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MELD-accelerated molecular dynamics help
determine amyloid fibril structures
Bhanita Sharma 1 & Ken A. Dill 1,2,3✉

It is challenging to determine the structures of protein fibrils such as amyloids. In principle,

Molecular Dynamics (MD) modeling can aid experiments, but normal MD has been

impractical for these large multi-molecules. Here, we show that MELD accelerated MD

(MELD x MD) can give amyloid structures from limited data. Five long-chain fibril structures

are accurately predicted from NMR and Solid State NMR (SSNMR) data. Ten short-chain

fibril structures are accurately predicted from more limited restraints information derived

from the knowledge of strand directions. Although the present study only tests against

structure predictions – which are the most detailed form of validation currently available – the

main promise of this physical approach is ultimately in going beyond structures to also give

mechanical properties, conformational ensembles, and relative stabilities.
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Many different proteins can form amyloid fibrils, which
are hallmarks of neurodegenerative diseases, such as
Alzheimer’s, Parkinson’s, Huntington’s, and spongi-

form encephalopathies,1–6. To better understand the mechanisms
of amyloidosis, toward better mitigation strategies, it is essential
to know how the protein molecules are structured in the amyloid
assemblies. The experimental challenge is that, unlike soluble
proteins, each amyloid fibril has multi-protein complexity and
requires different conditions and procedures. Sometimes, this is
surmounted by combining methodologies, such as solid-state
NMR (SSNMR), cryo-electron microscopy (cryoEM), fiber dif-
fraction, hydrogen-deuterium exchange, and electron para-
magnetic resonance spectroscopy7–9. But, even this is often
insufficient.

Computational modeling can complement experiments in
determining amyloid structures10–13. Different methods, such
as CYANA, XPLOR-NIH, CNS, UNIO, and Rosetta, have been
used in conjunction with SSNMR data to determine amyloid
structures14–17. However, these approaches also have limita-
tions. Many computational methods are coarse-grained and
simplified, often exploring only rigid molecular conformations,
and requiring prior knowledge of loop locations or symmetries.
Some methods are rooted in bioinformatics, drawing inferences
from databases of existing structures, so they do not give
populations, ensembles, or driving forces, which are ultimately
needed to learn mechanical properties and relative stabilities of
different conformations. In principle, these limitations can be
circumvented by using atomistic molecular dynamics (MD)
simulations, since they account for thermodynamic forces,
atomistic details, and flexibilities, and preserve Boltzmann
distributions of physical forcefields18,19. However, the rough
energy landscape of protein intermolecular interaction and the
longtime scales of fibrillization have typically precluded ato-
mistic MD modeling.

Here, we describe a computational approach MELD (Mod-
eling Employing Limited Data) for determining fibril structures.
MELD accelerates MD simulations by using externally supplied
information. MELD accelerated MD (MELD x MD) is what we
call a Bayesian sub-haystack method because it utilizes Bayesian
inferences and searches for the needle in the haystack, by
dividing input constraint into different haystacks. MELD differs
from other integrative modeling approaches in ways that are
important here. First, its acceleration can be considerable,
sometimes orders of magnitude, allowing for the handling of
multi-peptide complexes. Second, MELD preserves a centrally
important virtue of the physics that underlies MD—namely its
ability to satisfy the Boltzmann distribution at equilibrium and
Newton’s Laws of dynamics. It gives populations, ensembles,
and free energies, rather than just structures and rather than
just single averages. Third, unlike methods of integrative
modeling, MELD can utilize data that is vague, combinatoric,
ambiguous, incomplete, or lacking in detail. MELD x MD has
been validated in several venues. It has been successful in
protein structure determination, including the blind competi-
tive event critical assessment of structure prediction
(CASP)20–23. MELD x MD was found in CASP 13 to be
effective at giving protein structures from limited NMR data24.
Here, we show that MELD x MD can assist in determining
protein fibril structures, in conjunction with limited external
data. For short chains, it correctly predicts 10 out of 12 fibril
structures, from restraints derived from the external input
information of parallel or antiparallel arrangement of strands.
MELD also predicts five out of six longer-chain amyloid fibrils
when given experimental NMR/ SSNMR data as input.

