
ARTICLE

A single mode of population covariation associates
brain networks structure and behavior and predicts
individual subjects’ age
Brent C. McPherson1 & Franco Pestilli 1,2✉

Multiple human behaviors improve early in life, peaking in young adulthood, and declining

thereafter. Several properties of brain structure and function progress similarly across the

lifespan. Cognitive and neuroscience research has approached aging primarily using asso-

ciations between a few behaviors, brain functions, and structures. Because of this, the

multivariate, global factors relating brain and behavior across the lifespan are not well

understood. We investigated the global patterns of associations between 334 behavioral and

clinical measures and 376 brain structural connections in 594 individuals across the lifespan.

A single-axis associated changes in multiple behavioral domains and brain structural con-

nections (r= 0.5808). Individual variability within the single association axis well predicted

the age of the subject (r= 0.6275). Representational similarity analysis evidenced global

patterns of interactions across multiple brain network systems and behavioral domains.

Results show that global processes of human aging can be well captured by a multivariate

data fusion approach.
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Understanding human aging and its progression in health
and disease have become a critical need due to the rapidly
aging world population1,2. Brain aging and the associated

cognitive decline negatively impact society by reducing the
independence of individuals in the population, with substantial
costs associated with increased needs for long-term support or
treatment3–7. Costs associated with an aging population are only
expected to increase over the next few years, given the increase in
life expectancy8–12. As a result of this looming demographic shift,
improving prodromal identification of individuals at risk versus
individuals subject to normal aging in large human populations is
becoming a priority13–17.

The normative human aging process is accompanied by
behavioral changes in performance in both cognitive and per-
ceptual tasks across the lifespan18–20. Early work focussed on
measuring cognitive and perceptual aging with deep character-
ization of a few behavioral tasks21–24. A staggering amount of
evidence has been reported on the effect of aging to human
cognition and perception. For example, language processing and
letter perception deteriorate with age25–27. At the same time,
visual contrast sensitivity, motion detection, recognition, and
iconic memory also decay across the lifespan28–32. Yet, this is not
always the case as resilience to the effect of aging has been
reported in a few behavioral domains such as language26,27,33

(e.g., vocabulary size) and emotion34,35.
Correspondingly with cognitive aging, brain aging is associated

with both changes to neuronal structures and function21,36–42.
Primary examples of changes to brain structures consist of hip-
pocampal volume reduction43,44, cortical thinning45,46, and ven-
tricular expansion41. At the same time, multiple examples of
changes in brain functional activity have been reported47,48. For
example, the brain hemodynamic response changes across
age49–51, prefrontal cortex activity changes during a variety of
tasks47,52,53, such as attentional control54,55, inhibition54,56, and
executive control19. Finally, changes to the white-matter tissue
properties across the lifespan have been reported57–64. These
studies painted a comprehensive picture of how aging affects
human behavior due to alterations to either brain function and
structure across multiple tissue types.

As of today, much attention has been devoted to the char-
acterization of the changes in individual cognitive tasks and brain
systems as a result of aging21,51,65. This approach has helped
tremendously in developing an understanding of the mechanisms
involved in individual cognitive functions66–69. Yet, a few
shortcomings have been noted with single-task approaches70,71.
For example, limits to the definition of psychological
constructs36,72, and the co-involvement of networks of brain
systems in supporting individual psychological domains62,73–75

hinder our ability to assign a one-to-one correspondence between
brain systems and psychological constructs or tasks. For example,
challenges in isolating cognitive processes76–79, resulted in cri-
tiques to the very definition of psychological constructs72. Fur-
thermore, studying a few constructs at a time may be also limited
because multiple processes coexist within individual brain areas,
as early as in the sensory systems80,81.

Besides the mappings between a few functions and brain systems,
the global patterns of change in the brain network connectivity
associated with human aging, behavior, and cognition remain
uncharted. To advance understanding of normative aging, we inte-
grated multivariate38,40,76,82–84 and network neuroscience38,85–88

methods to develop a many-to-many map between behavioral
domains and brain network systems. A reproducible data pre-
processing pipeline was developed for the current work and made
freely available as a web service on brainlife.io89. The pipeline was
used to process data from a large sample of healthy adults
(594 subjects, 18–88 years; ref. 90). Canonical Correlation Analysis

(CCA; ref. 83) was then used to associate multiple behavioral mea-
sures (tasks and scales) with the connectivity properties of structural
brain networks across age73,91. A single CCA axis of covariation
successfully mapped brain networks to behavioral features. Critically,
the CCA axis was associated with the individual participants’ age
indicating that a coherent pattern of degradation affects both brain
networks and behavior. Finally, representational similarity analysis92

applied to the cross-validated CCA factors determined which global
factors in multiple brain networks93 and behavioral domains90 jointly
associated with predicting age.

Results
The goal was to estimate if the structural connectivity properties
of human brain networks are associated with human behavior
measured from tasks, questionnaires, and scales collected across
the lifespan (18–88 years, Supplementary Fig. 1). To do so, data
from the Cambridge center for Ageing and Neuroscience was
used, the dataset is hereafter referred to as CAN90. The CAN
dataset contains a deeply phenotyped cohort of cognitively
healthy individuals (594 used here for all analyses; see the
“Methods” section for inclusion criteria) evenly sampled across
the lifespan (100 subjects per decade). We used 388 behavioral
scores from 33 assessments published with the CAN dataset.
These scores consisted of either reaction times, accuracy, or
performance scales–see example histograms of each type of score
plotted across age are shown in Fig. 1a and Supplementary Fig. 1.
A total of 334 normalized behavioral measures were extracted and
utilized for all subsequent analyses (140 reaction time, 188
accuracy, and 6 assessments; see “Methods”: Performing the
CCA). The CAN behavioral measures were originally mapped
into five behavioral domains90: attention, language, memory,
motor, and emotion. In addition to these, scores from social and
clinical assessments were organized into two additional domains
for a total of 7 behavioral domains (Fig. 1a).

Whole-brain structural networks were estimated using
diffusion-weighted magnetic resonance imaging (dMRI) data
from 594 subjects90. Neuroimaging data were processed using an
automated and reproducible pipeline using brainlife.io (see
Table 1; ref. 89). Figure 1 panels b–d show a representative net-
work, as well as the Human Connectome Project Multi-Modal
Parcellation cortical (HCP-MMP v1.0; ref. 94) and subcortical95

atlases used for network neuroscience data generation. A total of
376 regions (366 cortical and 10 subcortical) were used to gen-
erate each network. The dMRI data was processed for artifact
removal and fiber model fitting using a recent robust method (see
ref. 96 and bl.app.68). Whole-brain tractograms were generated
using a novel pipeline called Reproducible Anatomically Con-
strained Ensemble Tracking (RACE-Track; see bl.app.101), which
integrates two established methods97,98. RACE-Track tractograms
were combined with the regions of interest from the two atlases
(see bl.app.23) to build individual subjects’ connectivity matrices.
Connections present in less than half of the subjects were
eliminated (see also Supplementary Fig. 2a; ref. 99). Connection
density (Cd, see Eq. (1), Fig. 1b, generated by web service bl.
app.121; ref. 100) was used as network edge weight. The 70,500 Cd

estimates were reduced to 376 node-degree estimates used for all
subsequent analyses (see Supplementary Fig. 2a91).

Changes in network neuroscience and behavioral measures
across the lifespan. The relationship between networks’ node
degree and performance in behavioral tasks and assessments was
explored across the lifespan (Fig. 1e, f and Supplementary Fig. 1).
The goal was to ensure replication of known trends established in
the literature. Changes in both network and behavioral measures
were observed—especially starting at the fourth-decade Fig. 1e, f57.
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Fig. 1 Main findings. a The behavioral domains. A simple graphic displaying the different behavioral domain labels is displayed. b An example network. This
is an example of an individual’s network that is created for analysis. Each row and column represents a cortical region while the color represents the log
scale of the density of the connection between nodes (weaker connections are black, stronger connections are yellow). c The cortical regions used to
create the network structures. This figure, taken from Glasser et al.94, represents the cortical labels used to construct the network in (b). d Additional
subcortical labels. A surface rendering of the subcortical labels that were estimated and added to the cortical labels is shown. e Trends in behavior over the
lifespan. Violin plots show the full distribution of the observations for the Mini-Mental State Exam (MMSE). Error bars represent mean ± 2 standard errors
(s.e.). f Trends in the connectome over the lifespan. Violin plots show the full distribution of the observations for the highest node degree. Error bars
represent mean ± 2 s.e. For panels e and f, subjects were binned by decades starting at 18 years of age (see ref. 90).

