig. 3). All four parameters—global
explained variance (GEV), mean duration, time coverage, and
occurrence—of the map B were significantly increased in toddlers
and preschoolers with ASD in comparison to their TD peers
(GEV: p < 0.001; mean duration: p < 0.001; time coverage: p <
0.001; occurrence: p < 0.001). These differences survived false
discovery rate (FDR) correction. As already mentioned, these
differences in map B parameters also persisted when all females
(11 ASD, 8 TD) were removed from the analysis (GEV: p < 0.001;
mean duration: p < 0.001; time coverage: p < 0.001; occurrence:
p < 0.001). We also found differences in temporal parameters of
map E between ASD and TD groups for GEV (p= 0.031), time
coverage (p= 0.034), and occurrence (p= 0.019) but not for the
mean duration (p= 0.162). However, these differences were not
significant after FDR correction. There were no significant
differences in temporal parameters for map A, C, and D between
both groups (p-values ranging from p= 0.086 to p= 0.903).
There was no effect of age on the results, as correlations between
temporal parameters and age of participants were not significant
(p-values range from 0.096 to 0.966). See Table 1 for temporal
parameters values for both groups.

Correlations with clinical measures. The results of Pearson’s
correlations and Spearman’s rank correlations suggested specific
microstate classes were related to specific symptoms in the tod-
dlers and preschoolers with ASD group. Indeed, when looking at
ASD symptoms’ severity, we found a negative correlation between
ADOS social affects severity score and the mean duration of the
map E (uncorrected p-value= 0.030). This suggests that children
with more social difficulties, have a shorter duration of the map E.
Considering the developmental level of children with ASD, we
found negative correlations between the fine motor domain of
the MSEL and three temporal parameters of the map D—GEV
(non-corrected p-value= 0.006), time coverage (non-corrected
p-value= 0.007), and occurrence (non-corrected p-value=
0.005). This suggests that the lower the child’s fine motor skills
are, the less prevalent their map D. Finally, considering the
comorbid symptoms of children with ASD, we mostly found
positive correlations between children’s affective problems
reported in Child Behavior Checklist (CBCL) 1.5–5 and
three temporal parameters of the map B—GEV (non-corrected
p-value= 0.003), time coverage (non-corrected p-value= 0.008),
and occurrence (non-corrected p-value= 0.048). This suggests
that the more emotional difficulties the child has, the more pre-
valent map B is. We also found negative correlation between
children’s attention deficits and hyperactivity problems reported
in CBCL 1.5–5 and the mean duration of the map C (non-cor-
rected p-value= 0.020), suggesting that the more attention
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deficits and hyperactivity problems the child has, the shorter the
duration of the map C is. However, correlations were not sig-
nificant after FDR correction for multiple comparisons, and
hence should be considered exploratory. Results of the explora-
tory correlations are reported in Fig. 4.

Bootstrapping analysis. The bootstrapping sub-sampling analy-
sis tested the likelihood for observing a significant difference in
the temporal parameters between both groups for each simulated
sample size (Fig. 5). The results of stability analyses demonstrated
a decrease in the likelihood of observing significant difference of
temporal parameters between toddlers and preschoolers with
ASD and TD peers as the sample size decreased. For instance,
with a sample of 20 children with ASD and 20 TD children, a
significant difference of Map B GEV was only detected in 50% of
the simulated sub-samples. However, for the mean duration, the
time coverage, and the frequency of occurrence, a 50% of like-
lihood for significant difference was reached with a sample of 12
children with ASD and 12 TD children.

Transition probabilities. Comparisons of all transition prob-
abilities between each microstate map revealed increased transi-
tions from microstate map C to map B in toddlers and
preschoolers with ASD compared to their TD peers (p < 0.001)
(Fig. 6). Transition probabilities were also increased in toddlers
and preschoolers with ASD from microstate map E to map D
(p < 0.001) and from map E to map B (p= 0.0145). In parallel,
transition probabilities were increased in TD children compared
to children with ASD from microstate map C to map D (p=
0.0245) and from map E to map C (p < 0.001). However, differ-
ences in transition probabilities from microstate map E to map B
and from microstate map C to map D did not survive to FDR
correction.