Results and discussion
MELD x MD predicts the structures of short-chain amyloid
fibrils in 10 of 12 cases. As validation, we first applied MELD x
MD in predicting fibril structures of 12 short-peptide systems
(fewer than ten residues per chain) (Table 1). The structures of
these fibrils are already known from extensive experiments and
are available in the database of 109 structures of Stankoviç et al.25

(Supplementary Table 1). A note of caution is that we have used
PDB as fibril structures, even though the oligomerization states
could be different and are not known.

In order to achieve computational acceleration, MELD requires
some form of guidance about the endstate, in this case the fibrils
we aim to model. First, we need to assume the strand
arrangements; since although all short fibrils have cross-β
structures, the arrangement of strands (parallel and antiparallel)
and the patterns of connectivity among the monomers are
different. Therefore, to reduce the conformational search space,
we also assert whether the strands are parallel or antiparallel; see
Table 1. We limit the conformational search by using the
intermolecular distances to restrain the individual chains
accordingly. The cross-β sheet is characterized by a regular
hydrogen-bonded distance between the constituent β-strands of
4.8Å, along with approximate dihedral angle restraints for
parallel (phi=−119°, psi=+113°) and antiparallel (phi=
−139°, psi=+135°) strands. Therefore, we have incorporated
inter-strand distance restraints between Cα atoms of all
corresponding residues and dihedral angle restraints to ensure
an in-register alignment of the β-strands. The inter-sheet
distances vary significantly (8.8–14.6Å) for different amyloid
fibrils. Since MELD can handle sparse, ambiguous, and uncertain
information, therefore to generalize our protocol, we have applied
inter-sheet distances of 10Å between Cα atoms of three central
residues of each strand among one another (Supplementary
Fig. 1). Our aim here has been to see whether MELD could
produce correct structures with this generic protocol.

We found that MELD x MD successfully folded 10 of our
12 structures into fibril, starting from well-separated extended
monomer chains (Fig. 1 a, b, c). To compute our prediction
errors, we took the whole multi-protein aggregate as a single unit
and calculated the Cα root-mean-square deviation (RMSD)
difference between the computed centroid of its most populated
cluster (c0) relative to the reference biological assembly in the
PDB. We superimposed the predicted and PDB structures by
using the GDT_TS (global distance test, total score26), which
represents the percentage of the structure within a certain cutoff
to the native structure. The GDT_TS score has a value between
0–100. The higher the score, the better the quality of the
structure. We also compute here the TM-score27, a quantity in
the range between 0 and 1, and which is independent of protein
size. Usually, a score higher than 0.5 indicates that the two
structures are similar. We also evaluated the percentage of native
contacts by comparing the contact map of the reference PDB
structure against our model fibril structure. Table 2 shows four
structures (3fva, 3nhc, 3ow9, and 3ppd) having high similarity to
the crystal structure. For 10 of the 12 short-chain fibrils, the most
populated cluster from MELD x MD is within 3.5Å backbone
RMSD from the X-ray structure in the PDB.

The side-chain orientations in short fibrils are well predicted.
Although amyloid fibrils are formed by different peptides having
different sequences, the fibril structures have a basic steric-zipper
pattern. Depending on whether the sheets are parallel or anti-
parallel, sheet packing pattern (“face-to-face” or “face-to-back”),
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and the orientation of sheets with respect to one another (parallel
or antiparallel), amyloid fibrils are classified into eight classes28.

In order to check the side-chain orientations relative to the
PDB, we calculated RMSDs for all heavy atoms (Fig. 2). Since
MELD incorporates flexibility, and since we are dealing with
multiple chains, this flexibility affects the alignment of individual
monomer chains for calculating RMSD. However, we observe
that in most cases the side-chain orientations follow a similar
pattern of steric-zipper interfaces as in the PDB. We did not
restrain the side-chain atoms in our simulations. However, the
restraints from dihedral angles and inter-strand and inter-sheet
distances were sufficient to impose directionality to the sheet-
sheet interface, which indirectly influences the side-chain
orientations.