Table 1 Open brainlife.io web services and containerized applications implementing the processing pipeline developed for the
current work.

App name App purpose DOI

AC-PC Alignment of T1 Align T1w anatomical images along the AC-PC plane bl.app.99
AC-PC Alignment of T2 Align T2w anatomical images along the AC-PC plane bl.app.116
FreeSurfer (v6.0.0) Create surfaces and cortical labels bl.app.0
dMRI Preprocessing Correct dMRI data of artifacts and align to T1w image bl.app.68
RACE-Track (Tractography) Create an anatomically constrained whole-brain ensemble tractogram bl.app.101
Multi-Atlas Transfer Tool (maTT) Map HCP-MMP atlas to individual subjects’ brains bl.app.23
Network Construction Create networks from tractography and cortical labels bl.app.121

We developed a computationally reproducible data processing pipeline utilizing the cloud computing platform brainlife.io89. Each step within the pipeline is briefly described and available for download as
a Docker138 container run via Singularity139. Each step of the pipeline is also publicly shared as an App (web service) on the brainlife.io platform. brainlife.io Apps can be freely executed on public or
private computing resources. All processed brain imaging data and Apps are accessible in a single record as a brainlife.io publication at89.
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A large subset of behavioral measures varied as a function of age
(Fig. 1 and Supplementary Fig. 1). Reaction times increased with age,
accuracy decreased, and performance in multiple scales either
decreased or increased with age depending on the scale valence
(refs. 101,102; Supplementary Fig. 1a). For example, reaction time
increased in the Force Matching Task, but accuracy decreased
(Supplementary Fig. 1a), performance in the Mini-Mental State Exam
(MMSE) also decreased (Supplementary Fig. 1a; ref. 90). To
approximate these trends we fit a quadratic polynomial to each
behavioral measure. We found that 166 of the total 334 behavioral
variables increased with age (quadratic term: 0.034 ± 0.083 s.d., R2=
0.957 ± 0.123 s.d., AICc= 49.067 ± 4.977 s.d.), and the remaining 168
decreased with age (quadratic term: −0.005 ± 0.016 s.d., R2= 0.988 ±
0.050 s.d., AICc= 48.232 ± 1.079 s.d.).

To evaluate whether the brain networks generated using
RACE-Track showed sensible changes in properties across the
lifespan, we estimated the highest node degree (Fig. 1f and we
observed similar patterns when evaluating network density and
efficiency see Supplementary Fig. 1b). To summarize the effect of
age on these three measures, we fit a quadratic polynomial. The
highest network node degree was well described by a negative
quadratic term; it increased early and decreased later in life
(quadratic term: −0.005 ± 0.008 s.d., R2= 0.9996 ± 0.0004 s.d.,
AICc= 48.007 ± 0.007 s.d.; network density and efficiency
demonstrated a similar negative quadratic pattern, Supplemen-
tary Fig. 1b, right).

A single mode of covariation relates individual differences in
structural networks and behavior with subjects’ age. After
replicating the established quadratic trends in brain and network
properties and behavioral variables with age, we set out to build a
model that would linearly associate all the measurements from
the two data domains—brain and behavior. We did this because
we wanted to determine whether a linear association well
approximated the relationship between brain networks and
behaviors. To do so we used canonical correlation analysis (CCA;
ref. 83). CCA finds the linear combination of variables that best
associates measures from the two data domains across subjects. In
the following analyses, CCA found the best linear combination of
376 brain network properties and 334 behavioral measures (see
Fig. 2, “Methods”, and Supplementary Fig. 2a, c). To do so, the
behavioral measures and networks’ node degree estimated in each
subject were organized into two matrices (D1 and D2; Supple-
mentary Fig. 2a). Confounding variables such as sex, handedness,
height, body weight, heart rate, and blood pressure were regressed
out from both D1 and D2 (see Supplementary Fig. 2a, “Methods”,
and ref. 83). The eigenvector matrices (E1 and E2) estimated from
D1 and D2 via Principal Component Analysis (PCA) were used as
inputs to CCA (ref. 83; Supplementary Fig. 2b, c). CCA found the
weights (a and b) and canonical factors (F1 and F2) that best
approximated E1 and E2 (Supplementary Fig. 2c and d).

A first CCA model (M0) used a large number of PCA
eigenvectors (100) as inputs and no cross-validation to evaluate
the best possible fitting model to the data83. M0 returned multiple
large and statistically significant modes of covariation explaining
the relationship on the first canonical axis (CA1) between
networks and behaviors (CA1= 0.860–0.1072; p1–75= 0.000 and
p76–85 < 0.01 bootstrap test). After this exploratory model, a 5-fold
cross-validation approach (subjects as a random variable;
Supplementary Fig. 2e) was used to further test the association
between networks and behavioral variables. A grid-search
approach was used to generate 9801 CCA models with different
combinations of PCA numbers (spanning from 2 to 100). Each
model was cross-validated using 15,000 5-fold throws for a total
of 147,015,000 tested models. The first canonical correlation for a

majority of these models was large with a mean CA1 of 0.5468 ±
0.09 s.d. (min and max 0.235 and 0.604, respectively). Over 90%
of the CA1 values across all models lay above 0.55, this indicated
that, with a few exceptions, a majority of the cross-validated
models CA1 explained the data reasonably well.

Because of the established association between age and several
brain- and behavioral measures (see Fig. 1), we selected the model
(M1) with the highest correlation between age and CA1 (rage=
0.627 ± 0.02209). The selected model, M1, had 38 brain and 40
behavior principal components and a significant CA1 of 0.581 ±
0.0001 (p= 0.000 bootstrap test). Noticeably, CA1 was the only
significant mode in M1 (see Fig. 2b, c, see also “Methods” and
Supplemental Fig. 2f-h). The remaining modes were either not
statistically significant (average CA3–38= 0.004 ± 0.014; p= 0.442
± 0.254 s.d. bootstrap test) or had no statistically significant
loadings (CA2; see Supplemental Fig. 2i, j and next section). rage
was computed using a multiway correlation via a general linear
model where subjects’ age was predicted using CA1,behavior, and
CA1,network as regressors (see “Methods”, Eq. (3)). rage was strong
and statistically significant for the first mode as expected given
the model selection procedure (0.627 ± 0.022; p= 0.000 bootstrap
test) and not significant for the rest of the modes (average rage for
CA2–38 was 0.077 ± 0.022; p= 0.46 ± 0.029 bootstrap test).

Two additional analyses we performed to further explore and
validate the results. First, rage was also computed for the
exploratory mode, M0. In this case, the association was found
to be significant for CA1 only (rage= 0.611 ± 0.023; p= 0.000
bootstrap test; average CA2–38, rage= 0.063 ± 0.015; p= 0.726 ±
0.265 s.d. bootstrap test, see “Methods”). Finally, to validate the
consistency of our approach, and the role of age in the association
between brain networks and behaviors a new CCA model was
specified (M2). M2 was similar to M1 with the exception that the
subjects’ age was regressed out from both the brain and behavior
data before performing the PCA (see “Methods”, Eq. (2)). CA1 for
M2 was extremely small even though somehow significant (0.098
± 0.0016; p= 0.007 bootstrap test). None of the remaining modes
for M2 were significant (average CA2–38, 0.0003 ± 0.017; p=
0.520 ± 0.290 s.d. bootstrap test; see Supplementary Fig. 2k, l). As
expected, the correlation between age and CA1–38 for M2 was
insignificant (average rage= 0.075 ± 0.019 s.d. and p= 0.490 ±
0.300 s.d. bootstrap test). These results show that the quadratic
trends for individual variables across the lifespan (as shown in
Fig. 1e, f) in the two data domains (behavior and brain networks)
are well coupled by CCA into a single linear trend. In addition,
the CCA mode is also strongly associated with the
participants’ age.

