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The brain and its time: intrinsic neural timescales
are key for input processing
Mehrshad Golesorkhi 1,2, Javier Gomez-Pilar3,4, Federico Zilio5,

Nareg Berberian2, Annemarie Wolff 2, Mustapha C. E. Yagoub 1 &

Georg Northoff 2,6,7✉

We process and integrate multiple timescales into one meaningful whole. Recent evidence

suggests that the brain displays a complex multiscale temporal organization. Different

regions exhibit different timescales as described by the concept of intrinsic neural timescales

(INT); however, their function and neural mechanisms remains unclear. We review recent

literature on INT and propose that they are key for input processing. Specifically, they are

shared across different species, i.e., input sharing. This suggests a role of INT in encoding

inputs through matching the inputs’ stochastics with the ongoing temporal statistics of the

brain’s neural activity, i.e., input encoding. Following simulation and empirical data, we point

out input integration versus segregation and input sampling as key temporal mechanisms of

input processing. This deeply grounds the brain within its environmental and evolutionary

context. It carries major implications in understanding mental features and psychiatric dis-

orders, as well as going beyond the brain in integrating timescales into artificial intelligence.

Our environment bombards the brain with a variety of regular and irregular inputs on
different timescales. Consider one of the temporally most complex inputs, music. We
can simultaneously perceive the music’s different timescales and, even better, are able to

integrate them into one meaningful whole like a melody. Moreover, the melody can be dis-
tinguished from the ongoing accompaniment in the background.

How can our brain process and integrate such multiscale inputs? Recent evidence suggests that
the brain itself exhibits intrinsic neural timescales (INT)1–11. As measured by the autocorrelation
window (ACW) in resting state, lower-order unimodal sensory regions—the primary visual
cortex, for example—shows short timescales compared to higher-order transmodal regions like
the default-mode network (DMN)2–10,12–23. However, the specific function or role of the INT in
the brain and its neural processing still remains unclear.

Reviewing various findings on INT in both human and non-human species, we propose that
they play a key role in processing and structuring inputs in different timescales (Fig. 1 for a
general framework). Rather than focusing on specific kinds of inputs (like visual, somatosensory,
or auditory; see Box 1), we here aim to describe basic dynamic principles of the temporal nature
of input processing that are shared across different inputs. Specifically, the brain utilizes its own
INT to process and actively shape the extrinsic timescales of the multiscale inputs it receives
from both environment and body. This allows the brain to encode the stochastic structure of its
environmental inputs according to its own stochastic structure. Its own stochastic structure is
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determined by its INT and its unimodal–transmodal hierarchy.
That, as we will detail, is mediated by specific computational
mechanisms like temporal integration/segregation as well as input
sampling with consecutive shifting towards slower frequency
modes within the processing hierarchy.

We first review empirical evidence on INT during both resting
and task states. That is followed by a second part where we link
INT to distinct facets of input processing, like encoding of sto-
chastics and their sharing by different species. In the third part,
borrowing from Physics and Mathematics, we explore the com-
putational mechanisms driving input processing by the INT; this
includes temporal integration and segregation of the input, as well

as a sampling mechanism that shifts subsequent stages of input
processing towards slower frequency modes. We conclude that
the role or function of INT consists in processing and structuring
multiscale inputs from the environment which, to some degree, is
evolutionarily shared across human and non-human species.
Given its key role in the brain’s input processing, INT carries
major implications for psychiatric disorders (Box 2) and artificial
intelligence (Box 3).

Part I: intrinsic neural timescales in rest and task states
Calculation of intrinsic neural timescales. INT is commonly
investigated in cellular4,24 and systemic1,12–14,22,25,26 granularity
levels. On a systemic level, Hasson and colleagues1,12,26,27 oper-
ationalize INT using functional connectivity during task state.
They define temporal receptive windows as “the length of time
before a response during which sensory information may affect
that response”1 and it roughly correspond to what are described
as temporal receptive fields on the cellular level28.

Recent studies operationalize the INT using the autocorrelation
function of the signal during both resting and task state.
Autocorrelation function is the correlation of a signal with
shifted (time-lagged) versions of itself4. Since autocorrelation
function yields a series of numbers, different studies report
slightly different properties of it. Murray and colleagues4 obtain
INT by fitting an exponential curve to the autocorrelation;
however, ACW is most commonly reported in the INT’s
literature.

In their fMRI studies, Watanabe and colleagues14 define ACW
as the area under the curve of the autocorrelation function from
zero to the time lag that the correlation reaches zero (see also
refs. 13,25). However, EEG/MEG studies define ACW as the time
lag the correlation reaches half of its maximum value (Fig. 2a) or
when it reaches 1⁄e (Golesorkhi et al.22 defines a new variant
called ACW-0).

Fig. 1 The proposed function of the intrinsic neural timescales in input
processing. The key assumption is that the intrinsic neural timescales
process the input by matching the stochastics of neural activity with the
stochastics of the environment. The nature clip art credit: Nature Vectors
by Vecteez (https://www.vecteezy.com/free-vector/nature).

Box 1 | Inputs: deeper dynamic levels of input processing

The notion of input is a concept that can include different meanings. One first and foremost associates sensory functions with the notion of input. For
instance, one can distinguish somatosensory, visual, and auditory inputs. Recent studies25,116 demonstrate that these sensory input systems are related,
with different input streams in the brain in terms of both their functional connectivity116 and INT25. Most interestingly, these input streams share
continuous progression from unimodal (like primary sensory cortex) to more transmodal regions like the dorsolateral prefrontal cortex. The transmodal
regions are, in part, shared by the different sensory input systems.
Hence, despite their distinctions in terms of their modality-specific sensory input, these input systems may nevertheless converge in the higher-order
transmodal regions. Such convergence of the sensory input streams with the unimodal–transmodal hierarchy of INT suggests that some dynamic, i.e.,
temporal features and mechanisms of input processing, as the ones discussed above, may be shared among the different sensory modalities.
In addition to sensory inputs from the external environment, the brain also receives inputs from the body, that is, its interoceptive inputs (and also its
proprioceptive inputs). Taylor et al.116 demonstrate that the brain’s interoceptive input streams (with insula as the key region) again follow the
hierarchical progression from unimodal to transmodal regions. Remarkably, even the interoceptive input system converged with the exteroceptive
sensory input streams in the higher transmodal regions. That suggests some commonality among intero- exteroceptive input processing.
Complementing the continuous “bombardment” by the environment’s exteroceptive inputs and the body’s interoceptive inputs, the brain itself shows
activity changes in its spontaneous activity. These changes may be weak or, alternatively, stronger, inducing the degree of activity changes usually
elicited by exteroceptive stimuli. This may, for instance, apply to spontaneous activity changes in the auditory cortex which then may be perceived as
external voices while being hallucinatory in their nature77,117,118. These spontaneous activity changes may even exist in the “healthy” brain (as healthy
persons can show auditory hallucinations) and may therefore be designated as “neuronal input”77. These spontaneous changes may be predominantly
associated with internally oriented cognition like mind-wandering119,120, self-referential processing121,122, and mental time travel/episodic
simulation67,112. Importantly, these spontaneous activity changes, the neuronal inputs, occur in all regions of the brain and, interestingly, are significantly
stronger in the higher-order transmodal regions when compared to the unimodal regions106,123–125. Hence, we can observe again that even the brain’s
own neuronal input seems to follow the progression from the unimodal to the transmodal hierarchy.
Together, these observations suggest that beyond the distinction between specific sensory inputs, as well as the different sources of inputs
(environment, body, brain), there is some deeper level to the notion of input. Unlike the more superficial level with the distinction of different inputs and
sources, there seems to be a deeper level that is shared among the different inputs. This deeper level of the input seems to be strongly shaped by the
brain’s INT in strongly temporal and thus dynamic way. Our description of the different features and mechanisms of input processing in this paper
targets this deeper temporal, highly dynamic level of input processing.
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Box 2 | From intrinsic neural timescales to psychiatric disorders

