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Data-driven decentralized breeding increases
prediction accuracy in a challenging crop
production environment
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Crop breeding must embrace the broad diversity of smallholder agricultural systems to
ensure food security to the hundreds of millions of people living in challenging production
environments. This need can be addressed by combining genomics, farmers’ knowledge, and
environmental analysis into a data-driven decentralized approach (3D-breeding). We tested
this idea as a proof-of-concept by comparing a durum wheat (Triticum durum Desf.)
decentralized trial distributed as incomplete blocks in 1,165 farmer-managed fields across the
Ethiopian highlands with a benchmark representing genomic prediction applied to conven-
tional breeding. We found that 3D-breeding could double the prediction accuracy of the
benchmark. 3D-breeding could identify genotypes with enhanced local adaptation providing
superior productive performance across seasons. We propose this decentralized approach to
leverage the diversity in farmer fields and complement conventional plant breeding to
enhance local adaptation in challenging crop production environments.
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breeding with inexpensive sequencing methods, enabling

greatly accelerated variety development!~3. At present,
plant breeders use data-driven methods, including genomic pre-
diction, to increase selection intensity while reducing the time of
the breeding cycle and deriving greater genetic gain*. Most con-
ventional breeding programs still rely on a centralized scheme
aimed at maximizing genetic diversity (G) in the early stages of
selection and then identifying superior germplasm based on
phenotypic observations made in a limited number of research
stations with explicit environmental (E) and management (M)
conditions. In this setting, genomic prediction may be used to
predict the performance of untested new genotypes but is bound
to the Gx Ex M interactions captured by the research stations
that are used to train the selection models®. This limitation of
centralized breeding approaches may result in suboptimal
development and deployment of crop varieties for use by farmers
seeking local adaptation in challenging environments®. This is
especially relevant in smallholder farming systems, which involve
about 80% of the world farmers” and call for tailored solutions to
support food security.

To respond to local cropping needs impacted by climate
change, breeders need to find new ways to accelerate variety
development while directly addressing Gx Ex M interactions to
the fullest®>8°. Mobilizing farmers’ traditional knowledge of crop
varieties and local adaptation can address this challenge and
enhance adoption of improved varieties®19-12 in a coherent,
decentralized breeding program relying on farmer-participatory
selection!3-1°. A crowdsourced citizen science approach has
demonstrated the feasibility of a data-driven decentralized variety
evaluation!® that enables on-farm variety testing in a digitally
supported and cost-efficient way!”. Predictive accuracy of farmer
selection criteria may outperform breeder evaluations even in a
context of modern agriculture!8.

Crowdsourced citizen science further integrates the E and M
components into breeding by performing selection directly in
target environments and using environmental data to analyze
genotypic responses. Thus, the citizen science approach scales E
and M data collection to generate a volume of data that matches
the big data dimension of G. Combining genomic prediction with
citizen science opens the possibility of simultaneously capturing
the three dimensions of crop performance, G, E, and M, in a data-
driven way. Here, we describe and demonstrate potential benefits
of this approach that we call data-driven decentralized breeding,
or 3D-breeding, for short. Potentially, 3D-breeding could benefit
the ~500 million smallholder farmers around the world who often
produce in challenging, low-input environments and work with
diverse cropping and farming systems and respond to local
consumption preferences’.

We applied the 3D-breeding approach in the Ethiopian high-
lands, where many smallholder farmers grow durum wheat
(Triticum durum Desf.) and select landraces following criteria
related to environmental adaptation, food culture, and market
demand!®20. Rich local wheat diversity has co-evolved with local
cultures and landscapes over millennia. Consequently, Ethiopian
farmers still often select and cultivate local landraces, which
under local conditions tend to outperform modern varieties
produced by centralized breeding?!. In this context, 3D-breeding
can leverage local wheat diversity and knowledge and bring
breeding closer to the target environments cutting through the
complexity of Gx Ex M.

Here, we collected data from the genotyping and phenotyping
of 400 wheat varieties in centralized stations commonly used for
varietal selection in Ethiopian highlands. We then selected and
distributed a subset of 41 genotypes as packaged sets containing
incomplete blocks of three genotypes, plus one commercial

The big data revolution in genomics has transformed plant

variety to each of 1,165 farmers located in the same breeding
mega-environment. We tested 3D-breeding against a competitive
benchmark that represents breeding based on a genomic pre-
diction model trained on centralized stations to predict varietal
performance in farmers’ decentralized fields. We focused on grain
yield (GY) and farmers’ overall appreciation (OA) of wheat
genotypes, which were both recorded in centralized and decen-
tralized trials. To establish the benchmark, we used a genomic
prediction model trained on data measured in stations to predict
wheat GY and OA in farmer fields (Fig. 1a). We then developed
3D-breeding to move the selection to farmer fields, predicting
wheat performance in farmers’ fields using a decentralized
approach (Fig. 1b). Comparing side by side the accuracy of the
two methods, we found that that 3D-breeding could increase
prediction accuracy in challenging environments and thus com-
plement genomics assisted breeding.