Now, in addition to comparing MELD predictions with
experimental structures, we have also compared a few computa-
tional models. Even though, as far as we know, there are no
comparable results on the short fibrils from other atomistic
simulations, there are coarse-grained database-derived rigid
molecule predictors. We compare here to Fibpredictor, Z-Dock,
and ClusPro, which were previously tested against each other for
all the eight classes of amyloid fibrils29.

Fibpredictor uses statistical scoring functions combined with
symmetry operations for β-sheet model building and replica-
tion to generate fibril structures, whereas Z-Dock and ClusPro
perform protein–protein docking. Here we note that in the case
of Z-Dock and ClusPro, backbone and side-chain configura-
tions for the two sheets were taken from the original PDB as
input for docking, whereas in MELD we have started from the
random monomers to generate fibril structures. Fibpredictor

predicts the backbone and side-chain conformations on the fly
during structure generation. In Fig. 3, we show the comparison
of the lowest-free-energy MELD x MD structure with
Fibpredictor, Z-Dock, and ClusPro. The RMSDs are calculated
for all heavy atoms. The figure shows that MELD generates
better structures than ClusPro in four cases; and better than Z-
Dock in three cases. In one case (PDB 3ppd) MELD gives the
lowest-RMSD structure with respect to the reference crystal
among all others. These comparisons just show that physically
parameterized MD with atomistic detail and flexibility are no
worse at predicting structures than database-parameterized
rigid-structure methods. Ultimately, the value of MD modeling
is in other mechanistic and physical predictions, such as of
polymorphs described below.

MELD x MD also predicts the polymorphs in the few known
cases. Some amyloid fibrils are polymorphic, having multiple
arrangements of the β-strands and side-chain packing30,31.
Polymorphs are stabilized by hydrogen bonding, electrostatics,
and aromatic stacking interactions. We observe that polymorphs
appear in different MELD clusters.

Figure 4a shows the polymorphic structures generated in the
MELD simulations for the VQIVYK sequence. In case of
VQIVYK, four crystal structures can be found in the PDB
(3ovl, 4np8, 2on9, and 5k7n). Our top MELD cluster (c0)
resembles PDB 3ovl (RMSD 3.0Å), whereas, cluster c3 and c12
resembles its experimental polymorphic structures (PDB 2on9
and 4np8). These polymorphic structures have different steric-
zipper interfaces. The crystal structure of PDB 5k7n has only a

Table 1 Our selection of fibril systems.

Short fibril systems (peptides smaller than ten resides)

PDB ID Name Sequence Strand
arrangement

No. of
subunits

2omq Human insulin VEALYL Antiparallel 8
2ona Aβ(35–40) MVGGVV Antiparallel 8
2onv Aβ(37–42) GGVVIA Parallel 4
3fva Elk prion NNQNTF Parallel 6
3loz β2-microglobulin LSFSKD Antiparallel 8
3nhc Human prion

protein (127-132)
GYMLGS Antiparallel 12

3nve Syrian hamster
prion (138-143)

MMHFGN Antiparallel 12

3ovl Tau VQIVYK Parallel 8
3ow9 Aβ(16–21) KLVFFA Antiparallel 12
3ppd Prostatic acid

phosphatase
GGVLVN Parallel 6

4onk [Leu-5]-
Enkephalin mutant

YVVFL Antiparallel 12

4r0p Human lysozyme C
(46–61)

IFQINS Parallel 10

Long fibril systems

PDB ID Name Sequence length Strand arrangement No. of subunits

2beg Aβ(1–42) 26 Parallel 5
2e8d β2-microglobulin 22 Parallel 4
2kj3 HET-s(218–289) prion 79 Parallel 3
2lnq Aβ(15–40) Iowa mutant 40 Antiparallel 8
2mxu Aβ(1–42) 32 Parallel 12
2m5n Transthyretin(105–115) 11 Parallel 16