Are INT relevant for behavior and cognition? Evidence for that comes from their changes in psychiatric disorders. A recent resting state fMRI study14

applied the ACW in subjects with autism. They observed significantly shorter ACW in primary sensory regions (visual, sensorimotor, auditory) in adult
autism spectrum disorder (ASD) compared to healthy subjects; these changes correlated negatively with the severity of autism. In contrast, ACW in
right caudate was significantly longer in ASD which also correlated with the degree of repetitive restrictive behavior in ASD subjects.
They then investigated fMRI resting state ACW in an adolescent children ASD dataset where they obtained similar ACW changes in the same regions
including analogous correlation results. This means that there is a developmental component to the intrinsic timescales. That was complemented by
investigating the neuro-anatomical basis through calculating the local gray matter volume. Significant positive correlation of local gray matter volume
with the duration of ACW in the same region was observed which also hold for the regions altered in ASD. Finally, they calculated mediation analysis
showing that the gray matter volume in the above-mentioned regions was mediated in their impact on autistic symptoms by the duration of the ACW14.
The relevance of intrinsic timescales in autism is further supported by another fMRI resting state study in ASD126. Operating in the frequency domain
(rather than time domain), they calculated the power-law exponent (PLE) (and spectral entropy). They observed that ASD showed increased PLE with
stronger power in slow frequencies in specifically regions of the salience network (insula, supragenual anterior cingulate cortex, and thalamus) (see also
ref. 127 showing that the salience network exhibits the highest variability and flexibility among the different networks). Moreover, they demonstrated
that such increased PLE in salience network was not observed in schizophrenia. Finally, these findings were specific for PLE as distinguished from others
like regional homogeneity and neural variability that did not show any changes in these regions in ASD61,128,129.
Using EEG, one recent study in schizophrenia including mostly post-acute first-episode subjects showed abnormally long ACW (and high PLE) in
several electrodes during a task state involving self-specificity (i.e., enfacement task)130. They also demonstrated that the degree of change in ACW
from rest to task was significantly lower in schizophrenia subjects, that is, unlike in healthy subjects, they barely shortened their ACW during the task.
Most remarkably, analogous ACW prolongation during task and its reduced rest–task difference was not observed during a non-self-task, i.e., auditory
oddball—this suggests a close relationship of ACW with self-specificity.
Moreover, applying a moderation model, they showed that the degree of ACW mediated the relationship between self-disturbance and negative
symptoms in schizophrenia participants. As in the autism study by Watanabe and colleagues14, these data support the assumption that changes in INT
may be related to psychopathological symptoms and, more generally, be relevant for behavior and cognition. This is further supported in a recent study
on psychosis in schizophrenia25.
Using fMRI, they show globally reduced (i.e., shortened) INT in psychosis/schizophrenia compared to healthy controls. Moreover, they observed
specific changes within the neural hierarchy of auditory and somatosensory input streams: the increase in INT at lower levels of the neural hierarchies
may reflect hallucinations (comparing psychotic subjects with severe vs. mild hallucinations). While the increased timescales at higher levels of neural
hierarchies may reflect delusions (comparing psychotic subjects with severe vs. mild delusions). Together, the findings by25,130 support the importance
of INT in mediating specific psychopathological symptoms of psychosis.
Unbalanced ACW in unimodal vs. transmodal regions and self-related vs. non-self-related tasks. Figure of Box 2: The different lengths of ACW
observed in subjects with autism and schizophrenia compared to healthy subjects suggest that changes in the intrinsic neural timescales may be
associated with particular psychopathological symptoms of these disorders.
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Resting state I: temporal hierarchy of unimodal and trans-
modal regions. Murray and colleagues4 investigated single-cell
recording data in non-human primates and calculated their
autocorrelation function in pre-stimulus intervals. From that,
they measured the duration of the temporal window at a corre-
lation decay of 50%, i.e., ACW. They observed a shorter ACW in
lower-order unimodal sensory regions while higher-order

transmodal regions, such as the prefrontal cortex, exhibited a
longer ACW4. Subsequent computational modeling studies
employed large-scale non-human primate-based, human-based
structural connectivity networks5,29, or a standard model of
synchronization, i.e., Kuramoto model2 (0.01–0.1 Hz). They also
demonstrated longer INT (as measured by the ACW) in pre-
frontal regions which remained shorter in sensory and motor