To summarize this main result, we implemented a hypothesis-
driven approach to CCA using cross-validation and tested our
hypothesis of an association between age and the CCA model.
More specifically, we tested the degree to which the participants’
age predicted (in cross-validation terms) the variability in the
linear combination between hundreds of variables from brain and
behavioral measures. The results show that a major portion of the
variability in the CCA model is effectively associated with age.
This result does not mean that other variables were not associated
with the model, indeed they were, as the CCA model is significant
and correlation in CA1 is strong.

Brain network and behavioral components contributing to the
CCA. We further investigated the behavioral domains and brain
network nodes that most contributed to M1, and indirectly to the
predominant association with the subject’s age. To do so, the
CCA variable loadings, L1 and L2 were estimated by computing
the correlation between each column in D1 and D2 and every
column in F1 and F2, respectively (Supplementary Fig. 3a; ref. 83).
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The top 20 L1 and L2 are reported for CA1 (Fig. 3a, b for brain
networks and behavior, respectively). The results show that the
brain network nodes known to be affected by aging were among
the top contributors34,65. The inset in Fig. 3a shows the mapping
of all the CA1 loadings to the cortical and subcortical surfaces.
The visualization of the loadings shows that the distribution of
loadings is homogeneously distributed with a few hot-spots, with
positive foci in the frontal lobe, the hippocampus, the putamen,
and portions of the default-mode network. In the next paragraph,
we summarize how the brain area loadings relate to previously
reported functional network labels93. In parallel, behavioral tasks
and scales measuring cognitive and emotional domains also
known to be affected during human aging returned meaningful
loadings as well18,66. These domains consisted of visual recogni-
tion, attention, and memory tasks, as well as, reasoning and
language comprehension scales. No significant canonical loadings
were found for CA2–38 (see Supplementary Fig. 3b for CA2

loadings). For completeness, we also tested all the loadings for
cross-validated M2. No significant loading was found for this
model (see Supplementary Fig. 3c, p > 0.05 bootstrap test). In
sum, none of the CA in M2 was interpretable, hence the model
was uninterpretable.

To summarize the top contributors to M1, word-cloud
representations of the variable domains were created (Fig. 3c,
d). The word cloud for the brain network loadings was built by
assigning the labels from the Glasser atlas to a set of established
functional network labels93, hereafter referred to as Y2011. Each of
the 376 nodes in our networks was assigned to one of the seven
functional networks in Y2011: Visual, Somatomotor, Limbic,
Ventral attention, Dorsal Attention, Frontoparietal, Default Mode
(DMN; see “Methods” for the assignment of the network’s nodes
to major functional networks in Y2011). In addition, the
hippocampus, amygdala were kept separated and all the

remaining subcortical structures were combined and reported
as subcortical (i.e., pallidum, putamen, accumbens, thalamus, and
caudate). This process generated a total of ten words (or clusters).
Each word was scaled by the sum of the loadings of all the nodes
assigned to the cluster (Fig. 3c, see also “Methods” for a
description of how the word clouds were generated from the
loadings).

This analysis highlighted the top functional networks and
subcortical structures contributing to M1, the one that indirectly
also contributed to predicting the subjects’ age. The limbic and
default-mode networks and the hippocampus returned the
strongest contribution (positive and negative, respectively). Other
networks, such as the frontoparietal and dorsal attention, as well
as the amygdala, provided a strong positive contribution. A
similar, word-cloud representation was implemented also for the
behavioral variables. Each of the 334 tasks and scales was
uniquely assigned to one of the seven behavioral domains
described in Fig. 1a. Their loadings were then averaged across all
tasks and scales within each domain (Fig. 3d). The word-cloud
summary representation for the behavioral loadings shows the
variables in the emotional, language, and memory domains
contributed the most to M1. Other variables such as social,
attention, motor, and clinical scores provided secondary con-
tributions. Next, we evaluated whether the properties of the rich
club properties of the brain networks73,103,104 were associated
with the CCA loadings.

The brain rich-club contribution and canonical correlation.
One of the most reliable findings in network neuroscience is the
brain rich-club organization73,103,104. Here, we were interested in
estimating whether there was a relation between the top con-
tributing brain regions in CA1 and the regions participating in the
rich-club organization of the brain. More specifically, we

Fig. 2 Human age explains the majority of the variability in the linear association between brain networks and behavioral variables. a The first
canonical axis (CA1) from the cross-validated model (M1). Each point represents a subject’s cross-validated factor score on the brain and behavior axes,
respectively. Error bars represent ±3 standard error of the mean (SEM). The color of each point represents the age of the subject. The labeled correlations
refer to the correlation of age to the combined canonical axis (rage; top) and the correlation between the two canonical axes (CA1; bottom) ±3 SEM. b
Association (rage) between the data in the first canonical axis (CA1) and each participant’s age. Violin plots show the full distribution of the observations.
Statistical significance estimated by bootstrap. c Association between the brain network and behavior data for the first canonical axis (CA1) is shown for
both M1 and M2. Statistical significance estimated by bootstrap.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02451-0 ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:943 | https://doi.org/10.1038/s42003-021-02451-0 | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


evaluated the extent to which the top CA1 brain loadings (i.e.,
Fig. 3a) mapped onto the rich-club core or periphery. To do so,
the mean network across subjects, Nμ, was generated by averaging
streamline density for each edge (edges not appearing in at least
50% of the subjects were set to 091). The number of nodes’ par-
ticipating in the rich club depends on the brain parcellation used.
In our study, the rich-club core was defined as the top 15%
highest-degree nodes in Nμ. This proportion of rich-club nodes
was previously reported by van den Heuvel and Sporns103 (see
also “Methods” for more details). Fifty-four regions from the
HCP-MMP (v1.0) parcellation and subcortical labels were
assigned to the rich-club core. The remaining 376 regions were
assigned to the rich-club periphery (Fig. 4a blue and gray,
respectively). We found that this procedure successfully assigned
regions to the rich club nominally matched the regions reported
in the literature (e.g., superior parietal, precuneus, superior
frontal cortex, putamen, hippocampus, and thalamus; Fig. 4a; see
also ref. 103 for a comparison).

After defining the rich-club core and periphery, we correlated
each node’s loading on CA1 with the normalized node degree
used to estimate the rich-club participation. The CA1 loadings for
regions within the rich-club core or periphery were averaged
together. On average, the loadings were higher for the core than
the periphery (0.045 ± 0.0096 s.e., p= 0.00 and 0.032 ± 0.0071 s.e.,
p= 0.00, respectively). This shows a trend for higher CA1

loadings within the rich club, even though no significant
difference was found in the mean loadings between core and
periphery (Fig. 4b; p= 0.722 bootstrap test). Supplementary Fig. 4
shows the rich-club participation coefficient and CA1 loadings for
each brain region color-coded by their participation to the rich
club or periphery.

We also tested whether the measure used to define the rich club
(the node degree of the average network) was significantly
correlated with the brain variable loadings in the network axis of
CA1 (for reference the values shown in Fig. 3a). We report two
findings. First, a medium-strong correlation was found if the rich-
club organization was disregarded and the correlation computed
across all brain regions (r= 0.642 ± 0.034 s.e., Spearman rank r; p
= 0.00 bootstrap test). The correlation was weaker when we
considered only the 54 regions within the rich-club core (r= 0.26
± 0.127 s.e., p= 0.0283), and larger when we considered the 322
regions in the rich-club periphery (r= 0.56 ± 0.041 s.e., p= 0.00).
Overall, the results show an interesting trend with higher CA1

loadings for regions within the rich club compared to regions in
the rich-club periphery (a statistically non-significant trend) and
a statistically significant correlation between the node degree in
the rich-club periphery. The results can be interpreted as
indicating a heterogeneous contribution of regions within and
outside the rich-club in the association between brain and
behavior and in predicting age.