Discussion
We applied a microstate analysis on EEG resting-state recordings
acquired in toddlers and preschoolers with ASD and their TD
peers (N= 113) and investigated modulations in four temporal
parameters (the GEV, the mean duration, the frequency of
occurrence, and the time coverage). The meta-criterion deter-
mined an optimal number of five template maps that best
described the entire dataset explaining 81.0% of the global var-
iance. The first four maps were visually identical in their spatial
orientation to the canonical microstate classes A, B, C, and D
previously reported in the literature6,12. The fifth map corre-
sponds with microstate class E previously reported elsewhere11,20.
We then identified the five prototypical maps that best described
the dataset of toddlers and preschoolers with ASD and their TD
peers separately and, as templates were highly similar across both
groups, we compared temporal parameters using these five
microstate classes. We found significant differences in the four
temporal parameters of the microstate class B (the GEV, the
mean duration, the frequency of occurrence, and the time cov-
erage) between toddlers and preschoolers with ASD and their TD
peers, map B is more prevalent in ASD group considering the
four temporal parameters. We did not find any statistically sig-
nificant difference regarding the four temporal parameters in
other microstate classes (A, C, D, and E) but we found a tendency
for map E to be less prevalent in toddlers and preschoolers with
ASD regarding the GEV, the time coverage, and the occurrence.

Moreover, exploratory analysis of brain–behavioral relation-
ships within the ASD group suggested that some maps are also
related to specific autistic and comorbid symptoms expressed in
toddlers and preschoolers with ASD. Indeed, we found associa-
tions between social autistic symptoms and microstate class E
(mean duration), fine motor skills of the MSEL and microstate
class D (GEV, time coverage, and occurrence), affective problems
with microstate class B (GEV, time coverage, and occurrence),
and finally attention deficits and hyperactivity problems with

Fig. 1 Microstate topographies. The five microstate topographies identified in the global clustering across all subjects (N= 113), the autism spectrum
disorders (ASD) group (N= 66), and the typically developing (TD) group (N= 47). Polarity of microstate topographies is not relevant meaning that
topographies with opposite polarity are considered as the same microstate.
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microstate class C (mean duration). However, none of the cor-
relations were statistically significant after FDR correction for
multiple comparisons.

Recently, we published an exploratory study that combined
eye-tracking and microstate analysis in a small sample of children
(N= 28)19. We found four group cluster maps, very similar to
microstate classes A, B, C, and D previously described in the
literature19. To the best of our knowledge, only six other studies
using a microstate approach in individuals with ASD have been
published21–26. Across resting-state studies, D’Croz-Baron and
colleagues found six microstate classes that best described their
dataset in young adults with ASD and their TD peers21. They
found an increased occurrence for microstate classes B and E in
individuals with ASD compared to their TD peers. There was a
trend for microstate C being more present in their control group.
However, this study included only 23 participants and only
adults. Jia and Yu also highlighted a microstate class B more
prevalent in occurrence and time coverage when comparing
5–18-year-old children with ASD to their TD peers22. Moreover,
they found a decreased microstate class A regarding the mean
duration and a decreased microstate class C regarding the mean
duration and time coverage in ASD group. Finally, Nagabhushan
Kalburgi and colleagues found an increased mean duration but a

decreased occurrence in microstate class C in children with ASD
as compared to TD in an eyes-closed resting-state condition26.
Both studies from Jia and Yu, and Nagabhushan Kalburgi et al.
had small sample sizes (15 and 13 children with ASD, respec-
tively) and a wide age ranges (5–18 y.o. and 8–14 y.o., respec-
tively) in comparison to our study22,26. Our bootstrapping
analysis demonstrated that a high level of likelihood (95%) to find
a significant result for most of the temporal parameters of the
map B was reached with samples above approximately 25 parti-
cipants per group. This suggests that our sample size was suffi-
cient in order to highlight significant differences between our
groups of toddlers and preschoolers (N= 113).