Table shows the arrangement of strands (parallel or antiparallel), and the number of peptide subunits in the fibril structures.
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single parallel β-sheet, and therefore we excluded it from our
analysis. We have also observed that the two most populated
clusters (c0 and c1) of sequence NNQNTF are polymorphic
structures (Fig. 4b) The top cluster of the NNQNTF sequence
resembles PDB 3fva. The sheet organization (parallel/antiparallel)
and inter-sheet distances of these two structures are the same, but
these different structures result from different side-chain pack-
ings. Although the experimental polymorphic structure for
NNQNTF is not available in the PDB database, the structure of
the two steric-zipper polymorphic forms are discussed in various
computational studies32,33. Here, we note that sequence
MVGGVV also has two experimental polymorphic structures
(PDB 2ona and 2okz). However, using our general restraint
protocol for short fibrils, MELD failed to recover the polymorphic
structures. On the other hand, the KLVFFA sequence also has
three experimental polymorphic structures (PDB 3ow9, 2y2a, and
2y29). The top MELD cluster (c0) resembles PDB 3ow9.
However, we excluded PDB 2y2a and 2y29 from our analysis,
since they only have a single chain in the molecule’s Biological
Assembly file in the PDB.

Since the relative populations of clusters in MELD correspond
to their free energies, we expect the more stable polymorphic
forms to be the predominant populations. In these few cases,
that’s true. However, stability also depends strongly on environ-
mental conditions such as pH, ionic strength, temperature, and
polypeptide concentration, so we cannot yet draw firm conclu-
sions about these predictions.

Computing longer-chain fibrils, assisted by experimental data.
We now look at longer-chain fibrils. We considered six fibril
systems that have PDB topologies measured by both solution
NMR and SSNMR (Supplementary Table 1 and Supplementary
Fig. 2). As background, we had already previously tested MELD x
MD on predicting both individual native structures and
protein–protein dimers34–37. Past experiences show that MELD
success depends on the quality of the input data, and having
proteins that are not too large, among many other factors. The
present long-chain fibril systems present a size challenge for
MELD x MD and depend on how many intramolecular and
intermolecular restraints are imposed.

In our first test, we generated the fibril structures from the
extended monomer chains at least 15Å away from each other
using experimentally based distance restraints and dihedral angle
restraints. The oligomeric state (number of monomers) in the
fibrils is the same as in the PDB. We observed that MELD x MD
generates fibril structures below 5Å for five fibrils except for PDB
2lnq. However, the convergence took longer for the larger fibrils
(Fig. 5a). The convergence of 2lnq occurs above 500 ns but with
sampling above 1 μs, the native structure is no longer populated
in the top three clusters. Although the fibril size of 2lnq is smaller
than 2kj3 and 2mxu, however, the number of restraints per amino
acid is lowest for 2lnq.

In our second test, we started the simulation with fully
extended well-separated chains to first form a trimer by applying
experimental restraints (except for 2kj3) (Supplementary Fig. 3).

Fig. 1 Computationally predicted vs. experimentally determined native structures of 12 short fibrils. a RMSD errors for Cα atoms vs. time for the five
lowest temperature replicas. b MELD predicted (blue) vs. PDB (red). c Population distribution of RMSD from native; gray regions show a 5.0Å cutoff.
MELD x MD obtains these with less than 1 μs sampling. The input restraints for distances and dihedral angles are derived from the external input
knowledge of strand directions (parallel or antiparallel) of peptides in fibrils.
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We then build up the final fibril structure from the trimer by
adding more copies in again another MELD x MD simulation.
This protocol converged much faster on the correct structures
(Fig. 5b). The predicted long-chain fibrils in MELD are shown in
Fig. 5c.

The reason for selecting the trimer structure as a building block
for generating fibrils instead of the dimer (or monomer) is
because the dimer structures generated in MELD are different
than the fibrils, due to high intra-monomer β-association
propensity between residues within individual peptide mono-
mers. Whereas, the trimeric structures are much closer to the
fibril reference. However, in case of fibril PDB 2kj3 (chain length
79 amino acids) cross-β-sheets are formed within the individual
chains and also with other chains. And since it is longer in size-
length, therefore, we first generated the monomer structure from
the fully-extended chain by applying experimental intra-
monomer distance restraints and dihedral angle restraints; which
then converted to the final fibril structure using inter-monomer
distance restraint data. All the predicted structures are shown in
Table 2. The predictions are close to the native fibril structures, as
also indicated by (i) the GDT_TS score, (ii) the TM-score, and
(iii) the percentage of native contacts. In most cases, the final
states are similar for either of the two protocols above, but
starting from trimers converges faster.