Results and discussion

Performance of centralized breeding based on genomic pre-
diction and farmers’ traditional knowledge. Heritability (H?),
the proportion of phenotypic variance explained by genotypic
variance, was 0.55 and 0.42 for GY ;4 0y across locations for 2012
and 2013 respectively (Supplementary Data 1). To capture farmers’
traditional knowledge regardless of gender, farmer scores were
combined across men and women respondents: the H? of
OAgrurion Was 0.78 across locations. Narrow sense heritability (h*)
was calculated considering genetic co-variance of genotypes and
provided more conservative estimates for all traits, yet OAgramon
was consistently more heritable than GY¢4pon (Supplementary
Data 1 and 2). We validated the centralized benchmark by pre-
dicting on-station performance from one season to the next,
focusing on a subset of 41 genotypes that were later distributed in
decentralized farmer fields. This led to accuracies up to T = 0.248
in predicting GYgpmon in the following season (Supplementary
Fig. 1). Previous studies showed that men and women may prior-
itize different traits depending on their role in the farming activity,
from cropping to marketing of products?223. In our study, gender
differences in OAgpyqoy scoring are reflected by different H?
achieved by men (0.84) and women (0.67), with a more marked
difference in Hagreselam (Supplementary Data 2). Still, men and
women provided consistent evaluations (Supplementary Fig. 2).
This is in line with tricot observations reporting that gender have
low overall effect on varietal choice!” and shows that farmer
scores are reliable measures of genotypes performance. Indeed, we
found that OAgp, oy Was a better predictor than GYgpypon to
capture both OAgriroy and GYgrurons including when dis-
aggregated by gender (Supplementary Fig. 3). Previous studies
explored the relation between OA and agronomic performance of
wheat, showing that farmers’ appreciation was positively correlated
to yield, seed size, biomass, and negatively correlated with time to
flowering and time to maturity?®2L.

Benchmark: using centralized measures to predict performance
in farmer fields. The benchmark had a low prediction accuracy
when using GYgraron to predict GYpyg,, in individual seasons,
with an average of 7 = 0.046. When using OAgp,ion to predict
OAppu- the average was 7 = 0.141 (Table 1). Indeed, GY and
OA collected in stations were poorly correlated with on-farm
performance (Supplementary Fig. 4). Accuracy remained low
when GYgp,mon Was used to predict measures of GYp,p), and
OApupy combined across seasons and in alternative scenarios
considering different subsets of training and test populations
(Supplementary Data 3). Interestingly, OAgp, 1oy had consistent
positive accuracy in predicting GYp,gy, and OAp,z,, (Supple-
mentary Fig. 5). This confirmed that genomic prediction can be
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Fig. 1 A comparison of centralized versus decentralized breeding approaches. Centralized breeding (a) derives recommendations from breeders'
evaluation and possibly participatory assessments in a limited set of stations, using genomics to accelerate the production of varieties that are eventually
recommended with coarse spatial resolution. The plot shows the broad recommendation space of two hypothetical varieties, Var A and Var B. This system
may become more efficient if complemented by 3D-breeding (b), a decentralized approach where the best candidate genotypes are tested by farmers in
small, blinded and randomized sets. 3D-breeding produces scalable solutions that can be linked to genomics, farmers' knowledge and environmental data,
to enhance the local adaptation of the resulting varieties and tailor their recommendation to the landscape. This is represented in the plot to the right by the
precise recommendation space of hypothetical varieties Var A, Var B, Var C and Var D.

Table 1 Performance of the 3D-breeding compared with the benchmark of a centralized genomic prediction.

0.141 ( 0.039)
3D-breeding

Season 1 (n=179) 0.270
Season 2 (n=651) 0.276
Season 3 (n=335) 0.203

0.251 (* 0.040)

Approach OA GY
Centralized GS

Season 1 (n=179) 0.134 —0.012
Season 2 (n=651) 0.105 0.076
Season 3 (n=335) 0.183 0.073

0.046 (+ 0.049)

0.160

0.078

0.119

0.109 (* 0.041)

decentralized fields.
Prediction accuracy combined across seasons is given in bold.

3D-breeding provides higher across-season goodness-of-fit (Kendall 7) than centralized genomic prediction on overall appreciation (OA) and grain yield (GY) derived from farmer rankings on

enhanced by farmers’ traditional knowledge whereas selection
based only on GY could result in reduced appreciation by farmers
(Supplementary Fig. 6).