In our study, microstate class B was more prevalent in the
toddlers and preschoolers with ASD compared to their TD
peers. The seminal EEG-MRI study of Britz and colleagues
linked microstate class B with negative BOLD activation in
bilateral extrastriate visual areas9. Exploring the functional sig-
nificance of microstate classes, Milz and colleagues showed
association of the microstate class B with verbal processing27.
Resting-state brain networks (RSNs) are usually studied using
fMRI because of its high spatial resolution28. Guo and colleagues
used fMRI technique to study the brain dynamic connectivity
and brain–behaviors relationships in ASD and they found

Fig. 2 Spatial correlations between template maps. Values of Pearson’s spatial correlations coefficients between the 5 template maps of both autism
spectrum disorders (ASD) and typically developing (TD) groups.
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partially impaired functional connectivity between right anterior
insula and default mode network (DMN)29. However, these
RSNs are sensitive to dynamic fluctuation30 that are difficult to
capture with fMRI because of its moderate temporal resolution
(in the order of seconds) and the delayed hemodynamic
response. As such, EEG is a valuable alternative technique to
study RSNs owing to its sub-second scale temporal
resolution6,31. The increased prevalence of microstate class B in

toddlers and preschoolers with ASD could reflect the atypical
inter-network connectivity between visual network (VIS) and
other major RSNs amongst individuals with ASD reported in the
literature. For example, Gao and colleagues suggested hyper-
connectivity between VIS and DMN probably impacting on
language abilities in ASD32. Morgan and colleagues also high-
lighted hyper-connectivity between VIS, DMN, and language
network33.

Fig. 3 Temporal parameters of the microstates. Results of both autism spectrum disorders (ASD) and typically developing (TD) groups for the temporal
parameters: a global explained variance (GEV); b mean duration; c time coverage; and d occurrence. Error bars represent means and standard deviations.
Uncorrected p-values. ***p-values that survive false discovery rate (FDR) correction for multiple comparisons.

Table 1 Temporal parameters for the five maps of autism spectrum disorders (ASD) group and typically developing (TD) group.

Parameters Autism spectrum disorders Typically developing

Mean, SD, N Mean, SD, N p-Value
Map A - Global explained variance 0.0909, 0.0310, 66 0.0967, 0.0261, 47 = 0.353
Map A - Mean duration (ms) 71.58, 4.804, 66 71.91, 3.985, 47 = 0.520
Map A - Time coverage (percentage) 19.40, 4.853, 66 20.65, 3.508, 47 = 0.138
Map A - Occurrence (s-1) 2.357, 0.4418, 66 2.503, 0.2859, 47 = 0.086
Map B - Global explained variance 0.0983, 0.0317, 66 0.0796, 0.0269, 47 <0.001*
Map B - Mean duration (ms) 72.48, 4.748, 66 68.86, 3.500, 47 <0.001*
Map B - Time coverage (percentage) 19.96, 4.390, 66 16.36, 3.584, 47 <0.001*
Map B - Occurrence (s-1) 2.398, 0.3540, 66 2.092, 0.3333, 47 <0.001*
Map C - Global explained variance 0.2249, 0.0483, 66 0.2317, 0.0540, 47 = 0.560
Map C - Mean duration (ms) 84.12, 5.810, 66 83.87,6.313, 47 = 0.826
Map C - Time coverage (percentage) 30.64, 5.100, 66 30.76, 5.221, 47 = 0.903
Map C - Occurrence (s-1) 3.081,0.3300, 66 3.111, 0.2675, 47 = 0.589
Map D - Global explained variance 0.0747, 0.0270, 66 0.0751, 0.0336, 47 = 0.438
Map D - Mean duration (ms) 70.01, 4.171, 66 69.30, 4.183, 47 = 0.145
Map D - Time coverage (percentage) 15.57,4.353, 66 15.61, 4.593, 47 = 0.533
Map D - Occurrence (s-1) 1.951, 0.4640, 66 1.976, 0.4438, 47 = 0.870
Map E - Global explained variance 0.0627, 0.0295, 66 0.0756, 0.0294, 47 = 0.031
Map D - Mean duration (ms) 68.27, 4.808, 66 69.57, 5.057, 47 = 0.162
Map D - Time coverage (percentage) 14.42, 5.152, 66 16.62, 5.057, 47 = 0.034
Map D - Occurrence (s-1) 1.846,0.5499, 66 2.090, 0.5178, 47 = 0.019