Fig. 3 Top brain network nodes and behavioral variables contributing to the canonical correlation analysis. a The highest and lowest contributing
cortical nodes within the network. Top and bottom 20 CA1 brain regions sorted by loading magnitude. Positive and significant loadings are shown in blue,
negative in red. Non-significant loadings are shown in cyan or magenta. The anatomical inset visualizes the CA1 loadings projected on the cortical and
subcortical regions used to build the networks. b The highest and lowest contributing behavioral scores within the domain. The top and bottom 20 CA1

behavioral scores sorted by loading magnitude (same conventions as in a). c Left: Distribution of CA1 loading by the major functional brain network as
described by Y2011

93. Right: Word cloud of the functional network name scaled by contribution to CA1 (the larger the font the greater the contribution). d
Left: Distribution of CA1 loading by behavioral domain. Right: Word cloud the behavioral domains scaled by contribution to CA1. Symbols report mean ±
2 standard errors (s.e.) estimated across 10,000 cross-validation throws of M1. Violin plots report the full underlying distributions of the data, when
possible.
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Describing the multivariate relationships between networks
and behaviors using representational similarity analysis. Our
overarching goal was to describe a multivariate fingerprint of the
associations between brain networks and behavioral domains.
Most previous analyses looked at pairs of associations to char-
acterize the changes in individual cognitive tasks and brain sys-
tems as a result of aging21,51,65. This approach focussed on
understanding the relationships between individual cognitive
functions and brain systems across the lifespan66–69. As a result a
global fingerprint of the multivariate changes in the brain net-
work connectivity, behavior, and cognition associated with
human aging, have not been described. We used representational
similarity analysis (RSA; refs. 92,105), to develop a many-to-many
map between behavioral domains and brain network systems.

Our analyses in the previous sections focussed on M1 to
establish the relationships between brain and behavior across the
lifespan and how fundamental brain network properties con-
tribute to such relationships. Hereafter, we focussed on the
multivariate relationships between brain network and behavior
domains. To do so, we derived an approach that used the CCA
variables loadings (L1 and L2, Supplementary Fig. 5a) as inputs to
RSA. An RSA typically quantifies the dissimilarity between
variables from two data domains; for example and more
commonly, brain function and behavioral performance92,105. In
our application instead of using the data from the two domains
directly, we used the variable loadings estimated for each
canonical axis in M1. More specifically, every variable loading
in M1 (376 network and 334 behavior variables) was correlated
with the loadings of all the remaining variables, and dissimilarity
was then computed using Eq. (4). This process generated a
square, symmetric RSA matrix, S1, of size 710 × 710.

This approach leverages the inherent structure of the data
captured by the CCA model to describe how the loadings of each

brain and behavior variable are associated amongst themselves.
The assumptions of this analysis are that the CCA variables
loadings contain a fingerprint of the multivariate associations of
the brain and behavioral variables. The approach allowed us to
model (1) the brain network-to-network similarity, (2) the
behavior-to-behavior similarity, as well as (3) the brain network-
to-behavior similarity. S1 was summarized by averaging the RSA
values from the individual brain network nodes and behavioral
variables within the 10 brain networks of Y2011 and 7 behavioral
domains (as described in the previous section and in “Methods”).
This reduced the dimensionality of the symmetric dissimilarity
matrix from 251,695 (upper diagonal of the original 710 × 710
matrix) to 136 (upper diagonal of the 17 × 17 matrix; see
Supplementary Fig. 5c). S1 can be divided into three primary
regions; brain network-to-network, behavior-to-behavior, and
behavior-to-network. Because the interest here was to capture
the unique relationship between brain and behavioral variables,
btn was the focus of all the following analyses (Supplementary
Fig. 5d). The results were visualized using a modified chord plot
that allowed us to show how multiple associations between brain
and behavior load onto M1 simultaneously (Supplementary
Fig. 5e; see “Methods”). The chord plot was generated by
thresholding the RSA values in behavior-to-network the top
quartile. Two aspects of the chord plots shown in Supplementary
Fig. 5e are of interest. First, the number of domains (or
networks) that each network (or domain) contributed to is
described by the size of the peripheral segments for each network
and domain. The larger the size of the segments, the more
contributions of a network (domain) to the various other
domains (networks). Second, the associations between each
functional network and behavioral domains are described by
individual chords (if a chord exists two domains or networks
interacted in the CCA).

Fig. 4 Relationship between the brain connectome rich-club and the contribution to the CCA. a A ball-stick representation of the rich club scaled by CCA
loadings. Axial and sagittal views of the relation between rich club and CCA loadings. Each brain region is displayed as a sphere. Blue spheres are part of
the core rich-club. Gray spheres are part of the periphery of the rich-club. The diameter of each sphere was scaled by cross-validated CA1 loading in M1.
The black lines show connections between rich-club nodes. The thicker the line, the higher the average streamline density. The right-hand bottom ball-stick
representation shows an axial view of the rich-club nodes and connections isolated from the periphery. b The average CA1 loading across rich-club core and
periphery. Positive and negative CA1 loadings for rich-club core and the periphery (violin plots report the full underlying distributions of the parameters
from CA1).
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The difference between RSAs shows multivariate brain-
behavior associations the variability accounted for by age.
Hereafter, we wanted to further emphasize the contribution of the
individuals’ age to the RSA. To do so, we used the second CCA
model, M2, in which participants’ age was subtracted out
(deconfunded). An RSA model was set up using the variable
loadings in M2 to create S2. The impact of age was then further

isolated by subtracting S2 from S1 to compute Sd (Fig. 5). Sd
describes the multivariate (many-to-many) associations between
the networks and behavioral domains after the variables’ asso-
ciations independent of age have been removed. In other words,
the matrix, Sd, evidences the dissimilarity values that are related
to age but not to the rest of the variables in the model because any
common dissimilarity was subtracted out. Because the interest
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was to capture the unique relationship between brain and beha-
vioral variables, the following description focuses on the cross-
data-domain interactions (Fig. 5b). A chord plot was used to
describe the many-to-many relationships (Fig. 5c).

The results of this RSA analysis were consistent with previous
reports34,38–40. More specifically, results showed that the
behavioral domains most affected across the lifespan were
memory, language, emotion, and attention (i.e., the behavioral
domains passing the top 25% cut-off threshold; Fig. 5c). Going
beyond previous reports, the RSA results showed that the top
behavioral domains were associated not just with a specific brain
network, but with multiple of them. More specifically, memory
concurrently associated through the lifespan with the hippocam-
pus (top association), the subcortical structures, the frontoparietal
network, amygdala, dorsal attention network, the visual, soma-
tomotor networks but the ventral attention, default mode, and
limbic networks (see Supplementary Table 1). Emotion was
associated through the lifespan with changes in the subcortical
structures but also by the frontoparietal network, the hippocam-
pus, and the amygdala. Similarly, attention was affected by the
dorsal attention and frontoparietal network but also by the
amygdala, hippocampus, and subcortical structures. Language
and memory show a similar pattern, with moderately high
associations between many brain networks with notably strong
connections to the hippocampus. Whereas some of the previous
work has been devoted to characterizing individual cognitive
tasks and brain systems in relation to aging21,51,65, the current
analysis showed that multiple brain networks meaningfully
contribute to the variation in behavioral performance and
cognition across the lifespan. The many-to-many relationships
between brain networks and behaviors reported here are
unexplored but critical to understanding the process of aging in
normal and diseased populations.

Discussion
Brain aging and disease have profound effects on society. Because
of the increasing expected lifespan of the world population—
many of us are living longer—it is increasingly important to
understand how we can age healthily. Costs associated with an
aging population are only expected to increase over the next few
years, given the increase in life expectancy (1–5). In Europe,
estimates reach up to 200 million individuals affected yearly,
directly or via caregivers’ networks. Such impact accounts for up
to 800 billion euros in annual costs. For example, brain disease is
likely to affect up to 25% of the European population and nearly
38% of the remaining global population. These numbers make
understanding the brain and its relation to behavior paramount
to the well-being of society across the globe. Critical to this goal,
is to increase our understanding of the normal variability across
individuals in the large population is fundamental to improve the
prodromal identification of individuals at risk versus individuals
subject to normal aging (6–10). To address the need to capture

human variability and aging at least three aspects of scientific
inquiry will need to be addressed. First, more high-quality data
will need to be connected to reach a population-level under-
standing of the human brain and behavior. Second, advanced
computational approaches will need to be developed that can
actually exploit the value of the data at the right scale. Finally,
infrastructure will need to be in place to support large-scale
computational analysis of thousands of individuals.