GYramon provided a more accurate prediction of GY yzy, when
restricting the model to cold-tolerant genotypes (Supplementary
Fig. 7). This was likely due to the partial representation of the
climatic variation that can be provided by a centralized approach
with a handful of stations (Supplementary Fig. 8), as farms could
experience lower temperatures than stations (Supplementary Fig. 9).
Still, centralized predictions of increasingly distant farm environ-
ments shown an erratic pattern, showing that variation at the

farming sites goes beyond that captured by temperature variation
(Supplementary Fig. 10). Regardless the fact that both stations and
farms were located in the same agroecological zone (Supplementary
Fig. 11), the benchmark failed to predict performance under
production conditions, showing that the small-scale variation in
climate and management may hamper the success of centralized
breeding decisions.

3D-breeding provides higher prediction accuracy than the
benchmark. Model predictions from 3D-breeding consistently
provided higher accuracy than the benchmark for GYp,y,, and
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OAp gy With 7=10.109 and 7 = 0.251 (Table 1). When sup-
ported by smaller sets of observations (from 5% to 75% of the
available data), 3D-breeding maintained superior accuracy than
the benchmark, with a mean accuracy spanning from 7 = 0.162
to 7 = 0.230 for OAp,g, and from 7 = 0.076 to 7 = 0.106 for
GYpypu (Supplementary Data 4). The prediction accuracy of the
3D-breeding approach was not biased towards specific environ-
mental conditions, suggesting that it could capture the environ-
mental diversity of test sites better than the benchmark
(Supplementary Figs. 12 and 13).

Overall appreciation of genotypes in 3D-breeding pro-
vided higher prediction accuracies than GYpyp,, in all farmers’
fields (Supplementary Fig. 14). Previous studies showed that
farmer evaluations are able to capture agronomic performance of
genotypes in untested locations!329, as confirmed by the high H?
observed for OAgr oy (Supplementary Data 2). Farmers
provided OA according to their own experience and preferences,
and it presumably depended on a combination of traits of which
GY represented only one dimension?!. By eliciting traditional
knowledge of men and women farmers at cropping sites, 3D-
breeding successfully predicted varietal performance under local
growing conditions (Supplementary Fig. 5). GY z4z,, is objectively
and independently measured at each plot and therefore it could
not be biased by OApspy. It is possible that GYgpyupon and
GYpypy failed to capture secondary traits with high heritability
(Supplementary Data 1) that were observed by farmers and that
were correlated to the GYp,p, of genotypes under field
conditions?021. As OAp,p,, is directly related to the probability
of variety adoption it is an important complement to GY in
driving varietal development for challenging environments.

Superior genotype selection with 3D-breeding is consistent
across seasons. We extrapolated the 3D-breeding model predic-
tions to assess the probability that the genotypes selected by 3D-
breeding based on OA will outperform currently recommended
varieties?®. We found that the best three genotypes in each terminal
node of the 3D-breeding model splits had a genetic background
markedly separated from that of varieties currently recommended
for the region, and consistently higher worth (Fig. 2a). Indeed, the
model selected genotypes derived from landraces over improved
varieties. We estimated the reliability, i.e. the probability that the
model recommendation exceeds the current recommendation in
terms of OAp gy In this assessment, predictions from 3D-breeding
outperformed the current varietal recommendations in most of the
farmers’ fields, with consistent high reliability (0.83-0.91), including
in challenging areas for which the centralized breeding approach
could not provide accurate predictions (Fig. 2b). To provide an
agronomic measure, we also predicted the increase in GY 4z, and
tested to see if the yield advantage could be maintained by selecting
the best three genotypes indicated by 3D-breeding under 15 dif-
ferent growing seasons simulated on target farms. We found that
3D-breeding ensured consistent recommendations over years
with expected increases in yield of about 20% (Fig. 2c). Thus,
3D-breeding accurately identified the best performing genotypes to
be advanced in breeding efforts targeting local growing conditions,
to be developed into suitable new varieties, and to be promoted with
environmental-specific recommendations.

Implications for rethinking breeding programs. Our results
show that 3D-breeding is superior to a benchmark that represents
a centralized breeding approach. The genomic prediction
benchmark and 3D-breeding rely on different statistical designs
and methods, yet they have the same aim: providing accurate
prediction of phenotypes in untested environments. We believe
that the implementation of the two approaches was realistic and

of high quality, making the comparison realistic. We have
explored whether the superiority of 3D-breeding was sensitive to
the influence of data availability, the geographical placing of the
centralized selection environments or the variable of focus
(overall appreciation or grain yield) and found that its superiority
was robust. This has important implications for breeding pro-
gram design.