In bold, significant p-values < 0.05. *p-values that survive false discovery rate (FDR) correction for multiple comparisons.
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Fig. 4 Correlations with clinical measures. Matrix of exploratory correlations with clinical measures within autism spectrum disorders (ASD) group.
Uncorrected p-values. ADOS=Autism Diagnostic Observation Schedule; SS= severity score; SA= social affect; RRB= repetitive and restricted behaviors;
MSEL=Mullen Scales of Early Learning; DQ= developmental quotient; FM= fine motor; VR= visual reception; EL= expressive language; RL= receptive
language; CBCL= Child Behavior Checklist; AffP= affective problems; AnxP= anxiety problems; ADHP= attention deficit/hyperactivity problems; ODP=
oppositional defiant problems; PDP= pervasive developmental problems.

Fig. 5 Bootstrapping analyses. The likelihood to observe a significant difference between toddlers and preschoolers with autism spectrum disorders (ASD)
and their typically developing (TD) peers, simulating sample sizes ranging from 3 to 47 individuals in each group, for parameters of microstate class B:
a global explained variance (GEV); b mean duration; c time coverage; and d occurrence.
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Moreover, transition probabilities normalized by occurrence of
microstates revealed increased transitions from microstate map C
to map B in toddlers and preschoolers with ASD compared to
their TD peers, both maps reflecting activity in DMN and VIS,
respectively, in the literature9. This result supports the hypothesis
of hyper-connectivity between VIS and DMN in ASD32,33. We
also found increased transitions from microstate map E to map D
in toddlers and preschoolers with ASD compared to their TD
peers. Conversely, transitions from microstate map E to map C
were increased in TD group compared to ASD group.

Our result suggests that the temporal properties and the
dynamic syntax of some specific microstate classes are already
altered in ASD at early developmental stages. Highlighting brain
differences early in life is important as it may ultimately help us to
understand more what causes ASD and how the symptoms evolve
over time given the vast heterogeneity of the ASD phenotype. We
have started to characterize behavioral phenotypes in young
children with ASD by taking developmental changes into
account34. Currently, we are exploring how these brain-network
differences evolve over the course of development as we want to
find out how the brains of very young children with ASD can
compensate and how these mechanisms emerge. This will ulti-
mately lead to the development of more individualized and thus
adapted therapies early in life when the brain is most plastic.

Methods
Participants. This study was approved by the Local Research Committee, the
Commission Centrale d’Ethique de Recherche (CCER) in Geneva, Switzerland, and
written informed consent was obtained from all children’s parents prior to
inclusion in the study. In total, 293 participants were recruited for the experiment.
We did not manage to place the cap on 108 participants. The cap was placed on the
heads of 185 participants (110 ASD and 75 TD). Out of those, 60 participants (44
ASD and 16 TD) were excluded due to having too many movement-related arti-
facts, noisy signal, lack of interest, or having insufficient number of epochs for