What is the minimal information needed for predicting fibrils?
In the simulations above, we have used information that would be
readily available for structure prediction. But, could we have used
less? Here, we simulated a set of systems by removing informa-
tion step by step from the general MELD protocol. For short
fibrils, these are System S1 (without dihedral angle restraint data),

system S2 (without dihedral angle and with limited intra-
monomer restraints), and system S3 (unguided MELD simula-
tions) (See Supplementary Figs. 4–6). For long fibrils, we chose
four fibrils 2beg, 2e8d, 2mxu, and 2m5n. The different sets of
simulations are System L1 (without dihedral angle restraint data),
System L2 (restraint protocol based on knowledge of strand
arrangement), and System L3 (only inter-strand distance restraint
of 4.8Å between parallel strands).

The results of all the predicted structures of these different
systems are shown in Supplementary Figs. 7–12 and Supplemen-
tary Tables 2–3. We observed that when all the distance restraints
information were used, the quality of predicted structures are still
good in all cases even after the removal of dihedral angle restrain
(systems S1 and L1). The ratio of populations of different clusters
also does not change much. For systems with limited distance
restraints data (system S2 and L2), the most populated cluster is
within 5.0Å in 7 out of 12 cases for system S2; and 3 out of 4
cases for system L2. These results suggest that while extensive
experimental data may naturally give good predictions, however,
a limited number of qualitatively informative restraints can still
generate correct structures. The unguided MELD simulations
(system S3 and N3) generates structures with large Cα RMSD
errors. However, even then, in case of short fibrils (system S3), for
8 cases out of the 12, the most populated cluster gives strand
arrangements (parallel/antiparallel) the same as in the experi-
mental structures. For the other four fibrils, the oligomeric
structures are found to be a random mix of both parallel and
antiparallel strands.

Figure 6a shows that for short fibrils, restraints per residue
above 0.5 mostly lead to successful prediction. In Fig. 6b, c, we
observe that the quality of MELD prediction for longer fibrils
depends on both the number of restraints imposed and the size of

Table 2 MELD x MD results for all fibril systems.

MELD x MD results for short fibril systems

PDB ID RMSD (Å) Population % of native contact TM-score GDT_TS

c0 c1 c2 c0 c1 c2 c0 c0 c0

2omq 7.2 8.0 5.8 0.3 0.2 0.1 43.61 0.33 48.13
2ona 6.8 9.1 5.0 0.4 0.1 0.1 42.10 0.36 41.16
2onv 3.4 4.2 4.4 0.4 0.2 0.1 45.33 0.50 58.23
3fva 1.6 5.6 9.2 0.6 0.3 0.1 72.86 0.57 73.61
3loz 2.3 8.5 5.4 0.3 0.2 0.1 49.31 0.52 63.54
3nhc 1.9 7.5 2.0 0.3 0.2 0.1 62.50 0.74 70.83
3nve 2.3 11.5 11.3 0.6 0.3 0.1 43.82 0.53 50.34
3ovl 3.0 7.9 3.4 0.7 0.2 0.1 63.63 0.56 54.86
3ow9 1.8 9.5 2.8 0.4 0.3 0.1 63.41 0.76 72.92
3ppd 1.0 8.0 3.3 0.4 0.3 0.1 95.95 0.78 89.58
4onk 3.4 4.9 5.8 0.5 0.3 0.1 51.52 0.50 47.91
4r0p 2.5 10.3 3.1 0.5 0.4 0.01 65.23 0.64 65.42

MELD x MD results for long fibril systems

PDB ID RMSD (Å) Population % of native contact TM-score GDT_TS

c0 c1 c2 c0 c1 c2 c0 c0 c0

2beg 2.5 2.0 3.1 0.6 0.3 0.1 77.78 0.80 64.62
2e8d 2.0 3.8 4.5 0.4 0.2 0.1 72.36 0.63 73.16
2kj3 3.2 3.5 5.3 0.4 0.2 0.1 55.36 0.50 54.16
2lnq 5.2 5.9 4.8 0.3 0.1 0.1 52.64 0.51 50.34
2mxu 3.4 2.9 4.5 0.5 0.3 0.1 76.06 0.85 60.87
2m5n 3.0 5.2 4.3 0.4 0.2 0.1 53.95 0.76 56.11