Box 3 | From intrinsic neural timescales to artificial agents

We saw that the environmental hierarchies of different events may be recapitulated and thus modeled by the brain itself within its own intrinsic
hierarchical organization, i.e., its temporo-spatial hierarchy. There is no need for the living to “represent” a model of the environment in their head: “An
agent does not have a model of its world—it is a model. In other words, the form, structure, and states of our embodied brains do not contain a model of
the sensorium—they are that model”.131. Based on the temporal hierarchy of its INT, the human agent (and related non-human species) is a temporo-
spatial model of its environment displaying a more or less analogous temporal structure albeit in a miniature scale-free way.
The brain can be conceived as a free energy-driven temporo-spatial model of the temporo-spatial hierarchies of its environmental context. That results
in temporal and spatial nestedness of the brain within its respective environmental context. Despite different temporal (and spatial) scales across body,
brain, and environments, they are nevertheless connected through scale-free self-similarity in their shape or form. Just like the smaller Russian doll is
contained within the next larger one (same shape, different size), the brain and its temporo-spatial organization nest in a scale-free self-similar way
within the much larger environment132. Given such temporo-spatial self-similarity between brain and environment, we may better focus on “what our
head’s inside of” rather than searching for “what inside our heads”86.
This carries major implications for modeling artificial agents as it entails the need to include an intrinsic temporal and spatial hierarchy within the inner
design and architecture of the agent itself. Future AI models may want to implement such intrinsic spatial and temporal organization in their artificial
agents, including the different timescales and the core–periphery organization (see ref. 133 for first steps in this direction in artificial agents using what
they describe as “multiple time scale recurrent neural network”, refs. 134,135 who emphasize the need for temporal hierarchies in artificial agents for their
adaptation to the environment).
Spatiotemporal hierarchies would extend the current—often module-based—models of artificial agents136 by combining top-down (providing the
agent’s inner input) and bottom-up (providing the agent’s outer input) layers—that Tani uses in his compelling model of an artificial agent135,137,138.
Most importantly, by conjoining the temporo-spatial architecture with the free energy principle, the artificial agent’s intrinsic temporo-spatial hierarchy
may be a small-scale but self-similar model of its own environmental context. To achieve that, the agent’s temporo-spatial hierarchy needs to be highly
dynamic and continuously changing, so as to adapt to the changing environmental dynamics. More specifically, this means that the causal (or temporo-
spatial) architecture of the environment must be recapitulated or installed in the agent’s temporo-spatial dynamics in such a way as to allow the agent
to minimize its variational free energy with its respective environmental context.
A suggested schematic of agent-environment interaction. Figure of Box 3: The agent and the environment are in a closed loop with the environment
affecting the agent and vice versa. The stochastic of the agent’s spontaneous activity acts as its interface and interacts with the environment’s interface,
i.e., its stochastic structure, through timescale matching. The agent’s processing units are organized in a core–periphery structure. In each processing
unit, the input is sampled, matched, integrated, or segregated based on the intrinsic properties of the unit.
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cortex (see also ref. 17, see also other models of neural dynamics
in refs. 30,31).

The computational findings are supported by observations of a
corresponding hierarchy of timescales in real human data using
fMRI13,18. Operating in the infraslow frequency range (0.01–0.1
Hz), resting state fMRI studies applied the autocorrelation
function to the BOLD signal and, following Murray and
colleagues4, determined the ACW at 50% of correlation
decay13,14,18. Employing small14,15 or large-scale13,18,29 fMRI
datasets, all studies observed shorter ACW in unimodal regions,
including sensory and motor regions/networks on the cortical
level. In contrast, transmodal regions, including higher-order
networks such as the central-executive networks (CEN), dorsal
attention networks (DAN), and default-mode network (DMN),
generally show a longer ACW.

In addition to a temporal hierarchy on the cortical level, Raut
and colleagues13 also measured the ACW in subcortical regions
like the thalamus, cerebellum, striatum, and hippocampus.
Interestingly, they again observed that gradients of the ACW
within each of these subcortical regions, especially in the
thalamus and striatum, appear to mirror the temporal hierarchy
on the cortical level. Together, these data strongly suggest that
both cortical and subcortical regions display an intrinsic
hierarchical organization with unimodal sensory and motor
regions showing shorter timescales while transmodal higher-
order association regions exhibit longer timescales.

These findings were all obtained in human fMRI that measures
BOLD activity in the infraslow frequency range (0.01–0.1 Hz).
That raises the question as to whether the distinction of shorter
unimodal and longer transmodal INTs are also present in faster
frequency ranges between 1 and 70 Hz as can be typically
measured with EEG/MEG. Indeed, two recent human resting

state MEG studies22,29 demonstrate a longer ACW in higher-
order transmodal regions/networks like the CEN and DMN,
whereas it was significantly shorter in unimodal sensory regions.
Hence, these findings suggest that INT follows a similar
topographical distribution in faster frequencies (1–70 Hz) as
those in slower frequency ranges (0.01–0.1 Hz). Such ubiquitous
occurrence suggests a most basic or fundamental, though unclear,
role or function of INT in the brain.

Resting state II: intrinsic neural timescales and functional
connectivity. How are the intra-regional INTs related to inter-
regional connections? The INT is constituted by both intra-
regional cellular features5,16,32,33 and inter-regional
connectivity4,5,13,20. Intra-regional cellular features concern the
excitation–inhibition balance with its local recurrent wiring34 as
in supragranular feedforward and infra-granular feedback
connections5,13,32,35 (see also ref. 20 for demonstrating the rele-
vance of population codes). Cavanagh et al.36 demonstrate that
even within regions there is considerable variability of the INT at
the single neuron level. Specifically, the temporal receptive field of
a single neuron can change over time and adapt to, for instance,
task demands as during working memory (see also ref. 24) and/or
decision making36–38. Moreover, Spitmaan et al.37 observe less
dependence upon the task context—this further underlines their
adaptative nature. Moreover, as the authors put it, the timescales
of different neurons during task-related activity suggest a certain
independence, i.e., flexibility.

In addition to the intra-regional cellular features, INT is also
strongly shaped by inter-regional connectivity. Chaudhuri and
colleagues16 demonstrated that purely local connectivity itself is
insufficient to yield the diversity of timescales across the cortex.

Fig. 2 Autocorrelation window (ACW) in resting and task states. a ACW is defined as the first lag in which the correlation of the signal with itself drops
below 50% of the maximum correlation. It is measured from the autocorrelation function. b The ACW, as recorded in MEG22, shows topographical
differences between regions during resting and task states. The colormap is in milliseconds and represents the length of ACW. c The brain map represents
the uni-transmodal organization of the brain regions. The table schematically shows how ACW changes from resting to task states and also from unimodal
to transmodal units in two arbitrary tasks and four sample units. The table is only for illustration purposes. Unimodal and transmodal units refers to either
unimodal or transmodal regions in the brain. The numbers 1 and 2 indicate the hierarchical position (1= lower; 2= higher) of the respective region/unit.
The blue (unimodal) and red (transmodal) intervals represent the width of their respective intrinsic neural timescales (INT) during rest and two different
tasks (task 1 and 2). CfR indicates the change from rest to task with either decreasing (downward arrow), increasing (upward arrow), or maintained
(horizontal double-sided arrow) width of the regions’ INT during task relative to rest. Though schematically, the differences in the width and rest–task
change of the INT during the two tasks shall indicate the flexible and adaptive nature of the timescales as it is supported on both regional22 and
cellular24,36,37 levels (see in rest–task overlap and rest–task modulation sections).
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Moreover, in their non-human primate-based computational
model5, they remove all long-range projections which signifi-
cantly restricts the range of different timescales and abolishes the
intrinsic temporal hierarchy. The relationship of intra-regional
INT and inter-regional functional connectivity holds again across
different species as it can be observed in both non-human
primates9 and humans13,18,29,39–42.