subsequent analysis. This was to be expected given the sensory processing issues
frequently reported in children with ASD (Kojovic)34. In order to minimize gender
bias and include an equivalent percentage (20%) of females in both groups, we
excluded 12 females from the TD group. As a result, the final sample consisted
of 113 participants: 66 toddlers and preschoolers with ASD (11 females; mean age
3.3 ± 1.0 years, range 1.8–5.9) and 47 TD peers (8 females; mean age 3.3 ± 1.2 years,
range 1.8–5.8). Groups did not differ by age (p= 0.8838) or sex (p > 0.9999). Five
minutes of spontaneous EEG recordings were acquired for all the participants
included in the study. All participants were recruited as a part of the Geneva
Autism Cohort, a longitudinal cohort of young children35,36. Toddlers and pre-
schoolers were included in the ASD group if the previously established clinical
diagnosis was confirmed by exceeding the threshold limit for ASD on ADOS-G
(Autism Diagnostic Observation Schedule-Generic)37 or ADOS-2 (second
version)38. The ADOS assessments were performed and scored by experienced
clinicians working in the research team and specialized in ASD identification. For
toddlers and preschoolers who were administered the ADOS-G assessment, the
scores were recoded according to the revised ADOS algorithm39,40 to ensure
comparability with ADOS-2. The mean severity score at ADOS for the toddlers and
preschoolers with ASD group was 7.67 ± 1.83. For the control group, TD toddlers
and preschoolers were recruited through announcements in the Geneva commu-
nity. They were also assessed by ADOS-G or ADOS-2 to ensure the absence of ASD
symptoms, which would be an exclusion criterion. All TD participants had a
minimal severity score of 1. Children were excluded from the control group if they
presented any neurological/psychiatric conditions and learning disabilities
according to parents’ interview and questionnaire, or if they had a sibling or first-
degree parent diagnosed with ASD. Considering the young age of participants,
cognitive functioning was assessed using one of two standardized tools: the Mullen
Scales of Early Learning composite score (MSEL)41 or the Psycho-Educational
Profile, third edition (PEP-3)42. The MSEL is a standardized assessment used to
measure cognitive functioning for children from birth through age 68 months.
Information about cognitive functioning includes five subdomains: visual recep-
tion, fine and gross motor skills, receptive and expressive language. The total
development quotient (total DQ) is referred to as an estimate of overall intelligence.
In comparison, the PEP-3 is a standardized tool to assess developmental level of
children with developmental disorder, in particular ASD, between 2 and 7.5 year
olds. It includes the same five domains of the MSEL but combines nonverbal and
verbal intelligence scores into the same verbal and preverbal cognition scale and
adds an imitation skills index. We used either the MSEL or the PEP-3, depending
when the children were included in our protocol. The MSEL was added to our
standardized battery for cognitive assessment only after 2015. As a result, in the
current study, cognitive skills for 55 children with ASD were estimated using the
MSEL, and for 10 children with ASD using the verbal/preverbal cognition scale of
the PEP-3. Data on cognitive skills were missing for one child with ASD. Finally, to
investigate other symptoms that could be present in children with ASD, all parents
have completed the CBCL for ages 1.5–5 years’ version43. The CBCL 1.5–5 consists
of 100 questions exploring five DSM-scales as attention deficit/hyperactivity pro-
blems, anxiety problems, affective problems, oppositional defiant problems, and
pervasive developmental problems.

See Table 2 for characteristics of study participants.

Procedure and task. The experiment was conducted in a quiet room. To help the
children and their relatives to get familiar with the protocol, they received 2 weeks
prior to their visit a kit containing a custom handmade EEG cap, pictures and a
video illustrating the experiment. Participants were seated alone on a comfortable
seat or on their parents lap in order to reassure them and keep them as calm as
possible to avoid hand and body movements. Once seated, the experimenter
measured the circumference of the head. The cap of the corresponding size was
then prepared and gently placed on the participant’s head. A couple of minutes
were taken in order to allow the participants to settle into the experiment’s
environment and get used to the cap before starting the experiment. To best
capture the child’s attention during the experiment, we showed them an age-
appropriate animated cartoon of their choice. The EEG expert ensured that the cap
was accurately placed and electrodes adjusted to keep impedance values below
50 kΩ prior to starting the recording.

EEG acquisition and preprocessing. The EEG was acquired with a Hydrocel
Geodesic Sensor Net (HCGSN, Electrical Geodesics, USA) with 129 scalp elec-
trodes at a sampling frequency of 1000 Hz. On-line recording was band-pass fil-
tered at 0–100 Hz using the vertex as reference. Data preprocessing and microstate
analysis were done using Cartool (http://sites.google.com/site/cartoolcommunity/)
and Matlab (Natick, MA). First, we down-sampled the montage to a 110-channel
electrode array to exclude electrodes on the cheek and the neck since those are
often contaminated with muscular artifacts. Data were filtered between 1 and 40 Hz
(using Butterworth filters) and a 50 Hz notch filter was applied. Each file was then
visually inspected to detect periods of movement artifacts. These periods were
excluded. We performed Independent Component Analysis (ICA) on the data to
identify and remove the components related to eye movement artifacts (eye blinks,
saccades)44,45. Channels with substantial noise were interpolated using spherical
spline interpolation for each recording. The cleaned data were down-sampled to
125 Hz, recalculated against the average reference and a spatial filter was applied.