MELD x MD results with RMSD to PDB reference and cluster populations for the top three clusters (c0–c2) are shown. The RMSDs are calculated for Cα atoms of residues. The cluster closest to native is
shown in bold. The % of native contact, TM-Score, and GDT_TS score are also shown.
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the fibril. For fibrils of larger size, the prediction quality heavily
deteriorates in absence of a sufficient amount of qualitatively
informative restraints. The restraints per residue used for
different systems are shown in Supplementary Tables 4, 5.

The failure modes, and recovering from them. When our pre-
dictions fail, it can be due either to force field errors or to
insufficient sampling by the MELD x MD strategy. Most of our
failures are from system S3 and L3, where the restraints were least
informative. However, even with experimental SSNMR restraint
data for long fibrils, the RMSD deviation for the top MELD
cluster for PDB 2lnq are higher. On the other hand, with our
general restraint protocol for short fibrils, we failed to get the
correct structures for PDB 2omq and 2ona.

We compared our MELD x MD models to a pure MD
simulation that was initiated from the experimentally determined
PDB structure and converged (Supplementary Fig. 13a). We
observe that for PDB 2omq, the native fibril is not stable in the
force field. On the other hand, the failure of PDB 2ona is due to
the failure of our inter-sheet distance restraint protocol. The
failure of PDB 2lnq is mostly associated with the intrinsic

flexibility of the peptide in simulations, as the number of inter-
monomer β-sheet alignment restraints were few. The restraints
per residue are also lowest for 2lnq among all the longer fibrils. In
order to recover the failed MELD structures, we carried out
another set of simulations adding a few inter-monomer β-
sheet alignment restraints of 4.8Å between the corresponding
residues for PDB 2lnq. In case of PDB 2ona and 2omq, we added
some accurate inter-sheet distance restrains according to the
reference PDB structures in MELD. This improved the structure
prediction with a lower RMSD top cluster in MELD (Supple-
mentary Fig. 13b).

We can determine when the method is expected to be
successful by looking at the populations it gives of the MELD
clusters. When a cluster has a high population, it implies it has
the lowest free energy, so, according to the model, this should be
the best prediction. This is what we find. In most cases, the
clusters with populations higher than 40%, are the correct
structures. When the population of the first cluster is high, the
centroid structure of the most populated cluster accurately
represents the fibril structure. Here we note that the number of
restraints per residue among larger fibrils is smallest for 2lnq; and
the population of the top cluster is 30%, whereas for other

Fig. 2 Side-chain orientations predicted for lowest-free-energy MELD structure. (Blue) MELD x MD predicted structures. (Red) PDB structures. For PDB
2omq and 2ona, the MELD structure from the cluster closer to the native are considered. MELD correctly predicted steric-zipper interface patterns in most
cases. The RMSDs are calculated for all heavy atoms.
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structures are 40% or higher. When a simulation gives the best
population below 20%, it usually signals unsuccessful predictions.
Most of these predictions are for systems S3 and L3, where the
least informative restraints were used (Fig. 7).

Conclusions
A goal in computational biology is to model biomolecules with
physics-based MD methods because, in principle, they can go
beyond just static structures and also predict conformational
populations and free energies, motions, and biologically impor-
tant actions. Even so, predicting native structures is a useful
milepost test for MD modeling because data is so extensive and
granular. Modeling amyloid fibrils has previously been challen-
ging because they are multi-molecular and large. Here, we show
that using the MELD method for accelerating MD can be useful
for this. For short-chain amyloids, MELD x MD correctly predicts
10 out of 12 fibril structures, from restraints information derived
from the knowledge of parallel or antiparallel arrangement of
strands. In most cases, the side chains are found to form steric
zippers having fairly accurate side-chain orientations. MELD also
correctly predicts five out of six longer-chain amyloid fibrils when
given experimental NMR/SSNMR data as input. While we test
here only structure predictions, the ultimate value of MD mod-
eling is in giving Boltzmann populations and free energies;
dynamics, motions, and flexibilities; and giving transferability

Fig. 4 Polymorphs of VQIVYK and NNQNTF sequences. a Polymorphic structures of VQIVYK sequence. b Polymorphic structures of NNQNTF sequence.
The crystal structures are shown with β strands in red; and MELD x MD β strands in blue. Side-chain conformations are from MELD x MD predictions
(coloring according to residue names in VMD). RMSD errors are calculated for Cα atoms of residues.