How exactly is inter-regional functional connectivity related to
the INT? Two recent studies in human fMRI show that the
duration of INT in different regions, as measured by the resting
state ACW, is positively correlated with the degree of said region’s
change in functional connectivity during task: the longer the
region’s resting state ACW, the stronger its task-related change in
its functional connectivity to other regions18,43. That is further
supported by Raut and colleagues13 who demonstrated that the
individual variability in ACW across different regions is directly
related to the individual variation of the functional connectivity
pattern of the same regions (see also42,44–48).

Together, these findings suggest a close relationship of INT to
the brain’s inter-regional connectivity pattern—intra-regional
temporal features are, in part, constituted by long-range inter-
regional connections. Such an intimate link between intra-
regional timescales and inter-regional connectivity means that the
different timescales can interact and integrate with each other.
This may enlarge the number of available timescales, i.e., the
repertoire of timescales, as we will illustrate later.

Rest–task overlap: from intrinsic neural timescales to temporal
receptive windows. Is the resting state’s INT related to task
states? A positive answer to this question would support their
involvement in input processing. The relevance of INT for input
processing is strongly suggested by the excellent studies of Hasson
and colleagues15,26,27,49–51 (ref. 1 for review). They demonstrate
that shorter temporal segments of external stimuli (like single
words of stories, or short episodes in movies) are processed
preferentially in lower-order unimodal sensory regions. Longer
intervals (like whole paragraphs in stories, or longer episodes in
movies) are related to activity changes in higher-order transmo-
dal regions. Given that external inputs are processed and struc-
tured in temporal terms, i.e., according to different durations,
Hasson and colleagues1 speak of temporal receptive windows
which roughly correspond to what are described as temporal
receptive fields on the cellular level28.

Does the spatial, or topographical, pattern of the INT overlap
between rest and task states, i.e., rest–task overlap? While such
rest–task overlap has been well demonstrated for functional
connectivity18,52–55, it remains an open issue in the case of INT.
The various task studies on the brain’s temporal receptive windows
show a spatial pattern that is well in accordance with the hierarchical
organization of INT in the resting state. In the same way, the ACW
is longest in the DMN during rest. Task states also show that the
DMN processes the longest sequence of inputs and information26,27,
while the shorter resting state ACW in unimodal sensory regions
seems to find its equivalent in the short sequences of inputs
processed in these regions1. Hence, comparison of rest ACW and
task temporal receptive windows shows analogous hierarchical
topographical organization. This suggests a close relationship
between rest and task, i.e., rest–task modulation or interaction56–60

(see below for the discussion of task-specific changes in INT).
If there is such a rest–task overlap, one would assume that the

hierarchical organization of resting state ACW is carried over to,
and thus present in, the temporal receptive windows during task
states. Evidence for such rest–task overlap comes from both
computational modeling and brain imaging. Gollo and
colleagues2 conducted a modeling study based on the

synchronization model of Kuramoto with simulations of
transcranial magnetic stimulation: they show that regions with
longer ACW, as located in the transmodal core, display lower and
more sluggish activity changes in response to external stimuli
than sensory regions; the latter exhibit a shorter ACW at the
more unimodal periphery, accompanied by higher amplitude and
a faster response to external stimuli (see also refs. 17,35).
Analogous results were observed in the modeling study by
Chaudhuri and colleagues5 who applied electrical stimulation to
V1 in the visual cortex to his non-human primate-based network
model (see also ref. 29). One interesting finding here is that
regions weakly connected to the input regions exhibit longer INT
during stimulation. This again demonstrates that tasks exert
effects beyond those at the stimulated regions themselves. These
computational data on rest–task overlap of INT are supported by
human brain imaging data. A recent human fMRI study by Ito
and colleagues18 investigated the ACW in resting state and the
amplitude during different task states. They demonstrated a
negative correlation of resting state ACW duration (in different
regions) with the magnitude of task-related activity, i.e.,
amplitude, in the same regions. Therefore, the longer the region’s
resting state ACW, i.e., transmodal regions, the lower its task-
related amplitude. While regions with shorter ACW, i.e.,
unimodal regions, exhibit higher amplitude during different
tasks. These results support the idea that the resting state’s INT
strongly shapes task-related activity and associated input
processing2,60,61. The mechanisms of this, however, remain
unclear.

Rest–task modulation: intrinsic neural timescales shape task
states and behavior/cognition. The rest–task overlap strongly
suggests that the resting state’s INT may also shape or modulate
the temporal features of task states including associated cognition
—this amounts to what we describe as rest–task interaction or
modulation (see also refs. 56,58,62). This has recently been
addressed by Golesorkhi and colleagues22 (see also ref. 15 for
initial steps). Applying MEG, they investigated the ACW-50 and
ACW-0 (see above) not only during rest but also during three
different task states (motor, story-math, working memory). They
showed that the resting state’s ACW and its hierarchical
core–periphery organization strongly predict their task states: the
resting state’s core–periphery organization of ACW was essen-
tially preserved during all three task states as topographical
rest–task correlation yielded high values (0.8–0.9)22. These results
suggest that the resting state’s hierarchical organization of its INT
is essentially carried over, and preserved, during task states,
irrespective of the task.

Golesorkhi and colleagues22 also observed some task-specific
changes (Fig. 2) when calculating the rest–task difference (which
subtracts and cancels out the shared, i.e., correlating temporal
hierarchical organization). Specifically, higher-order network
regions showed a strong ACW, shortening during the story-
math task (which was presented in 30 s intervals). Only minimal
changes were seen in motor and working memory tasks. A reverse
pattern was observed in lower-order network regions; the ACW
was shortened considerably during working memory but
minimally in story-math and motor tasks. These data suggest
that, once one subtracts the hierarchical temporal organization
present in both rest and task, task-specific changes can be
observed. Furthermore, the ACW itself and, more generally, the
INT, can be modulated during task states—they are dynamic and
adaptive rather than static and non-adaptive. Though more
studies are needed, task-related modulation seems to mainly
concern the shortening of the ACW relative to rest. The
adaptative nature of INT is also documented by them during
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the delay period of a working memory task (relative to pre-
stimulus baseline) in human ECoG24.

In addition to task states, INT also shape behavior and
cognition. Studies in non-human primates demonstrated that a
longer duration of the resting state’s INT (as obtained during
baseline intervals sandwiched between tasks) is associated with
better behavioral performance in a variety of different tasks.
These include a longer duration of delays in a delay discounting
task4, stronger spatial response coding in the delay period during
a non-match-to-goal task63, and modulating working memory
performance during later periods, i.e., delay9. On the human side,
recent fMRI and/or EEG studies demonstrate that the resting
state’s ACW is directly related to higher-order cognition like the
level of consciousness64,65, the sleep stage21, the sense of self66–69,
and psychiatric disorders (see Box 2 for details). Tentatively, these
data show that INT strongly shapes behavior, including
perception and higher-order cognition like consciousness and
self. Since task states, as well as perception and cognition, are
dependent upon various kinds of inputs, together these data are
compatible with the assumption that INT is key for input
processing and structuring.