Fig. 6 Dynamic syntax results using Markov chains. Comparison of the
transition probabilities between autism spectrum disorders (ASD) group
and typically developing (TD) group. Uncorrected p-values. Orange arrows:
transition probabilities in ASD group > TD group; green arrows: transition
probabilities in TD group > ASD group; full arrows: p-values that survive
false discovery rate (FDR) correction for multiple comparisons; hatched
arrows: p-values that do not survive to FDR correction.
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Finally, EEG experts (H.F.S. and A.B.) reinspected all data to ensure that no
artifacts had been missed.

Microstate analysis. The pipeline for the analysis is illustrated in (Fig. 7). We
applied a k-means cluster analysis to the data of each subject to estimate the
optimal set of topographies explaining the EEG signal. The clustering was applied
only at local maxima of the global field power (GFP), which is calculated as the
standard deviation of all electrodes at a given time point and represents time points
of highest signal-to-noise ratio (see46 for formulas). The polarity of the maps was
ignored during the procedure. The k-means cluster analysis was first computed at
the individual level and then across all participants (children with ASD and TD
children together) to obtain the group cluster maps. In order to determine the
optimal number of maps at both levels (both within and across subjects), we
applied a meta-criterion that includes seven independent criteria. For a detailed
description of these criteria, see20 and11. Then we identified the five prototypical
maps that best described the dataset of toddlers and preschoolers with ASD and
TD peers separately. We computed Pearson’s spatial correlation for each of the five
microstate classes to ensure that those five microstate classes were similar across
both groups. High spatial correlation coefficients indicated that the microstate
classes were similar amongst both groups and the five cluster maps extracted from
both groups separately were then fitted back to the original EEG of each subject,
depending on their group. This way, spatial correlation was calculated between the
cluster maps and each individual data point and that data point was labeled with
the cluster map that showed the highest correlation. Polarity of the maps was again
ignored for the back-fitting procedure. Data points that did not correlate more than
50% with a given group cluster map were marked as unlabeled. Only labeled data
points were included in the analysis, meaning that unlabeled data points and
periods marked as artifacts during the preprocessing were excluded.

Four temporal parameters of the microstates were computed for each individual
recording: GEV, the mean duration, the time coverage, and the frequency of
occurrence. The GEV is an estimate between [0; 1] of the explained variance of a
given map, weighted by the GFP. The mean duration is the average duration in
milliseconds that a given cluster map is continuously present. The time coverage is
the percentage of total time for a given cluster map in the individual EEG
recording. The frequency of occurrence represents the number of times per second
that a given cluster map appears in the individual EEG recording6.

Statistics and reproducibility. All data visualization and statistical analyses were
carried out using IBM SPSS Statistics, Version 24.0 (IBM Corp., Armonk, NY,
USA), GraphPad Prism, Version 9 (GraphPad Software, La Jolla, CA, USA, www.
graphpad.com) and Cartool (http://sites.google.com/site/cartoolcommunity/).

We first checked if the temporal parameters of the microstate classes had a
normal distribution using D’Agostino and Pearson’s tests. We investigated
group differences using unpaired t-tests or Mann-Whitney-Wilcoxon pairwise
tests if data were not normally distributed for each temporal parameter of each
map. We applied FDR correction for multiple comparisons taking into account the
four parameters of the five maps. We then conducted a male-only analysis
(removed 19 female subjects; 11 ASD, 8 TD) as a validation of our attempt to
control for gender bias. The findings from the male-only analysis were very similar
to the larger analysis, indicating that the larger analysis is not biased by gender. To
ensure that age had no effect on the results, we correlated the age of participants
with temporal parameters, applying two-tailed Pearson’s correlation or two-tailed
Spearman’s rank correlation, depending on the normality of distribution of
the data.

Table 2 Characteristics of study participants.