Genomic prediction is a well-known approach to accelerate
breeding programs, but current implementations in plant
breeding have not yet been combined with a decentralized
approach. The earliest and most successful implementations of
genomic prediction have arguably occurred in dairy cattle
breeding?>. The accelerated evaluation of bull net merit was key
to this2, but that success also depended on the fact that breeders
had access to phenotyping data from a broad range of
environments in the form of milking records, which farmers
record for their own management benefit. In conventional crop
breeding, all of the phenotyping costs fall on the breeding
program and limit the number of target environments that can be
represented in the selection process. 3D-breeding seeks to
complement and expand the flow of information from a few
centralized locations to the whole mega-environment where
results from numerous decentralized observations and farmer
knowledge may converge to inform breeding decisions.

In centralized breeding, the environmental variation of target
environments is factored through experimental control or indirectly
as an average response across breeding stations as in our
benchmark. This makes extrapolation to real farming conditions
challenging. G x E affects yield and its components2”-28 and calls for
selection models to explicitly account for it?. These models,
however, are bound to the observations that can be made in
resource-intensive breeding trials. The scope and size of the
benchmark in this study was representative of a regional variety
trial, an advanced stage in breeding focusing on a set of genetic
materials and target environments with the aim of selecting the best
genotypes for varietal release and recommendation. Even when they
are place din relatively representative locations, centralized stations
cannot represent the entire pedoclimatic space occupied by target
farmer fields (Supplementary Fig. 9). Data from crowdsourced
citizen science, like 3D-breeding, may further our understanding of
the Gx E interactions that are observed in farmer fields and allow
the integration of increasingly accurate seasonal prediction
models®® in breeding and germplasm recommendation pipelines.

The 3D-breeding approach addresses the low correlation between
performance in selection environments and production environ-
ments, while taking a step forward to fully data-driven breeding. In
this, 3D-breeding is a promising approach that could add to
conventional breeding increasing varietal performance in small-
holder agriculture, which accounts for the largest share of the global
farms’. In those settings, the adoption rate of current breeding
innovation may be suboptimal due to socioeconomic and
environmental factors®?131-33 Climate change is pushing these
farming systems to the edge of their adaptation capacity with
increasing pressure from pest and diseases®®3%, threats of yield
loss337 and increased seasonal climatic variability?$39, calling for
tailored solutions. 3D-breeding may speed up the turnover of
varietal release to address these challenges. As farmers are at the
center of the experimental design, varieties deriving from 3D-
breeding are more likely to be adopted and suited to local
cultivation! 40, increasing the effectiveness of breeding efforts.
Indeed, we found that farmers’ OA was a better predictor than GY
in predicting yield realized both in centralized and decentralized
trials (Table 1). Likewise, varieties derived from landraces
consistently outranked the performance of improved varieties
(Fig. 2a) derived from centralized breeding!®. Beyond varietal
recommendations, 3D-breeding can direct the choice of parents to
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Fig. 2 Selection of durum wheat (Triticum durum Desf.) genotypes based on 3D-breeding. a Principal component coordinates of the genetic diversity of
tested genotypes. Pink dots represent the varieties currently recommended for the area of study. 3DB Cold tolerant (blue) represents the top 3 genotypes
selected by 3D-breeding in cold areas (minimum night temperature <11.5°C). 3DB Warm tolerant (red) represents the top 3 genotypes selected by
3D-breeding in warm areas (minimum night temperature >11.5 °C). Size of dots represents the performance of genotypes in farmer fields as overall
appreciation (OA). b Probability of outperforming improved varieties currently recommended by using genotype selection generated by 3D-breeding with
OA. The panel shows the probability of the top 3 genotypes in a given location in outperforming the improved variety recommended for that location.
¢ Expected increase in yield across 15 consecutive growing seasons (2001 to 2015) for genotype selection from 3D-breeding. n = 1,165 observations.

crosses aiming at the production of recombinant lines to provide
higher and more stable yields in local agriculture.

Potential of 3D-breeding for challenging cropping environ-
ments. It has been advocated that scientific research and inno-
vation must decidedly focus on small-scale farming systems to
move towards a world with zero hunger by 2030%!. 3D-breeding
makes smallholder farmers innovation drivers as well as reci-
pients, supporting the sustainable intensification of challenging
environments. However, 3D-breeding is useful beyond small-
holder farming agriculture, and the citizen science approach on
which it relies has already been applied to several crops to
enhance the selection of climate-adapted varieties!®. Its general
scheme may also be useful in high-input, yield maximizing
agriculture to enhance local adaptation and support sustainability
and food security, where the usefulness of farmers’ evaluations in
a genomic setting was already demonstrated!$. In these settings,
3D-breeding could contribute to the identification and develop-
ment of varieties with higher local adaptation, reducing the need
of external inputs to achieve desired yields.