Part II: input processing through intrinsic neural timescales
Key findings of the INT are: (I) their topographical organization
during both resting and task states along uni- and transmodal
regions/networks; (II) their topographical carry-over and partial
change during the transition from rest to task22; and (III) their
relation to the temporal structure of external inputs during task
states1,26,49,50,70,71. Together, these findings suggest their invol-
vement specifically in the brain’s input processing.

We presuppose here a wide notion of input including stimuli
from both one’s own body, i.e., interoceptive, and external
environment, i.e., exteroceptive (Box 1). Our focus is primarily on
the dynamic principles and mechanisms underlying input pro-
cessing in general rather than describing the specifics of various
inputs like auditory, visual, or somatosensory (see Box 1). Con-
sidering INT, in the following we first address the importance of
input processing as distinguished from output processing and
then discuss two important facets: (I) cross-species input sharing
(II) and stochastic matching of the extrinsic environmental inputs
with the brain’s intrinsic stochastic structure.

Input vs. output: capacity or predisposition for input proces-
sing. Is INT engaged in either input or output processing? This
was recently addressed by Zilio and colleagues21, who investi-
gated the ACW in resting state EEG in subjects with physiologic,
pharmacologic, and pathological alterations of consciousness.
Under such conditions, input processing is known to be altered in
distinct ways, i.e., progressive decrease (NREM sleep stages N1,
N2, N3), isolation from external inputs but preserved capacity for
processing of internal inputs (from the own body and brain)
(REM sleep and ketamine), and extreme deficiency or complete
absence of both external and internal inputs (unresponsive
wakefulness syndrome, sevoflurane). Additionally, they included
subjects with complete loss of motor function, e.g., output pro-
cessing, whereas input processing and consciousness are pre-
served (locked-in syndrome and amyotrophic lateral sclerosis).

The results (Fig. 3) show abnormally long ACWs in the
unresponsive wakefulness syndrome, through abnormal strength-
ening of slow frequency power (and concurrent weakening of fast
frequency power). Also, both the physiologic and pharmacologic
alterations of consciousness showed abnormal prolongation of
the ACW in line with the progressive decrement of the capacity of
input processing in the different behavioral states. The motor
conditions, in contrast, exhibited a “normal” ACW with a

preserved balance of slow and fast frequencies in the power
spectrum. Together, these findings support the involvement of
INT specifically in input processing. In contrast, INT does not
appear to be significantly associated with output processing in
subjects with motor deficits but preserved input processing. If the
ACW was significantly involved in both input and output
processing, it should have globally changed in both types of
conditions, altered states of consciousness and altered motor
conditions (although the ACW is significantly shorter in the
parieto-occipital regions of amyotrophic lateral sclerosis patients
than in healthy subjects). We need to be cautious, however. One
can neither fully exclude output disturbances in the altered states
of consciousness nor changes in input processing in the motor
conditions (locked-in syndrome, amyotrophic lateral sclerosis).
Hence, more direct support for the role of the ACW in input
processing is required.

Of note, however, is that Zilio and colleagues21 investigated
only resting state activity. Therefore, the ACW can only be
indirectly related to input processing; an investigation of
task states with actual inputs are needed to provide a direct
relation to input processing. Given that the disorders and the
alterations of consciousness are known to exhibit deficient input
processing72–76, their findings suggest that the resting state’s
INT exerts the capacity for input processing, i.e., a neural
predisposition77–80. Even when not exposed to actual multiscale
inputs from the external environment, the resting state still
exhibits its own INT, which index its capacity for processing the
former. This is, for instance, the case in sleep where we can still be
awoken at any time by sufficiently strong external inputs—the
brain’s capacity or predisposition of input processing is
preserved76. In contrast, this remains impossible in total
anesthesia and coma where even the strongest external inputs
will not wake the individual—the brain’s capacity or predisposi-
tion of input processing is lost.

Input sharing: cross-species evolutionary preservation of
intrinsic neural timescales. We so far demonstrated the sig-
nificance of INT in processing inputs from the external envir-
onment. Assuming that different species somewhat share one and
the same external environment, then one would suppose that they
should, to some degree, overlap or share, at least in part, their
INT. There is indeed evidence for such “input sharing” across
species as it is manifested in the cross-species evolutionary pre-
servation of INT.

The data suggests that the regional differentiation of the INT
along the transmodal–unimodal gradient holds in both non-
human primates4,5,20 and humans13,14,18,22. This can be extended
to other species as it is supported by cross-species studies on both
the cellular81,82 and more regional-systemic83 levels. Shinomoto
and colleagues81,82 show, in a first step, regional differentiation in
the cellular firing pattern of different regions in the non-human
primate brain: spiking patterns are regular in motor areas,
random in visual areas, and burst-like in the prefrontal cortex. In
a second step, they demonstrate that such temporal fingerprinting
in the regions’ temporal structure of their firing pattern holds
across different species including non-human primates, cats, rats,
and mice; the differences in firing patterns between different
regions within one species are larger than the firing pattern
differences within the same region across different species82,84.
Together, these data demonstrate that temporal features of neural
firing patterns on the cellular level of specific regions are
preserved across different species.

Analogous observations of cross-species evolutionary preserva-
tion have been made on the more regional-systemic level of
oscillations. Buzsáki and colleagues83 demonstrate that various
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oscillatory rhythms such as alpha, spindles, and ripples are
present in more or less the same frequency range in different
species including humans, non-human primates, dogs, bat, gerbil,
guinea pig, rabbit, mouse, and hamster (see also ref. 84).
Importantly, Buzsáki and colleagues83 observe that such pre-
servation of the same frequencies across different species holds
independent of brain size: even if the brain size changes and
becomes larger throughout evolution, the frequency range of the
rhythmic pattern remains the same in different mammals. They
conclude that temporal organization of the brain is a key priority
in evolution: “In summary, the preservation of temporal
constants that govern brain operations across several orders of
magnitude of timescales suggests that the brain’s architectural
aspects—scaling of the ratios of neuron types, modular growth,
system size, inter-system connectivity, synaptic path lengths, and
axon caliber—are subordinated to a temporal organizational
priority”. (ref. 83, p.755).

Is the human brain’s INT an evolutionarily preserved
manifestation of our ancestors’ timescales, including their key
role in processing external inputs from the environment? The
findings by both Shinomoto and colleagues81,82 and Buzsáki and
colleagues83 suggest exactly that. One would consequently expect
that human behavior, if based upon its evolutionarily preserved
INT, should resemble the behavior of non-human species. For
instance, Zhang and Ghazanfar85 propose that the timescales of

human infant vocal production can be seen in line with the
multiple INTs of vocal production in marmoset monkeys,
songbirds, and other vertebrates. Together, these findings suggest
that INT is, in part, preserved evolutionarily across different
species which may be manifested in somewhat similar forms of
behavior (Fig. 4a).