To understand aging we need large-scale, population-level
studies. There is an increasing need to better understand the
trajectory of healthy aging as a large portion of the world’s
population rapidly progresses into old age. The need to under-
stand not only the expected course of senescence, but the inter-
action of brain structure and behavior will become increasingly
important to understand the myriad of conditions that can
impede independence later in life. Early open projects of this
nature, such as the Alzheimer’s Disease Neuroimaging Initiative
(ADNI), have required large publicly available tools to facilitate
the larger number of researchers who have analyzed factors
related to ones in this dataset15,16,106–109. More recent, large-scale
population projects such as the Human Connectome Project, the
ENIGMA Consortium, and the UK Biobank60,110,111 have col-
lected, organized, and openly distributed data to allow the
implementation of data-driven neuroscience methods, mine novel
findings, and build normative models of brain structure and
function94. These projects are already pursuing similar methods,
and the presented analysis could easily be applied and extended to
these datasets38,60,71,83,110.

To fully exploit large-scale datasets advances in both compu-
tational methods and data-analysis infrastructure are needed. We
described a multivariate analysis of a multimodal dataset90.
Multiple measures of brain structural connectivity and behavior
were combined to estimate the impact of human age on multiple
brain systems and behavioral domains. A model testing frame-
work was developed using cross-validation to demonstrate a
strong linear association between brain connectivity and beha-
viors. The majority of the variance in the linear association
between connectivity and behavior was accounted for by the first
mode of the model. This model was selected to maximize the
correlation with subject age. Data derivatives (https://doi.org/
10.25663/brainlife.pub.21), code (https://github.com/bcmcpher/
cca_aging), and reproducible cloud services (see Table 1) devel-
oped for the present work are made available for reuse by the
wider scientific community. Finally, the RSA analysis showed a
series of global patterns of association between the model,
selected to maximize the correlation with the subjects’ age, and
that resemble findings reported when individual variables are
measured individually.

In previous studies, most commonly, a few behavioral or
psychological variables have been singled out and related to the
changes in brain networks to capture the aging process across the
lifespan21,51,65. Describing how many of these cognitive and

Fig. 5 Difference in representational similarity analysis (RSA) shows many-to-many associations between the modules from the brain networks and
behavioral domains. a Differences in RSA (Sd) between two CCA models (M1 andM2). The values in the matrix Sd represent the difference between S1 and
S2. The higher the RSA value, the higher the impact of age. The red rectangle represents the subset of brain-behavior interactions emphasized in (b)
(referred to as btn in the main text). b Subset of the multivariate interactions between brain networks and behavioral domains. The data in panel b shows a
subset in panel (a) emphasized by the red rectangle, also referred to as btn in the main text. This subset shows the multimodal dissimilarity between brain
and behavior domains across the lifespan. c Top quartile of the differences in dissimilarity between brain networks and behavioral domains. This modified
chord plot represents the top interactions between the brain networks and behavioral domains in btn. Associations below the 75th percentile were
removed from the visualization. Two aspects of the chord plots can be appreciated. First, the number of domains or networks that each network or domain
contributes to is shown by the size of the peripheral wedged-segments for each network and domain. The larger the size of the segments, the more
contribution of a network (domain) to the various other domains (networks). Second, the associations between each functional network and behavioral
domains are described by individual chords (if a chord exists two domains or networks interacted in the CCA).
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behavioral variables change across the lifespan has been a
challenge62,73–79. For example, memory has been related to hip-
pocampal volume and reaction time43,44,78. However, these tar-
geted studies run the risk to miss that the hippocampus also has
significant contributions to emotion processing and guiding
attention28,34. Here, we proposed an approach that allowed us to
represent the changes in multiple brain network systems and
behavioral domains simultaneously. Our results provided a way
of quantifying the multivariate relationships to understand how
these variables simultaneously change across the lifespan. The
results show the changes in behavioral and psychological domains
are interwoven across the lifespan. We demonstrate that indivi-
dual behavioral domains are effectively associated with changes to
multiple brain network systems. So whereas focussing on indi-
vidual variables is helpful sometimes, it is not simply the case that
individual behavioral variables affect individual brain areas or
network systems. Opposite to that, the picture painted by our
results show that many cognitive and emotional domains
simultaneously vary across the lifespan with the changes in
multiple brain networks. In sum, our results show major changes
to behaviors and network structure that cannot be reduced to
changes to any individual cognitive constructs. Instead, multiple
cognitive and behavioral domains covary in ensemble with global
changes to network structure. Future studies will be necessary to
better describe the way the brain and behavior relationships
reported here interact and how that drives aging in health and
disease.

We demonstrate that brain and behavior show multiple global
changes across the human lifespans that go well beyond one-to-
one correlations between a single brain system or behavioral task.
Several previous studies inspired this work, providing ideas for
the contributions produced in this study. Early work83 integrated
functional brain networks and phenotypic data from a large
dataset of healthy young adults110. A strong association between
brain function and behavior was reported using CCA. Yet, age
was not a significant result in the analysis as it was in ours, most
likely due to the narrow age range in the Human Connectome
Project sample used in that work compared to the CAN sample.
Another relevant study used the CAN dataset, CCA, and gen-
erative models of brain functional activity and was first in
reporting the effect of age on the association between cognitive
performance and brain function38). The study focused on three
functional networks112,113 and six composite measures of beha-
vior and showed that neuronal, not vasculature-related effects in
resting-state networks are associated with age. A third relevant
study was first in using brain structure (a multimodal combina-
tion of diffusion-measures and cortical partial volume estimates)
to show an association with various demographics, including
age84. The current results go beyond previous work by (1) thor-
oughly cross-validating the CCA, (2) testing how well a hold-out
variable is predicted by the primary canonical axis, and (3) using
an RSA on the variable loadings from the cross-validated model
to recover relationships between the variables themselves. These
improvements provide a way for future work to glean more
insight from the increasingly large and multimodal samples of
variables utilized in modern neuroscience. Furthermore, we cre-
ated open services shared on brainlife.io to allow other
researchers to freely process new data utilizing our pipeline.

As neuroscience shifts toward data-driven approaches, data-
fusion methods114–116 such as CCA are likely to increase in
popularity. Yet, the CCA approach used here is limited to two
domains at a time. Other methods allow fusion across a higher
number of data domains. For example, CCA has been generalized
to higher-order models beyond 2 domains, similar to variations of
Independent Component Analysis (joint- or linked independent
components analysis117–119. Imaging genetics is one of the fastest

growing fields that are capitalizing the most on methods such as
CCA especially requiring to combine multiple data
domains6,16,106,111,120,121. These studies typically look at thou-
sands of genetic markers from a single blood assay, similar to how
a single MRI imaging session can be used to generate thousands
of measures of brain structure and function. The benefit of
methods such as CCA is due to the ability to model datasets with
large numbers of variables from different domains (e.g., blood
assays, behavior, genetics, and neuroimaging). Yet, in addition to
variations of CCA, independent components analyses have also
been proposed to map across multiple variable domains, though
Partial Least Squares (PLS; refs. 82,122,123) is perhaps the most
common approach that allows mapping the combination of
multiple data modalities into a single space124,125. Furthermore,
the current work is also limited to linear interactions between
data domains. Future explorations of the multivariate interactions
might contribute additional insights126,127. Nonlinear interac-
tions estimated through kernel embedding128 or structural
equation modeling129 are particularly promising, but have not yet
been applied to datasets similar to the one used here. Critically,
one recent report has sparked interest by suggesting that adding
nonlinear interactions to data modeling may provide negligible
improvement over linear models when comparing brain-behavior
interactions130. In selecting the best models (linear or nonlinear)
might also depend on data preprocessing131,132. The effectiveness
of data preprocessing may vary depending on the characteristics
of the data domains. Future work will be required to determine
what data domains will require linear or nonlinear modeling
approaches.

As neuroscience moves to population-level neuroscience,
reproducible approaches to data management and analysis need
to be embraced. Sharing data products is essential to imple-
menting transparent, replicable, and reproducible brain research
(23). Critical to the success of the next-generation large-scale
neuroscience methods will be to embrace new technology to
ensure results reproducibility. This will require embracing
methods for open science, data, and computational standards as
well as modern computing infrastructure to lower the barriers of
entry to proficient large-scale data methods (24–26). Our study
follows up on the most recent trends in terms of large-scale
datasets and computational approaches. But also the study
embraces the most recent technology to support scientific
reproducibility to clarify human aging. We used the recently
developed, community-developed, and publicly-funded cloud
computing platforms, brainlife.io. brainlife.io allows processing
large amounts of data by tracking the provenance of each dataset
and by linking the data-object on the platform with the repro-
ducible web services used to generate the data. brainlife.io
addresses precisely the needs for replicability and reproducibility
highlighted by the recent report by the U.S. National Academies
(23). Indeed, to implement our study we developed more than ten
new data analyses applications that are now available on brainlife.
io for other investigators to reuse for new research or to replicate
our results.