There are a number of open questions in relation to
decentralized crop breeding, including how to best motivate
new farmers to participate in the evaluation of materials, how
much planting material each farmer needs, the logistics of
providing farmers with the genetic material, and how to share
benefits deriving from the utilization of farmers’ knowledge to
produce new varieties. Both in centralized stations and in
decentralized fields, we found that farmers were eager to
participate without material compensation. Farmers seek access
to new genetic materials that they could not access otherwise, in
exchange for the minimum investment of running small plots and
providing a concise evaluation at the end of the season in the case
of the tricot evaluation!”. This happens even if some may not be
adapted to their growing environment. Previous studies showed

that farmers perceive as beneficial the interaction with experts
and the sharing of information*2. Benefit to farmers may exceed
the immediate access to improved technology, if the deeds to
reconcile farmers’ and breeders’ rights in plant variety protection
succeed®3.

In this study, farmers evaluated top performing varieties
chosen from a larger set, but future studies may focus on larger
collections of germplasm to be evaluated through 3D-breeding in
combination with evaluations performed in research stations.
These may include new genetic materials prioritized by speed-
breeding** and haplotype-based selection®>. Our results show that
already the current replication level of the experimental design
may support more diversity (Supplementary Data 4). 3D-
breeding may be most effective as a complement to a centralized
breeding system providing a high-throughput evaluation of
correlated traits to support earlier varietal selection to be tested
in farmer fields*®. Our method may complement and enhance
trait prioritization and speed-breeding methods currently used to
reduce the need of extensive, resource-intensive multilocation
trials#’. Accuracy is just one among the factors controlling genetic
gain*8, thus our findings should be integrated in the broader
picture of modern breeding. Multi-trait models may increase
prediction accuracy by measuring correlated traits with higher
heritability?6:4%>0, These models could be employed in centra-
lized stations and used to narrow down the set of varieties to be
distributed to farmers in the 3D-breeding approach aiming to
fine-tune local adaptation. Moreover, our findings support the
need to further explore the challenge to model farmers’
appreciation at the genomic level to improve the effectiveness
of genotypes evaluation trials!8.

The advantages provided by the approach are clear: phenotyp-
ing costs would be divided in much smaller packets, supporting
the modular expansion of the breeding effort towards new genetic
materials or new locations. In return, each generated datapoint
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would be a better representation of the true farming conditions to
which varieties are directed. Previous research found that the
involvement of farmers in selection experiments has negligible
effects on costs®!. In 3D-breeding the costs are shared by farmers,
who would in exchange obtain access to the best materials for
their farm. Farmer preference would be collected directly on
farms rather than derived from correlated metrics that come from
on-station evaluations in centralized breeding. In terms of
absolute costs, an implementation of 3D-breeding based on OA
would require additional investments in seed multiplication, seed
distribution and telecommunications to obtain feedback from
farmers. These costs are generally lower per data point than in
on-farm evaluation trials using conventional approaches. Geno-
typing costs are negligible thanks to ever increasing sequencing
capabilities’.

Conclusion

The data-driven focus of 3D-breeding enables embracing the
complexity of real-world Gx E for the benefit of breeding. Such a
multidimensional, collaborative approach calls for best practices
in data management and sharing®2. 3D-breeding is based on a
documented set of methods, from experimental design!” to data
curation and analysis®>*%. While our demonstration of these
methods relied on a large dataset, we believe that much larger
field sample designs and genomic variant datasets are quite fea-
sible and will provide additional power, as is also much in evi-
dence in livestock genetics. The expansion of the design with the
addition of further testing seasons and local management con-
ditions may allow to highlight drivers of local performance of
genotypes beyond temperature®®. Further 3D-breeding studies
may opt to stratify participants for socioeconomic features of
interest, including gender, age, or income, to fully characterize
traditional knowledge in its many dimensions. Ideally, 3D-
breeding could be combined with conventional, centralized
breeding to improve the training of prediction models to address
local adaptation. Once new varieties are developed though the
crowdsourced combination of breeders’ and farmers” knowledge,
future research shall focus on the potential impact of these
methods on conservation and use of traditional agrobiodiversity
both in situ and beyond the local environments in which it was
developed. The crowdsourced citizen science approach associated
with open-source digital tools makes it possible for breeders and
farmers to apply 3D-breeding in new contexts and crops,
dependent only on creativity in identifying untested production
niches, potentiating a culturally driven co-evolution between
farming systems and data-driven breeding to complement tradi-
tional breeding.