Input encoding: matching the environment’s stochastics by the
brain’s intrinsic neural timescales. How is it possible that dif-
ferent species share their INT? The reason for such cross-species
similarity cannot be found in the brain itself as cross-species
temporal similarities occur across different brain sizes83. Picking
up the suggestion by Shinomoto and colleagues81,82, cross-species
similarity may rather be related to similarity in function and, as
we specify, in the nature of the inputs. Different species share
more or less the same environmental context, i.e., ecological niche
and affordances86–88. They consequently are exposed to the
same input that share similar timescales. Specifically, even if
the inputs themselves are elaborated in somewhat distinct ways
by the species-specific sensory organs, the input stochastics, i.e.,
the relation between inputs, may nevertheless be processed in
similar ways across the different species.

Is the brain’s INT related to the input stochastics in the
environment? Stephens and colleagues15 demonstrate that

Fig. 3 Input vs. output processing. On a whole-brain level, healthy awake subjects and subjects with motor deficits but preserved input processing
(amyotrophic lateral sclerosis, locked-in syndrome) present short ACW, i.e., normal neural timescales accompanied by a balance of slow and fast
frequencies, which is associated with a normal capacity of encoding inputs, while other physiological, pharmacological, and pathological conditions, e.g.,
sleep (N1-N2), unresponsive wakefulness syndrome and deep anesthesia (e.g., sevoflurane) show a progressive stretching of the ACW, i.e., prolonged
neural timescales accompanied by a shift towards slower frequencies, which consequently lead to the abnormal prolongation of the input processing
temporal window (the EEG signals and the ACW representations are taken from the datasets investigated in Zilio et al.21).
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regional differences in the brain’s INT, as indexed in their study
by the power spectrum, are related to the temporal structure of
the external information, with the former aligning to the latter: (I)
regions with shorter INT and faster dynamics, i.e., early auditory
cortex, are activated during shorter stimulus segments (e.g., single
phonemes or words) (see also refs. 89–91 for more support in
terms of entrainment); (II) regions with intermediate timescales
and balanced slow–fast dynamics, i.e., superior temporal gyrus
and inferior frontal gyrus, are recruited by intermediate durations
in the temporal structure of stimuli (e.g., the structure of
sentences); and (III) regions with longer intrinsic timescales and
slower dynamics, i.e., precuneus and medial prefrontal cortex, are

activated by slowly varying stimulus dynamics (e.g., stimulus
narrative, see also refs. 1,15,26,27,36).

These findings raise yet another question, though. How can the
limited number of INT of the brain’s various regions process and
sample a seemingly unlimited and constantly changing number of
extrinsic neural timescales of the environment? Given that there
is a positive relation of intra-regional INT and inter-regional
functional connectivity13,18,36 (see above in Part I), we propose
direct interaction between the different regions’ INT—such
interaction would enlarge the number of possible timescales,
i.e., the repertoire of timescales, as we say (Fig. 4b). We can take
the structure of DNA as an analogy. This complex structure is

Fig. 4 Evolutionary cross-species stochastic matching of the input. All parts are for illustration purpose only and the sequence of brains is not intended to
represent any evolutionary hierarchy. a Intrinsic timescales in the brains’ of four sample species. On a general scale, a more complex brain has higher
number of intrinsic timescales (e.g., human vs. mouse). Also, different brains may have timescales with similar or different lengths. b The interaction
between different intrinsic timescales may create species’ repertoire of timescales. Each state in the repertoire is the result of the interaction between a
pair of timescales. For example, state A is the result of the interaction between timescales 1 and 2. Here, for the sake of simplicity the interaction is defined
as the difference between the lengths of two timescales. Although, the timescales themselves are unique to each species’ brain, the interactions (states)
can be shared between different species, e.g., state C is shared between all four sample species. So, the repertoire of states in each species’ consists of
some states that are typical to that species and some states that are shared with other species. c The interaction between the environment and the brain
happens through the matching of timescales. On the left, we have the environment and a sample input which contains several timescales with different
lengths (a, b, c, d, e). On the right, the matching between the input and each species’ brain is illustrated. Each timescale in the input is matched to the best
state from the repertoire of timescales. The best state is the state that yields the least error. The brain clip arts are credited to ref. 115.
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created from only four bases of adenine, thymine, guanine and
cytosine. If a species has a high number of regions with different
INT, their degree of possible interaction through inter-regional
functional connectivity is much higher than in a species with only
a low number of regions exhibiting distinct INT and/or low inter-
regional functional connectivity.

A large repertoire of timescales may extend the organism’s
ability to encode and sample the input stochastics of their
respective environment in a more fine-grained and temporally
differentiated way, that is, according to distinct timescales in the
environment. That, in turn, may reduce the error in the brain’s
encoding of the input stochastics relative to the latter’s stochastic
occurrence in the natural world. Accordingly, we tentatively
suppose that species with a higher number and thus large
repertoire of INT are prone to lower degrees of error in their
input processing—they can better align to their environmental
context in a more fine-grained way than species with a low
number of intrinsic timescales and/or a small repertoire (Fig. 4c).

Part III: mechanisms of input processing through intrinsic
neural timescales
Input segregation and integration: temporal precision vs.
smoothing. What are the mechanisms by which the INT pro-
cesses input? The various task state studies conducted by Hasson
and colleagues with the formulation of the temporal receptive
windows suggest that the INT may structure the inputs into
segments of different durations, e.g., short and long segments like
single words, sentence, and paragraphs1,15,26,27,92. Such temporal
structuring may mean that certain inputs are processed together
with high degrees of temporal integration, amounting to some
form of “temporal smoothing”92,93. Other inputs may be pro-
cessed in a more segregated and, therefore, temporally precise
way entailing higher degrees of temporal segregation (see
refs. 93,94). Together, this amounts to a balance of temporal
integration vs. segregation in input processing.

How can INT modulate their balance of temporal integration
vs. segregation during input processing? The ACW measures the
degree of correlation of neural activity patterns across different
time points. If only a low number of distinct time points correlate
with each other, the correlation is low, indexing a short ACW.
This means that inputs at more time points beyond those that
correlate in ACW are sampled independent of each other—they
will be processed with high degrees of temporal segregation but
low temporal integration93. Moreover, the processing of single
inputs may then be more or less restricted to their actual
durations as, due to low correlation with a low ACW, they are not
expanded (in a virtual way) beyond their actual physical
durations, i.e., temporal smoothing or expansion95. Accordingly,
short INT predisposes that inputs are processed with high
temporal precision in both their specific time points and actual
durations with low degrees of “temporal smoothing”. Such a
pattern of input processing is strongly supported by the short
duration of the intrinsic timescales in unimodal regions like the
sensory cortex that display a short ACW in rest and a short
temporal receptive window during task states1–3,5,12,15 (Fig. 5).