Characteristic Autism
spectrum
disorders

Typically
developing

N 66 47
(M/F) (M/F) p-Value

Gender ratio 55/11 39/8 > 0.9999
Mean, SD, N Mean, SD, N

Age in years 3.3, 1.0, 66 3.3, 1.2, 55 = 0.8838
ADOS Total SS 7.7, 1.8, 66 1.0, 0.0, 55 <0.0001
ADOS SA SS 6.7, 2.1, 66 1.0, 0.0, 55 <0.0001
ADOS RRB SS 8.7, 1.8, 66 2.2, 1.9, 55 <0.0001
MSEL Total DQ 73.4, 24.5, 55 110.4, 13.7, 35 <0.0001
MSEL FM DQ 79.7, 21.3, 55 104.0, 12.6, 35 <0.0001
MSEL VR DQ 86.4, 26.1, 55 122.7, 23.8, 35 <0.0001
MSEL EL DQ 60.4, 28.5, 55 104.2, 21.2, 35 <0.0001
MSEL RL DQ 67.0, 31.7, 55 113.8, 16.5, 35 <0.0001
CBCL AffP T-score 58.7, 8.1, 49 53.0, 5.4, 34 <0.0001
CBCL AnxP
T-score

56.9, 9.7, 49 52.4, 4.9, 34 = 0.0025

CBCL ADHP
T-score

55.9, 5.9, 49 51.9, 3.3, 34 = 0.0005

CBCL ODP T-score 54.9, 6.9, 49 53.7, 7.1, 34 = 0.0969
CBCL PDP T-score 68.7, 12.0, 49 51.4, 4.1, 34 = 0.0969

ADOS Autism Diagnostic Observation Schedule, SS severity score, SA social affect, RRB
repetitive and restricted behaviors, MSEL Mullen Scales of Early Learning, DQ developmental
quotient, FM fine motor, VR visual reception, EL expressive language, RL receptive language,
CBCL Child Behavior Checklist, AffP affective problems, AnxP anxiety problems, ADHP attention
deficit/hyperactivity problems, ODP oppositional defiant problems, PDP pervasive
developmental problems.
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Considering the large heterogeneity in ASD, we investigated possible
brain–behavioral relationships between the temporal parameters of the microstate
classes with children phenotype. Among toddlers and preschoolers with ASD, we
correlated autism symptom severity, developmental level and comorbid symptoms
with all temporal parameters. We applied two-tailed Pearson’s correlation or two-
tailed Spearman’s rank correlation depending on the normality of distribution of
the data between the GEV, mean duration, time coverage, and occurrence of
microstates A, B, C, D, and E and Autism Diagnostic Observation Schedule total,
social affect and repetitive and restricted interest severity scores (ADOS-G and
ADOS-2)37,38. To explore the relationship between temporal parameters and the
developmental level of children, we also applied correlation with the Mullen Scales
of Early Learning composite score (MSEL)41, using the total developmental
quotient and fine motor skills, receptive and expressive language, and visual
reception subdomains scales. We also explored comorbid symptoms by correlating
temporal parameters with the five DSM-scales of the CBCL for ages 1.5–5 years’
version parents’ questionnaire43. The five DSM-scales are attention deficit/
hyperactivity problems, anxiety problems, affective problems, oppositional defiant
problems, and pervasive developmental problems. We applied FDR correction to
correct for multiple correlations taking into account the four parameters of the five
maps and the different clinical evaluations we used (ADOS, MSEL, and CBCL).

Then, always considering the large heterogeneity in the ASD phenotype, we
wanted to estimate the likelihood of finding the significant results we observed in
our full cohort from smaller sample sizes of participants. We therefore focused on
microstate classes B. To do so, we simulated sample sizes ranging from 3 to 47
individuals in each group (with steps of 1 participant), using 500 bootstrapped sub-
samples for each sample size. With each sample, unpaired t-test were performed to
assess the significance of difference between both groups, using a statistical
threshold of p < 0.05.

Finally, we analyzed the transition dynamics of EEG microstate maps by
computing probabilities of all transitions from each microstate to any other using
Markov chains. The observed probabilities were divided by the expected
probabilities to account for the variability in occurrence of the states as described in
the literature11,47,48. The transition probabilities between microstate maps were
compared between ASD and TD groups applying unpaired t-tests and FDR
correction.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available on reasonable request from
the corresponding author.
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