Materials and methods

Plant materials and DNA extraction. We selected 400 durum wheat (Triticum
durum Desf.) genotypes from a representative collection of landraces accessions
maintained at the Ethiopian Biodiversity Institute (EBI) and improved lines cul-
tivated in Ethiopia. Landrace accessions were purified to derive a uniform genetic
background to undergo all subsequent analyses, so that all seeds derived from a
single spike representative of the EBI accession as described in Mengistu et al.
(2016)!°. Genomic DNA was extracted from fresh leaves pooled from five seedlings
for each of the purified accessions with the GenElute™ Plant Genomic DNA
Miniprep Kit (Sigma-Aldrich, St Louis, USA) following manufacturer’s instructions
in the Molecular and Biotechnology Laboratory at Mekelle University, Tigray,
Ethiopia. Genomic DNA was checked for quantity and quality by electrophoresis
on 1% agarose gel and NanodropTM 2000 (Thermo Fisher Scientific Inc., Wal-
tham, USA). Genotyping was performed on the Infinium 90k wheat chip at
TraitGenetics GmbH (Gatersleben, Germany). Single nucleotide polymorphisms
(SNPs) were called using the tetraploid wheat pipeline in GenomeStudio V11
(IMlumina, Inc., San Diego, CA, USA). SNP calls were cleaned for quality by filtering
positions and samples with failure rate above 80% and heterozygosity above 50%.
Full details on the genotyping are given by Mengistu et al.1°. The SNP calls for the
genotypes included in this study and the details on the provenance of genotypes
tested are given as part of the full dataset on Dataverse®®.

Evaluation of genotypes in centralized trials. Centralized trials were performed
in 2012 and 2013 in the districts of Geregera (Amhara) and Hagreselam (Tigray)
(Supplementary Fig. 15). The experimental stations were chosen to represent the
highland agroecology of Ethiopia and are often used as varietal testing sites for
local agriculture. The trial was laid out in a replicated alpha lattice design with the
full set of 400 genotypes as entries, for a total of 800 plots in each field. Field
managements were conducted as per local guidelines with manual weeding.
Accessions were sown in four rows 2.5 m long, at a seeding rate of 100 kg ha~!. At
sowing, 100 kg ha~! diammonium phosphate and 50 kg ha—! urea were applied,
with additional 50 kgha™! urea at tillering.

In each location, 15 men and 15 women who were experienced smallholder
farmers growing durum wheat were invited to evaluate plots during the
2012 season. After being informed on the study, its aims and methods, farmers
provided a verbal informed consent that was recorded on paperwork. The
evaluation was conducted at flowering time in each experimental station, for a total
of 60 farmers involved. The farmers had no previous knowledge of the genotypes
included in this study to prevent bias in the evaluations. The participants provided
appraisal with Likert scales®’ to genotypes for overall appreciation (0A)20:21, with
1 being worse and 5 the best. Prior the experiment, farmers were involved in focus
group discussions and trained on how to perform the evaluation?!. During the
evaluation, farmers were divided in gender-homogenous groups of 5 people, were
introduced in the field from random entry points, and were accompanied plot by
plot by a researcher who guided the evaluation and collected OA values from
individual farmers. Farmers did not use half-values to streamline the evaluation
effort. After harvesting, technicians measured grain yield (GY) as grams of grain
produced per plot, then converted into ¢ - ha~!. Other agronomic traits were also
collected as detailed in Mengistu et al. (2016)19.

Evaluation of genotypes in decentralized trials. A total of 1,165 decentralized
field, each with 4 plots, were established between 2013 and 2015 during three
growing seasons across the regions of Amhara (471), Oromia (399) and Tigray
(295) (Supplementary Fig. 15) using a subset of 38 purified landraces accessions
identified through farmer evaluation in centralized trials?! and three modern
cultivars, for a total of 41 wheat genotypes (Supplementary Fig. 15). Farms were
selected in areas representative for wheat growing in Ethiopia, based on previous
history of cultivation of the crop (Supplementary Fig. 16). Individual farmers were
engaged via local agricultural offices and selected based on their willingness to
participate and of the following criteria: (i) being wheat growers, (ii) owning the
land, (iii) living in the village all year. No financial incentive was given to farmers
besides the opportunity to test new varieties and keep the harvest from the
decentralized varietal plots. Farmers were fully informed of the study and provided
a verbal informed consent that was recorded on paperwork. Selected farms were
representative of the agroecological zones of the centralized fields (Supplementary
Fig. 11). Season 1 (2013) comprised 179 fields, Season 2 (2014) comprised 651
fields, and Season 3 (2015) comprised 335 field. Differences in number of fields by
season are due to availability of farmer communities. Trials (farmer-managed
plots) followed the triadic comparison of technologies (tricot) approach!”. Sets of
three local genotypes plus an improved variety were allocated randomly to farmers
as incomplete blocks, maintaining spatial balance by assigning roughly equal fre-
quencies of the genotypes. Each farmer also received an improved variety (Asassa
in Tigray and Amhara, and Hitosa and Ude in Oromia), for a total of four plots per
farmer. Trial size ranged from 0.4 m? to 1.6 m? depending on season and location.
Field technicians provided guidance to farmers on the tricot approach prior the
experiment. Farmers planted, managed and evaluated their own experiments. At
the end of the growing season, farmers were visited by an enumerator and indi-
cated the OA of genotypes by ranking the four entries that they received from best
to worst, using pre-defined answer forms. Field technicians collected GY measures
in farmers’ plots after harvesting. Differently from the centralized trials, the OA
was derived from the relative rankings of genotypes, as each farmer evaluated a
different set of materials.