Methods
Data source. The behavior and neuroimaging data were accessed from the publicly
distributed Cambridge center for Ageing and Neuroscience (CAN) dataset90. This
large dataset provides cross-sectional data on 652 individuals, who provided
informed consent. The acquisition of this dataset was approved by the Cambridge
University Ethics committee and its distribution complies with the Helsinki
Declaration. Of this total 623 had imaging data of interest to the current study
(diffusion-weighted MRI and T1-weighted MRI). Out of a total of 623 individuals,
594 neuroimaging datasets were successfully processed and included in this present
study. Quality control issues on the processed T1w data (FreeSurfer did not suc-
cessfully segment the brain) motivated the exclusion of 26 subjects. Supplementary
Fig. 2a shows the dimensionality of the data (n= 594).
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Behavioral data. Participants responded to a series of screening and demographic
questionnaires and performed behavioral tasks and clinical tests90. See ref. 90 for
details on the tasks, tests, and questionnaires. A total of 1708 measurements per
individual were acquired by the CAN consortium. Only behavior scores normal-
ized by the CAN consortium were utilized for the current study, as a result, a total
of 388 CAN-normalized scores were utilized for further analysis. All these mea-
surements were initially subdivided into five of the primary behavioral domains:
attention, memory, language, emotion, and motor90. For the current study, in
addition to the five original behavioral domains, test scores collected by the CAN
consortium measuring social engagement and clinical scores were also utilized and
collected into a Social and Clinical behavioral domain for a total of seven domains
(Fig. 1a). The social engagement measures consisted of 10 questions related to the
frequency and mode of socialization of the individuals. Six clinical questionnaires
were collected into the clinical domain: the MMSE, ACE-R, Wechsler Memory test,
Spot the Word, the Cambridge 10MQ, and the PSQI Sleep Index90,93.

Neuroimaging data preprocessing
Anatomical MRI data preprocessing. A T1w and T2w anatomical scans were
acquired for each individual. Both scans have a 1 mm isotropic resolution (T1w: 3D
MPRAGE, TR= 2250 ms, TE= 2.99 ms, TI= 900 ms; FA= 9 deg; FOV= 256 ×
240 × 192 mm; GRAPPA= 2; TA= 4 min 32 s. T2w: 3D SPACE, TR= 2800 ms,
TE= 408 ms, TI= 900 ms; FOV= 256 × 256 × 192 mm; GRAPPA= 2; TA= 4
mins 30 s). Both images were reoriented and aligned to the AC-PC plane with a 6
degree of freedom rigid alignment to the MNI template based on the Human
Connectome Project (HCP) procedure (T1 reorientation; bl.app.15, T2 reorienta-
tion; brainlife.app.114, T1 alignment; bl.app.99, T2 alignment; brainlife.app.116).
These AC-PC-aligned images were passed to Freesurfer 6.0133, which reconstructs
the white-matter and pial surface based on the T1 image, using the T2 image for
additional information to better estimate the surfaces (FreeSurfer; bl.app.0). The
FreeSurfer output was used by the multi-atlas transfer tool (maTT; bl.app.23) to
align individual subjects T1w anatomy files to the multimodal cortical brain atlas
(HCP-MMP v1.0 Atlas94. The labels from the HCP-MMP atlas were used to build
networks, see below.

Diffusion-weighted MRI data preprocessing. The diffusion-weighted MRI data
(dMRI) contained a total of 60 directions collected across 2 b-value gradients (2D
twice-refocused SE EPI, TR= 9100 ms, TE= 104 ms, TI= 900 ms; FOV= 192 ×
192 mm; 66 axial slices, 2 mm isotropic; B0= 0, 1000/2000 s/mm2, 30 unique
directions per shell; TA= 10 min 2 s. Readout time 0.0684; echo spacing= 0.72 ms,
EPI factor= 96). Data were processed using MRtrix3 (bl.app.68; refs. 96,134). The
following are the steps of the preprocessing procedure. The diffusion gradient
alignment to the data was checked using a simple tracking procedure to find the
orientation that produces the longest streamlines. After that, a PCA denoising
procedure was performed to remove scanner noise not associated with the diffu-
sion signal. Gibbs ringing, Eddy currents, inhomogeneity, and motion artifacts
correction was performed. After all previous steps, an additional Rician-denoising
was performed. The mean B0 image across (2 repeats) was extracted and utilized to
register the dMRI to the AC-PC aligned T1-weighted image using Boundary Based
Registration (BBR, ref. 135). The diffusion-weighting gradients were rotated to
account for motion correction and AC-PC alignment. Finally, the diffusion-
weighted image was resampled to a 1 mm isotropic.

Tractography generation. We developed an automated cloud computing service
that we call Reproducible Anatomically Constrained Ensemble Tracking (RACE-
Track; bl.app.101). RACE-Track combines Anatomically constrained tracking98

with ensemble methods97 and is containerized for public, reproducible access on
the open cloud computing platform brainlife.io89. The preprocessed dMRI data was
used to generate whole-brain tractography using RACE-Trac. Specifically, a con-
strained spherical deconvolution (CSD) response function was estimated for white
matter, gray matter, and cerebrospinal fluid (CSF) as described in refs. 134,136. Each
respective response function was then used to estimate Fiber Orientation Dis-
tribution (FOD) maps for each tissue type. Following the ET approach, we fit the
CSD model using multiple Lmax (2, 4, and 6), this procedure created three FOD
maps one per Lmax. The FOD maps were then passed to the iFOD2 tracking
algorithm as described in ref. 98. The T1w image was used to separate the brain
tissue into its five types: (1) corticospinal fluid, (2) white matter, (3) gray matter,
(4) subcortical gray matter, and (5) pathological tissue. The image probability maps
generated for each tissue were used for initiating and stopping tractography. More
specifically, the gray-matter–white-matter interface was used as a seed mask for the
streamlines This approach has been demonstrated to provide a more complete
coverage of tractography terminations on the cortex and subcortical gray-matter
structures98. Furthermore, the whole tractography procedure was repeated for both
deterministic and probabilistic tracking, across the three Lmax and five different
maximum angles of curvature (5, 10, 20, 40, and 80°). A total of 600,000 stream-
lines were generated in each individual using this tracking procedure.

Construction of structural brain networks. Whole-brain structural brain networks
were built utilizing the multimodal cortical brain atlas (HCP-MMP v1.0; ref. 94).
The HCP-MMP atlas was aligned to individual subjects’ brains with maTT (bl.
app.23). The parcels of the HCP-MMP were used as nodes for the brain networks.

The edges of the networks were defined as the density of connections between two
parcels. Connection density was computed as the number of streamlines termi-
nating in the two parcels divided by total number of voxels in the parcels100:

Cd ¼ ð2 � si;jÞ=ðni þ njÞ ð1Þ
Where Cd is the estimated streamline density for a connection (network edge), sij is
the number of streamlines terminating in both regions, ni and nj are the number of
voxels in each of the two brain regions. Network matrices were created using Eq.
(1) using a reproducible algorithm implemented on brainlife.io (bl.app.121). After
that, the network matrices were thresholded by removing connections not present
in at least half of the participants and then computing node degree for each
individual network matrix using the Brain Connectivity Toolbox91.

Canonical correlation analysis and data preprocessing
Behavior features. The total of 388 behavioral variables (m1; Supplementary Fig. 2a)
were extracted from the CAN project. Data were prepared for modeling by
applying a z-score transformation to each measurement across subjects83. Fur-
thermore, variables with extreme outliers (more than three standard deviations
from the population mean) or absent in at least half of subjects were eliminated
from further analysis. Fifty-four of the behavioral variables were eliminated via
normalization, bringing the total number of behavioral data utilized 388 to 334.
These features were organized into a matrix (D1) composed of all behavioral
(594 subjects, n, and 334 behavioral variables, m1). See Supplementary Fig. 2a and
Eq. (1).