Fig. 3 Comparing MELD to empirical structure predictors; Fibpredictor,
Z-DOCK, and ClusPro, for short fibrils. The RMSDs are calculated for of all
heavy atoms. This histogram shows that modeling of the full physics,
flexibility, and solvation, with the attendant advantages for ultimately
understanding mechanisms and motions,- gives native structures of about
the same accuracy as data-derived predictors. This is a useful validation
since native structures are the main experimental evidence having such
detail and precision.
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among different systems. We also show that MELD correctly
predicts the polymorphic structures for two known polymorphic
sequences. In general, MELD x MD may be a useful tool for
broadly studying the physical properties of amyloid fibrils.

Methods
How MELD leverages data. MELD can accelerate MD simulations of proteins by
incorporating external information. It uses Bayesian inference,

pðxjDÞ ¼ pðDjxÞpðxÞ
pðDÞ � pðDjxÞpðxÞ ð1Þ

where p(x), the prior probability, is the Boltzmann probability distribution of the
MD force field in the absence of any external data. p(D∣x), the likelihood function,
is the probability of the externally supplied data (D) given the structure; it is
proportional to e�Ec ðxÞ=kT , where T is the temperature and Ec(x) is the overall
constraint energy as formulated by MELD. p(D) is a normalization factor and
cancels out when considering ratios of the posterior probability of sampling

different configurations. MELD is a tool that speeds up MD modeling while pre-
serving proper Boltzmann populations when given external knowledge of some
target objective; this can come from a wide variety of sources, including experi-
mental data, or physical insights, or homology models, etc. MELD can handle
information that is sparse, ambiguous, or uncertain. Sparse refers to accurate but
insufficient data to specify a structure. Ambiguous denotes data that are not very
precise. Uncertain refers to data that are only partially correct, with a subset of
wrong information that would lead to incorrect structures. To avoid kinetic traps
MELD x MD uses Hamiltonian-Temperature Replica Exchange Molecular
Dynamics (H,T-REMD)38,39. The top replicas have a high temperature and weak
restraints, allowing the system to sample for a large energy landscape. Conversely,
at low replicas, the restraints are strong and temperature is low, therefore focusing
sampling on relatively funneled regions. We identify the low-energy conformations
by clustering populations. For more details of MELD, see references (20, 21).

MD simulation parameters. All our MELD x MD simulations are carried out
using a version of the OpenMM40 and run on graphical processor units (GPUs).
Each simulations are performed with 28 or 30 replicas. The temperature in replicas
increases geometrically from 300 K in the lowest replica to 450 K in the highest.

Fig. 5 Computationally predicted vs. experimentally determined native structures of six long fibrils. a starting from extended monomers to fibril and
b starting from trimer to fibril structure. cMELD predicted (blue) vs. PDB (red) for long fibrils. a, b show the RMSD vs. time and populations distributions of
the long-chain fibrils. RMSDs are calculated for Cα atoms of residues. The RMSD data are for the five lowest temperature replicas, the same replicas that
were clustered for analysis. The error bar is shown at 5.0Å, the cutoff used to define a native fibril. For our test simulations of generating fibril from random
monomers, convergence took a much longer time; while in the case of simulations starting with trimers, convergence is much faster to the native fibril
structures.
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The restraint force constantly weakens climbing above the replica ladder. At low
replica index, force constant is strong (250 kJ/mol/nm2) and becomes zero at high
replica index, changing exponentially from the lowest to the highest replica. The
exchanges between replicas are attempted every 50 ps, and the acceptance prob-
ability of replica exchanges are typically at about 30–50% (Supplementary Fig. 14).
In some cases when the exchanges between the replicas were poor, increasing the
number of replicas to 60, improved the exchanges (Supplementary Fig. 15). We use
AMBER ff14SB-side force field41 and GB-neck2 implicit-solvent model (igb= 8)42.
Simulations are run with steps of 4.5 using a Langevin integrator with a friction
coefficient of 1.0 ps−1. Hydrogen masses are adjusted to 4.0 Da, keeping the heavy
atom and hydrogen pair mass the same. Our typical inputs to MELD are (i) the