Centralized trait data analysis. All analyses were done in R%. GY gy 740y and
OAgpurion Measured in centralized trials were used to derive best linear unbiased
prediction (BLUP) values using the R package ASReml-R%, treating locations as a
fixed factor and all other factors as random. Full model details are reported in
Supplementary Note 1. For the central comparison between benchmark and 3D-
breeding, we used measures of GYgp 770y combined across seasons and locations
(Eq. S1). Similarly, OAgp oy in the central comparison represents OA values
combined across genders and locations (Eq. S3). When relevant, GY ¢y, 10n and
OAgrarion Measures were split by location, season or gender (Supplementary
Note 1). Broad sense heritability (H?) and narrow-sense heritability () were
derived for agronomic traits (Eq. S2) and farmers” OA (Eq. S4). Agreement
between farmer gender groups in evaluating centralized station data was derived
from a linear model fit. Spearman correlations between location specific BLUP
values and farm performance were also computed.

Decentralized trait data analysis. For the analysis of the decentralized data, we
used the Plackett-Luce model®%®!, using the R package PlackettLuce>*. The
implementation of Plackett-Luce model to analyze data from decentralized crop
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variety trials is demonstrated by van Etten et al.!°. Plackett-Luce is a rank-based
model that follows the Luce’s axiom of choice®!, which assumes that ranking order
between every pair of options does not depend on the presence or absence of other
options. The model estimates the worth parameter a which related to the prob-
ability (P) that one genotype i wins against all other #n genotypes in set, and are
obtained using the following equation:

P(i > {j, ..., n}) 1=4 (1

Implementation of the genomic prediction benchmark. We established a
benchmark that represents a centralized breeding approach enriched with farmer
evaluations. We believe that this benchmark represents a realistic and competitive
alternative to 3D-breeding. On-station involvement of farmers is not common
practice but is increasingly conducted in association with breeding!4!8 and makes
the benchmark more competitive. The stations selected for the benchmark were
commonly used as breeding field trials for Amhara and Tigray regions of Ethiopia,
and differ in altitude, temperature, rainfall, and soil?!. Additional multilocation
trials would typically occur in earlier stages of the breeding cycle. Centralized
stations and farmer fields belong to the same agroecological zones of Ethiopia
(Supplementary Fig. 11).

The benchmark was based on genomic prediction models and marker-based
genetic relationship matrices computed on BLUP data with the package rrBLUP®2,
a method widely used in breeding programs worldwide. To measure accuracy of
genomic predictions, we calculated the Kendall’s tau coefficient (1), a measure of
similarity of rankings®3, between predicted values and observed values. The use of
the 7 metric, uncommon in breeding®, allowed to compare accuracies with the
3D-breeding approach. A Pearson’s correlation, the standard metric for genomic
prediction accuracy, was also computed but did not show any relevant difference
with the Kendall 7. Also to provide a more coherent comparison with 3D-breeding,
the benchmark was trained with ordinal rankings derived from absolute values of
GY and OA measured in centralized trials, without showing any relevant difference
from the training performed with absolute values.

The benchmark considered two main prediction scenarios. In the first scenario,
prediction was restricted to the centralized experiment. In this scenario, the
genomic prediction model was trained on GY gy 50y and OAgy, oy measured on
the full set of 400 genotypes evaluated in 2012, and the training dataset was
GYgrariony Measured in the same locations in 2013 on the subset of 41 genotypes
that were also included in the 3D-breeding. In the second scenario, the benchmark
was trained on combined GYgr410n and OAgp,ron data in centralized trials and
used to predict the test population of 41 genotypes measured in decentralized fields
for GY sy and OApypy,. Mirroring the approach used in the 3D-breeding, the
accuracy of genomic prediction in the second scenario was derived from a cross-
validation approach averaging Kendall 7 specific for Season 1, Season 2, and Season
3 using the square root of the sample size as weights®>.

The benchmark was tested with additional prediction scenarios considering
different training and test populations, including: (i) without overlap between
training and test samples, (ii) restricting the training to the subset of 41 genotypes
selected for 3D-breeding, (iii) predicting GY gy, and OApypy, in decentralized
fields stratified by their environmental distance from centralized stations.