Network neuroscience features. Node degree was estimated using the streamline
density networks generated described above for each subject91. This estimation
procedure resulted in 376 node-degree measures per subject (m2). The upper
diagonal of each network was unwinded to create a vector of features 1 × 70,500 in
size83. These features were organized into a matrix (D2) composed of all brain data
(594 subjects, n, and 70,500 node-degree estimates, m2). See Supplementary Fig. 2a
and Eq. (1).

Data normalization. Both the brain and behavior datasets were normalized through
the same process. First, the datasets were normalized by removing the mean of each
feature across subjects and dividing by the standard deviation across subjects. Next,
nuisance variables were regressed from each dataset to remove their influence on
the data. These variables include a subjects’ height, weight, gender, heart rate, and
systolic and diastolic blood pressure. Behavior data were also rotated to the nearest
positive definite pairwise covariance matrix to better account for correlation
between variables83. This step was not required and not performed on the brain
network data. Principal component analysis (PCA) was performed on D1 and D2

separately to reduce the number of dimensions in the data. PCA generated two
eigenvector matrices, E1 and E2, for D1 and D2, respectively (see Supplementary
Fig. 2b and Eq. (1)). Because the choice of number of principal components (PCs)
is arbitrary, we explored a wide range of PCs (2–100) and selected the PC number
for D1 and D2 that best predicted the individual subjects’ age (see below for more
details).

Canonical correlation analysis (CCA). We used E1 and E2 to perform canonical
correlation analysis (see Supplementary Fig. 2c). The CCA algorithm estimates the
linear combination of variables from each dataset that maximizes the correlation
between the datasets

ρ ¼ maxa;b½CorrðaTD1; b
TD2Þ�%0 ð2Þ

where ρ is the correlation between the datasets being maximized, D1 and D2 are the
normalized datasets, and a and b are the weighting matrices that linearly combine
the data variables into the canonical scores. The CCA analysis returns two matrices,
F1 and F2, containing the canonical factor scores for each subject to each of the
estimated canonical factors. The factor scores describe how much each subject
contributes to each of the latent factors. These factor scores are used plotting the
canonical correlation axes, or canonical axes (CA, Fig. 2, Supplementary Fig. 2,
red). We use the combination of the first factor scores from each dataset to estimate
the correlation with age.

To better interpret the contribution of individual variables within the CCA
factors, variable loadings are reconstructed from the normalized data and the
canonical factors. The loading values, L1 and L2 for brain and behavior,
respectively, describe the strength of the variable’s contribution to the axis. The
loading matrices’ dimensions are the number of variables in the dataset by the
number of estimated canonical factors. Each variable has a loading for every factor.
The loadings are recovered for a variable by correlating the original normalized
variables for every subject with the corresponding factor scores. This process is
repeated and every variable is correlated with a factor to create the variable loadings
for a canonical axis. By correlating the normalized variable observations (each
column of matrix D) to each factor score (each column of matrix F)
(Supplementary Fig. 2) for every canonical factor estimated in both datasets, we
generate canonical loadings (L) for every variable and every factor. For example, a
specific behavioral score could be highly correlated with a canonical factor,
indicating that the behavior is highly predictive of changes in this factor. When this
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is done for every axis, a complete matrix L of variable loadings is recovered. The
highest variable loadings for a canonical axis indicate the variables that contribute
most to the positive end of the canonical factor, while the lowest variable loadings
indicate the variables that contribute most to the negative end of the canonical
factor. This is reported in Fig. 3. The variable loadings are the typical way of
inspecting how variables within a CCA analysis interact.

Correlation with age. To determine the association of a canonical axis with age, we
used a multiway correlation with the first canonical factors to determine an r
coefficient between the canonical axis and age. Age was predicted by

age ¼ CAf1;networkgw1 þ CAf1;behaviorgw2 þ b ð3Þ
where age is the age of each subject, CA1,network is every subjects score in the first
column of the brain factors (F1), CA1,behavior is every subjects score in the first column of
the behavior factors (F2), w1 and w2 are the beta estimates of the model, and b is the
intercept. This is an ordinary least squares linear regression using the canonical scores of
the behavior and brain from the first factor predicting age. To determine the correlation
between the factors and age, we take the square root of the R2 from the fit model to
estimate the correlation coefficient between the combination of factors and age. This is
equivalent to the correlation with age along the canonical axis of the estimated factors.
To determine the significance of the correlation of age to the canonical axis, a bootstrap
test of 10,000 permutations was performed by randomly sorting the rows with repla-
cement of CA1,network and CA1,behavior to determine a null prediction. This allowed us to
determine if the observed correlation with age was significantly different from zero. To
estimate the standard error of the estimate, a separate 10,000 permutation bootstrap was
estimated, sampling with replacement of both factors and age. The resampled estimates
of age were used to create a rempled mean and standard error of the correlation
between the canonical factors and age.

Parameter tuning. The goal of this analysis is to maximize the correlation with age.
However, the principal components analysis performed as part of the preparation
of the data for the CCA will combine variables differently depending on the
number of components requested (Supplementary Fig. 2f, g, h). Further, the
number of PCA components indicates the number of canonical factors that can be
estimated. Typically, a number such as 20 or 100 is selected by the researcher.
However, there is reason to believe that the number of requested components will
impact the final correlation with age (Supplementary Fig. 2f, g, h). To test this we
tuned the number of PCA components using a grid search, selecting the number of
principal components based on the strength of the resulting correlation with age.
This hyperparameter sweep found the correlation with age on the primary cano-
nical factors for every combination of PCA components between 2 and 100 on the
input datasets. See Supplementary Fig. 2e, d for the results from the search space.
We selected 38 principal components for the brain axis and 40 principal compo-
nents for the behavior axis because this combination of principal components
resulted in CCA factors with the highest correlation with age. Nearby parameter
spaces had similar levels of correlation with age. Importantly, the most common
combinations of parameters, [20 × 20] and [100 × 100], had a significantly worse
correlation with age than the model with the optimal parameters (Supplementary
Fig. 2f, g, h). This is further supported by inspecting the variable loadings of the
models that performed worse than the tuned solution. The variable loadings in the
suboptimal models had different combinations of variables as the strongest and
weakest loadings. This difference indicates that the CCA used a different combi-
nation of variables to form the canonical factors in these models. These different
factors are less effective at predicting age. This indicates that the selection of the
number of principal components for this analysis is important in tuning an
accurate model.

Model selection. All factors and loadings were cross-validated using a repeated 5-
fold process to better ensure the generalizability of this model to the larger
population (Supplementary Fig. 2e). A repeated k-fold process is conceptually
similar to a typical k-fold approach. A standard k-fold approach models data by
training the parameters on a majority portion of the subjects and then applying the
fit parameters to a hold-out set of subjects to observe the generalizability of the
trained parameters to new samples from the same population. The two key dif-
ferences between the repeated k-fold process and a standard k-fold process is that
(1) in a repeated k-fold process all observations end up with a held-out estimate
and (2) the training/test process is repeated many times to estimate a distribution
of hold-out parameters. The central tendency of the hold-out parameter’s dis-
tribution is taken for each of the subject factors and variable loadings. For example,
a standard k-fold cross-validation would divide the subjects evenly into an 80–20
train/test split. The CCA would be fit, or trained, on 80% of the subjects. The
trained parameters from 80% of the subjects would be applied to the 20% holdout.
The canonical factors and variable loadings are compared between the train and
test data to determine how well the model generalizes to the population.

To perform the repeated k-fold process, the dataset was first split into five equal
groups of subjects. Then the CCA was fit five times using each combination of four
of the groups to train the model, predicting the hold-out estimates for each of the
splits. This creates a full set of hold-out estimates for every subject’s factors (F) and
loadings (L). This process is repeated 15,000 times, with each iteration creating a
new random split of subjects into five groups before repeating the train/test

procedure. This creates a distribution of trained factors and loadings for every
parameter in the model. The median value of these distributions indicates the most
probable trained value for the parameter. In addition, the central tendency of these
distributions is observed to quantify the standard error of the estimates. These
median values of the permuted hold-out distributions are the factors and loadings
used in evaluating the CCA (the factor values in Fig. 1, the loading values in Fig. 2).
The repeated k-fold cross-validation approach allows the full dataset to be
evaluated in the results, as each subject’s factor scores and each variable’s loadings
are estimated from a model using unique observations to predict their estimate.
This approach was necessary because the modeling of data with a CCA does not
generalize to new observations well. The estimation of the CCA is based largely on
deterministic matrix algebra, making the final results very sensitive to small
perturbations in the input data. Selecting new training-test splits from the
observations in a single k-fold cross-validation approach often resulted in different
conclusions, while this repeated k-fold cross-validation consistently produced
similar model estimates.