initial configuration of peptides that are randomly placed, (ii) externally supplied
distance restraints information, and (iii) externally supplied dihedral angle infor-
mation. Of all possible restraints generated, only a fraction are enforced at each
time step; the energies of the restraints are calculated at each exchange step, and the
lowest-energy restraints in each replica are activated. For short fibrils, restraints are
derived from the external input knowledge of the parallel/antiparallel arrangement
of strands. In Supplementary Fig. 2, we have shown the pairwise contacts of dis-
tance restraints data used in our simulations for long fibrils. Among all structures,
2mxu has the highest restraint data, however, 2kj3 contained the highest number of
nonlocal restraint data. Restraints per residue are also highest for 2kj3, while for
2lnq the lowest. We generate around 1-μs trajectories for the systems. The

Fig. 6 Prediction errors with limited restraints. a Prediction error as a function of the number of restraints imposed per residue for short fibrils with limited
restraints. System S0 is a reference for our general restraint protocol for short fibrils. In System S1, dihedral angle restraints are removed. In S2, distance
restraints are limited. And in S3, only a single set of distance restraints between central residues of each peptide strand are imposed. Predictions are mostly
successful with restraints per residue above 0.5 (gray region). b, c Prediction error for long fibrils; b as a function of the number of restraints imposed per
residue, and c as a function of the fibril length. System L0 is a reference for when all NMR restraints are imposed. In system L1, dihedral angle restraints are
removed. In system L2, the restraint protocol is similar to short fibrils. In system L3, only inter-monomer distance restraints of 4.8Å for parallel strands are
imposed.
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convergence of our replica exchange simulations are checked with RMSD histo-
grams of all the replicas relative to the last frame of the simulation. Converged
simulations give overlapping histograms. It is observed that in some cases the
higher replica index trajectories are not converged (Supplementary Fig. 16).

Ensemble processing. We extracted our results by clustering our trajectories using
an average-linkage hierarchical agglomerative algorithm with a ϵ value of 2Å, with
a combination of scripts included with MELD x MD and CPPTRAJ43 from
AmberTools17. Trajectories from the five lowest temperature replicas are com-
bined, and the first 250 ns of trajectory frames were rejected from clustering,
considering the equilibration period for the systems. As a distance matrix between
structures, we used the RMSD of Cα atoms. To check the side-chain orientations of
short fibrils relative to the reference PDB, we calculated RMSDs considering all
heavy atoms. The centroid of different clusters represents different conformations
according to cluster population and we have selected the three most populous
structures for analysis. We arbitrarily define a threshold in which structures within
5.0Å RMSD from the reference PDB as a successful prediction.

Forcefield stability tests. To check the stability of all fibrils in our force field and
solvent model, we have carried out single-trajectory MD simulations, starting from
the PDB structure of the fibrils. The ff14SBside protein force field was used with the
GBneck2 implicit solvent, same as in MELD x MD. The systems were first energy
minimized for 10,000 steps with 5000 steps of steepest descent minimization,
followed by 5000 steps of conjugate gradient minimization. All simulations were
run for 100 ns of production at 300 K. We consider a fibril structure as stable if the
average RMSD was below 5Å.

Statistics and reproducibility. MELD x MD simulations with different randomly
placed initial configurations of peptides show that, in the limit of convergence
sampling, using the same restraints information reproduces the same lowest free
energy structures. No data exclusion was performed, and no blinding methods were
used in data analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets analysed in this “Article file” are provided with this paper and in the
“Supplementary Data” file. The remaining datasets used in the “Supplementary
Information” are available from the corresponding author on request.

Code availability
MELD is freely available to download from GitHub at https://github.com/maccallumlab/
meld.

The version of the code we used in this study is available at https://github.com/
maccallumlab/meld/releases/tag/0.4.14 or https://doi.org/10.5281/zenodo.508367844.
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