The reverse pattern of input processing appears to hold in
transmodal regions; their rest ACW and task temporal receptive
windows are much longer than those in unimodal
regions1–3,5,12,15. A longer ACW indicates a higher correlation
of neural activity across temporally more distant time points.
Inputs at different time points are then not sampled indepen-
dently of each other, but somewhat linked together across time
resulting in “temporal summing and pooling” (see ref. 93 who
speak of temporal pooling and summing) and ultimately high
degrees of temporal integration93. Moreover, the duration of the
single inputs’ neural processing may virtually, i.e., neuronally,
expand beyond their actual physical duration: even if the stimulus
is already physically absent (but still present in the neural
activity), distant time points’ neural activities may still correlate
highly with the preceding time points of the actual stimulus—this

Fig. 5 Temporal integration vs. segregation and temporal precision vs. duration in task-evoked activity. The figure highlights two ways how the intrinsic
neural timescales can manipulate input processing; this concerns the degree of integration vs. segregation of two (or three) different stimuli (left part) and
the degree to which the temporal duration of the stimulus itself can be expanded in neural activity through longer time windows such that the duration of
the neuronal activity related to the stimulus, i.e., neuronal duration, is extended beyond the stimulus’ physical duration (right part). From left to right, the
figure shows how shorter ACW (especially in unimodal regions) permits to distinguish fast stimuli (high degree of segregation) with a precise temporal
encoding consistent with the physical duration of the stimuli (high temporal precision associated with short evoked activity). On the other hand, longer
ACW (especially in transmodal regions) permits higher correlation of neural activity across time (high degree of integration), leading to the virtual
expansion of the actual stimulus (high temporal duration associated with long evoked activity), i.e., the capacity to encode different stimuli in a way that the
evoked activity is longer than the actual physical duration of stimulus.
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amounts to high temporal smoothing/expansion and low
temporal precision95. For instance, higher-order transmodal
regions like the prefrontal cortex support temporal integration
and expansion of sensory51,96–99, motor, and cognitive
information1,4,6,100. This is compatible with the idea that
transmodal regions such as the prefrontal cortex is involved in
higher-order cognition like memory, imagination, abstraction,
self, and consciousness.

Input sampling I: immediate and short vs. delayed and long
responses in unimodal and transmodal regions. So far, we have
demonstrated how the INT processes the input in particular time-
scales by modulating them through temporal integration and seg-
regation. However, the brain is confronted with a variety of different
inputs in various or multiple scales, with the number of timescales in
the environment far exceeding the available timescales of the
brain83,101,102. How can the brain bridge the gap between its own
restricted timescales and the more expanded ones of its environ-
mental context? Ideally, the brain encodes all inputs from the larger-
scale environment within its own smaller-scale neural activity
without losing any information, i.e., minimal error.

The empirical data show hierarchical organization of the
timescales within the brain according to a fast–slow gradient from
uni- to transmodal regions. The inputs may be sampled in a more
or less analogous way when transitioning from the faster
unimodal to the slower transmodal regions; this implies what in
mathematics is described as down-sampling from faster input
stochastics to slower ones103. We suggest that the INT acts as
input samplers, that is, down-sampling across the hierarchy of
unimodal and transmodal regions. Here, we first perform
numerical simulations to provide some support for the
differential response of unimodal and transmodal regions during
input processing (this section). This will be complemented in a
second step (next section) by illustrating the mathematical
principles of the fast–slow gradient of down-sampling again
showing some simulation data.

Under our fast–slow gradient assumption, sensory networks
would be the first to carry out this down-sampling process.
Unimodal and sensory networks show shorter intrinsic timescales
compared to transmodal ones15,22. This implies that the first
sampling would be done at a higher frequency and, progressively,
said sampling would be on more widely spaced timescales, i.e.,
down-sampling. In that case, one would expect a faster and more
transient, i.e., fast-frequency response in unimodal regions as
related to their shorter INT. Transmodal regions, in contrast,
should show a slower, delayed and longer-lasting response.

In a first step, we probed this in a computational network
model5 (details are provided in the Supplementary material),
applying inputs of short duration to lower-order regions, i.e.,
visual cortex V1, and tracking the response in both lower- and
higher-order regions, i.e., anterior cingulate cortex 24c. Indeed,
we observe immediate and short-lasting responses in V1, whereas
24c displays more delayed, i.e., sluggish and longer-lasting
responses (Fig. 6a). This is compatible with a fast–slow gradient
of consecutive input down-sampling throughout the lower-higher
hierarchical processing stages.

In a second step, we varied the duration of the input to V1.
Inputs of shorter duration should yield a faster response
saturation in lower-order regions like V1 while inputs of longer
duration would be required to yield the same effect in the higher-
order regions like 24c. This again was confirmed in our
simulation data (Fig. 6b), providing indirect support for input
down-sampling along the lines of a fast–slow gradient. In sum,
there seems to be a close link of fast–slow input sampling during
the encoding of the input stochastics, with the latter being
sampled in a seemingly temporal way by the brain’s INT.

Together, these simulation results are compatible with a recent
study by Wengler and colleagues25. They investigate fMRI-based
ACW in subsequent regions of three sensory-based input streams,
sensorimotor, visual, and auditory. In their data, the ACW shows
a short to long gradient from primary over secondary sensory to
higher-order sensory regions (like frontal eye field and dorso-
lateral prefrontal cortex). This holds for all three sensorimotor,
visual, and auditory systems. Albeit indirectly, this supports our
view of the fast–slow gradient mediating the continuous down-
sampling of the input when transitioning from lower-order
unimodal to higher-order transmodal regions.

Input sampling II: unimodal–transmodal hierarchy mediates
fast–slow gradient of down-sampling. Mathematically speaking,
the fast–slow gradient with continuous down-sampling entails a
shift from faster to slower frequencies in the input stochastics,
that is, a decrease in its maximum interpretable frequency. The
more input processing advances towards the transmodal end of
the fast–slow gradient, the more its fast frequency-based temporal
precision decreases. This means that different inputs may no
longer be distinguishable from each other, something which, in
signal processing, is described as aliasing103 (Fig. 7a right).
Accordingly, the stronger the down-sampling going along with
lower sampling rate of the input, the slower the maximum fre-
quency that can be reconstructed from a discrete signal, i.e., a
signal after a sampling process103,104.