Implementation of the 3D-breeding. The model representing the 3D-breeding
approach was built with the data generated by the citizen science decentralized
trials using Plackett-Luce Trees (PLT). This model includes covariates through
recursive partitioning (successive binary splits based on covariate thresholds)®°. We
used PLT to analyze OAp,z, and GYpyp,- DNA data from SNPs was added into
the model as a prior using an additive matrix. Agroclimatic indices were used as
covariates in the PLT model. Daily temperature and precipitation data were
obtained from the NASA LaRC POWER Project (https://power.larc.nasa.gov/),
using the R package nasapower®”. The set of agroclimatic covariates was extracted
for the vegetative, reproductive and grain filling phases and the whole growth
period (from planting date to harvesting) in each observation point using the R
package climatrends®®. This resulted in 110 covariates.

To create a model that provides generalizable predictions across seasons with
few covariates, we used blocked cross-validation (with seasons as blocks) combined
with a forward selection®. We used the deviance values of each validation season
to calculate an Akaike weight, which is the probability that a given covariate
combination represents the best model’. We performed forward selection, using
this combined Akaike weight as our selection criterion. The PLT models had a cut-
off value of @ = 0.01 and a minimal partition size of 20 percent of the total dataset.
The covariates selected under this procedure were the maximum night temperature
(°C) during reproductive growth and the minimum night temperature (°C) during
the vegetative growth. To compare the accuracy of the model representing 3D-
breeding with the benchmark, we calculated the Kendall 7 between observed
rankings and predicted coefficients in farmer fields. To accommodate for the
different number of observations derived from the benchmark and from
decentralized fields, we run additional 3D-breeding scenarios trained with subsets
of 75%, 50%, 25%, 15% and 5% of the decentralized plots to explore the prediction
accuracy attainable by 3D-breeding with fewer observations. Details on the
procedure are given in Supplementary Note 1.

Generalization of the 3D-breeding. To evaluate if the model obtained with the
variable selection procedure retained predictive power across seasons, we simulated
untested future seasonal climate with representative seasonal scenarios of past
climate conditions by extracting the last 15 years of daily climate data derived from
NASA POWER (2001-2015). We determined three windows for sowing dates in
each growing season as the midpoints of equiprobable quantile intervals estimated
from the observed planting dates in the data set. We predicted genotype perfor-
mance for 15 seasons x 3 sowing dates (45 seasonal scenarios) for 1,200 random
points generated across an alpha hull area within the range of the trials’ coordi-
nates. We averaged genotype probability of winning across these scenarios for each
planting date interval, excluding the seasons used as testing data.

We calculated the reliability, the probability of outperforming a check variety”!.
We used the worth parameters from Plackett-Luce to determine the values of
positive-valued parameters «; associated with each genotype i, by comparing the
worth from the check variety (Asassa, Hitosa and Ude, currently recommended for
the mega-environment?#) with the worth of the selected genotypes from 3D-
breeding. These parameters (a;) are related to the probability (P) that genotype i
wins against all other n genotypes in a set as shown in Eq. 1. To calculate the
reliability of a genotype, we used Equation 2:

a;

a; +a; @

P(i > j) =

Environmental characterization of test sites and genotypes. The agroecolo-
gical zonation of Ethiopia was obtained by the Ethiopian Institute of Agricultural
Research (EIAR)72. GPS coordinates of centralized stations and decentralized
farmer fields were used to retrieve climatic data from NASA POWER. Tem-
perature indices for covariates used in the PL model were retrieved for the
growing seasons object of the study in the time span from sowing date and
flowering dates as measured on-site. Climatic variables considered were the
maximum night temperature (°C) during reproductive growth and the minimum
night temperature (°C) during the vegetative growth, which showed to be the
most relevant for the sampled data. A principal component analysis (PCA) was
used to summarize and depict variation at test sites. Climatic distance of test
sites was derived from a multidimensional scaling (MDS) of the multivariate
climate dataset. For each of the two stations, climatic distance was computed
with all farm sites. Wheat genotypes were split in cold adapted and warm
adapted according to the altitude of their original sampling site with a one-tailed,
unequal-variance t-test.

Statistics and reproducibility. Centralized experiments were run in two locations,
for two seasons, on replicated plots for 400 genotypes for a total of 3,200 plots. The
benchmark was run with different prediction scenarios considering separated and
overlapping training and test populations and specified in the methods. Decen-
tralized trials were performed on 1,165 farmer fields, with four plots per farmer
field evaluated in ranking, for a total of 4,660 plots. Organizing the datasets relied
on R packages data.table’3, caret’4, gosset’?, janitor*S, magrittr’¢ and tidyverse””.
Climatic variables were obtained using the packages climatrends®® and
nasapower®’. Statistical analysis was performed using packages PlackettLuce>4,
gosset’> and qvcalc’8. Spatial visualization was performed with the packages
dismo??, raster8?, sf3! and smoothr®2. Charts were produced using packages
corrplot®3, ggplot284 and patchwork®.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data is available through Dataverse®®.

Code availability
56

Code is available through Dataverse~®.
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