Fig. 6 Distinct neural timescales from input perturbations. a Activity of primary visual cortex (V1) and anterior cingulate cortex (24c) in response to 250
ms of pulse input of varying strengths to area V1. The unimodal region V1 exhibits fast, short-lasting responses, whereas the transmodal region 24c exhibits
slower, long-lasting responses. b Input duration is differentially regulated by unimodal and transmodal regions. The unimodal region V1 shows rapid
response saturation to brief input durations, reflecting fast integration of sensory-relevant stimuli. The response of the transmodal region 24c saturates
over longer timescales, reflecting slow and delayed temporal integration of inputs.
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On the neuronal side, down-sampling along the fast–slow
gradient of the input stochastics results in a shift of the spectral
content towards slower frequencies—this can be easily indexed by
the median frequency. In fact, for signals where most of the
spectral content is found in slow frequencies, as in brain’s fMRI
and EEG / MEG signals, this is exactly what one can observe.
They have a 1⁄f distribution with stronger power in slow
frequencies and less power in faster frequencies.

Analogously, the down-sampling process carried out throughout
the unimodal–transmodal hierarchy of the INT necessarily leads to a
removal of the faster frequencies to achieve good resolution of the
inputs’ slow frequencies103,104. Throughout the course of
the unimodal to transmodal hierarchical processing, one loses the
inputs’ information in the faster frequencies but preserves its
disproportionally strong slow frequency information (see Fig. 7a for
a simulation of this model using pink noise). A reduction in the
sampling frequency causes the information to be maintained in
slower frequencies with their higher spectral power at the cost of
losing the detailed information provided by the faster frequencies. In

other words, the original inputs may be shifted towards the slower
frequencies in the transmodal regions. Down-sampling along a
fast–slow gradient may thus be optimal for preserving the maximal
amount of input information along its whole temporal range
including both fast and slow frequency input components.

The assumption of such fast–slow down-sampling along the
unimodal–transmodal hierarchy is compatible with the empirical
data, that is, the relation of ACW with spectral content, i.e., the
power spectrum. The longer ACW in transmodal regions are related
to stronger power in infraslow frequencies as compared with faster
ones. Shorter ACWs in unimodal regions are more dominated by
their (relative) shift towards faster frequencies, meaning that their
median frequency is lower12,15,44,65,105,106 (Fig. 7b). This raises the
question for the role or function of slower frequencies like delta (1–4
Hz), slow cortical potentials in the 0.1–1Hz range, and the infraslow
frequencies (0.001–0.1 Hz) in input processing. Unlike faster
frequencies like gamma (>30Hz), beta (14–30Hz), alpha, and
theta101,102, the role or function of these slower frequencies is
currently unclear (see also refs. 106–108).

Fig. 7 Input sampling in the uni- and transmodal units. a The sub-sampling of a signal and shift in the frequency. The more the input signal is sampled, the
more shift toward slower frequencies (indexed by median frequency). The first of the three plots shows the original signal with sampling frequency of 100
Hz in time (left) and frequency (right) domains. The second row shows the same signal after sub-sampled, that is, the new sampling frequency is 50 Hz.
The spectral component of this signal is shifted toward slower frequency compared to the previous one. Third row shows the same signal, but after a new
sub-sampling at 25 Hz. b The same concept as (a) in the brain’s uni- and transmodal regions. The input is processed by both unimodal and transmodal
regions, each time passing from a sampling machine, thus shifting toward slower frequencies (slow mode).
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We know that INT is closely linked to slow frequencies and
their long cycle durations (see also refs. 12,21). Longer cycle
durations means that more inputs can be temporally integrated
within one cycle and subsequently be processed together. The
longer INT, especially in the transmodal regions, thus
samples12,21 the inputs in favor of a slow mode—the originally
faster inputs are filtered and processed in a slow frequency way,
i.e., sub-sampling (see refs. 12,13,15,93,108–110; see also ref. 107). On
a more cognitive level, this means that internally oriented
cognition like mind-wandering111 or mental time travel112, as
mediated by transmodal regions, may be characterized by
predominant slow modes (see also ref. 113).

One may now raise yet another question. We assumed that the
INT is key in input encoding, that is, encoding the stochastics of the
input. One would now assume that such input encoding should be
closely related to the input sampling in terms of fast–slow down-
sampling. Do input encoding and encoding sampling converge? This
is indeed supported by a recent combined human EEG and
modeling study. SanCristobal and colleagues114 show that the neural
processing of the input stochastics of a looming sound (3 s) is
directly related to the resting state’s ACW: the longer the resting
state’s ACW, the better the task-related power changes in delta,
alpha, and beta could track the physical dynamics of the looming
sound. This supports the assumption that the resting state’s INT
display the capacity for input sampling with the consequent bias
towards the slow frequency mode.

Next, SanCristobal et al.114 complement these data by a
computational model probing for the slower mode (via Ornstein-
Uhlenbeck process): a longer ACW exerts a lower sampling
frequency with a shift towards slower frequencies in input
sampling. This in turn makes it impossible to obtain information
from faster frequencies. Together, these findings support the
notion that INT mediates input sampling by tilting or biasing it
towards the slow frequency mode.

Even more important, these findings suggest that the seemingly
stochastic nature of input encoding converges with the fast–slow
gradient of down-sampling. Is the fast–slow gradient of down-
sampling, with the emphasis on slow-frequency encoding, the
best way of bridging the timescale differences of the brain and
environment? The timescale of the environment exceeds far
beyond that of the brain, especially in the slow frequency ranges
(as, for instance the brain cannot process the ultra-slow frequency
ranges of seismic earth waves). The fast–slow gradient of down-
sampling may then best be suitable for overcoming the timescale
differences between the environmental context (where the input
is coming from) and the brain in order to encode best the
former’s slow frequency modes.

Conclusion
How can the brain process temporally complex inputs such as
music and language and, even better, integrate them into one
meaningful whole as, for instance, a melody or a sentence? We
propose that the intrinsic neural timescales (INT) take on a key
role or function for the brain’s input processing. This is supported
by the major role of INT in both resting and task states, including
carry-over from rest to task. Following these findings, we propose
that a key function of the INT consists in the dynamic shaping
and structuring of input processing, including its different facets
like cross-species input sharing and encoding of input stochastics.
This concerns input sharing across species as well as input
encoding through matching the stochastics of both environment
and brain. While that may be mediated by two key mechanisms,
(I) input integration vs. segregation on temporal grounds as well
as (II) fast–slow down-sampling along the unimodal–transmodal

hierarchy of the INT. Taken together, their key role in input
processing through distinct mechanisms renders INT highly
relevant for current views of the brain’s function, including its
role in mental features and psychiatric disorders (Box 2), as well
as for designing artificial intelligence (Box 3).

Code availability
The scripts that support the simulation and computational models of this study are freely
available at www.georgnorthoff.com/codes.
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