In addition, this cross-validation approach is robust to our data being evenly
sampled across our outcome of interest, age. Any one random sample of subjects
from this dataset would be likely to bias the training or prediction of a particular
age. Further, it is not possible to use age as part of the identification of training
subjects while still being able to use it as an unbiased outcome. By cross-validating
across many random k-fold splits we are able to cross-validate our model without
risking an unintended bias with age that may be present in any one split.

Bootstrap test. A bootstrap method was used to test the statistical significance of the
correlations and loadings within the CCA models (M0, M1, and M2). The bootstrap
tests were implemented by assuming a null hypothesis of no correlation between
the two variables (or parameters sets). For each of the various tests described in the
“Results” section, a sampling distribution of the mean was generated by resampling
the data (or model parameters) with replacement. For each bootstrap test,
10,000 samples of the data (or model parameters) were generated. The probability
of the empirically observed correlation given the sampling distribution was
reported (p). Gray shading in Supplementary Fig. 2i, j show examples of the
resampling distributions generated by bootstrap under the null hypothesis of no
correlation between variables.

Building the average contribution of brain networks and behavior domains as plots
and word clouds. To summarize the brain networks and behavior domains that
most strongly contribute to M1, the variables within each dataset were averaged
within predetermined modules and summarized with a scatter plot and word-cloud
plot. The module for the brain network loadings was built by assigning the labels
from the HCP-MMP (v1.0) atlas to a set of established functional network labels
from ref. 93, referred to as Y2011. Each of the 376 nodes in our networks was
assigned to one of the seven functional networks in Y2011; visual, somatomotor,
limbic, ventral attention, dorsal attention, frontoparietal, and default-mode net-
works. In addition, the hippocampus and amygdala were kept separated and all the
remaining subcortical structures were combined and reported as subcortical (i.e.,
pallidum, putamen, accumbens, thalamus, and caudate). This process generated a
total of ten labels (words) representing the established functional brain networks of
Y2011, referred to as modules. The modules for the behavioral domain were
determined from the CAN domains that the tasks were chosen to sample across
(Memory, Language, Emotion, Attention, Motor, Clinical Scores, and Social). First,
the individual variable loadings were taken from the cross-validated model. Next,
the variables from each axis were combined within each module by averaging
together all the positive values into a positive average and the negative values into a
negative average. By creating separate averages for the positive and negative
loadings, the prevalence of the modules (brain network or behavior) on each end of
the axis was assessed. The error bars were computed by taking the average of the
respective variables’ standard errors from the cross-validated model. The left-hand
size plots in Fig. 3c, d display the average variable loading within each network or
behavioral module as a pair of points. The positive average (blue) and negative
average (red) contribution of variables within the respective module are displayed
as a pair of columns. Error bars show 2 units of the average standard error esti-
mated by cross-validation. The right-hand side plots in Fig. 3c, d show word-cloud
representations of the variable modules. These plots were created using the same
average values (Fig. 3c, d left-hand side), scaling the font size by sum of the
modules loadings. More specifically, the font size of each word was scaled by the
average of the loadings within each module. The larger the font of the word, the
larger the average for positive values (blue) or lower for negative values (red). For
example, on the behavioral axis (Fig. 2a, y-axis), on average all the memory tasks
contributed a lower score than the emotion tasks, hence the font size for memory is
smaller than that for emotion in Fig. 3d.

Computing the rich club of the network and its comparison to the CCA. In order to
compare the CCA model to the rich club (RC; ref. 103), a global network was
constructed by averaging individual networks across all subjects. A standard
consensus threshold was applied after averaging by zeroing any connection not
present in a simple majority of individuals (i.e., a connection was kept in the
average matrix if the connection was available in more than 50% of the total
number of subjects). Next, node degree was estimated on this averaged network
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using the brain connectivity toolbox91. The node-degree estimates were normalized
by subtracting the minimum and dividing by the maximum. A threshold was then
applied to the node degree to identify the RC. We used results from previous
work103 and set the threshold of 14% to separate RC from periphery. This means
that the top 14% of the nodes with the highest normalized node degree were
assigned to RC. More specifically, 54 of 376 regions in the network were assigned to
the rich club and the remaining 322 to the periphery—see color-coded ball-stick
representations in Fig. 4. The size of the nodes in Fig. 4 was scaled by the mag-
nitude of the CCA loading of each node.

After identifying the RC and periphery, the association between RC/Periphery
and the CCA was investigated. The spearman rank correlation was estimated
between the node degree in each node and CCA loadings. A bootstrap test was used
to estimate the mean, standard error, and p-values reported in “Results”. To
visualize the correlations, a scatter plot comparing the CCA variable loadings and
the participation coefficient of the RC is shown in Supplementary Fig. 4a. The
points are color-coded for the rich club (blue) and periphery (gray). The ordinate
of Supplementary Fig. 4a is the RC participation coefficient for each node. The
participation coefficient was computed as the ratio of the number of connections
from that node to other nodes in the same group (RC or periphery) to the number
of connections from that node to the other groups103. The full list of CCA loadings
in relation to the participation coefficient was displayed (Supplementary Fig. 4b) to
show that the majority of RC connections also have relatively high loadings within
the CCA as well.

Representational similarity analysis (RSA). We used representational similarity
analysis (RSA; refs. 92,137) to create a fingerprint of how the loadings of the vari-
ables in one data domain (brain) are associated with the loadings of the variables in
the other data domain (behavior). We define factors as the estimated latent factors
from the CCA analysis. The number of factors estimated is determined by the
smallest number of tuned PCA parameters used during parameter tuning. Each
variable has a loading for the factors estimated. We use a dissimilarity measure
estimated between pairs of variable loadings to inspect how the variables interact
with each other across all estimated factors. This allows us to observe how the
individual observations within the domains of our CCA model, brain and behavior,
interact with each other as they form the primary axes for all factors in the analysis.
Typically, the extent of our inspection of the CCA model is using the cross-
validated variable loadings ranked by their magnitude to indicate the strongest
contributing variables from a particular domain (Fig. 2). However, there is cur-
rently no way to recover how the individual variables interact with each other.
While the CCA determines an overall interaction between the separate datasets and
the variables that most contribute to each factor, there was previously no
description of how the individual elements interact with one another in this model.
Access to this information would prove particularly useful to determine what
relationships within the data may be capitalized on to estimate the canonical
factors, as there are many established brain-behavior interactions within this
dataset.

The dissimilarity matrix (S) is positive and block symmetric, with three distinct
components representing the network-to-network, behavior-to-behavior, and
brain-to-behavior dissimilarity. After building S, the elements of the matrix were
sorted and organized into meaningful brain and behavioral domains. This
organization allowed us to interpret values of S in terms of functional domains for
both brain and behavior instead of individual regions or tasks. Multiple individual
brain regions in θB were sorted and uniquely assigned into the Y2011 labels (ref. 93;
https://github.com/bcmcpher/cca_aging/blob/master/HCP_to_Yeo_assignment.
tsv). The behavioral measurements in θb were mapped onto the seven major
behavioral domains and averaged (Social, Emotional, Attention, Memory, Clinical,
Language, and Motor). Results show that the CCA captures patterns of covariation
between the two domains (brain and behavior). For example, the emotion domain
is highly similar (low dissimilarity) both in the brain and behavior between the
brain and behavioral contributions. Also, attention and memory are highly similar
(low dissimilarity) as well. To contrast these results to the normalized data, see
Supplementary Fig. 4i-k that shows the difference in range between the
dissimilarity of the observed variables (x-axis) to the CCA estimates (y-axis).

To build the dissimilarity matrix between all variables used in the analysis, we
first use the variable loadings reconstructed from the cross-validated factors. To
construct the RSA, we take the dissimilarity measure between every pair of
variables using their recovered loadings for all factors. This is taken across both L1
and L2 (the loading matrices for brain and behavior, respectively). Each row
represents the canonical loadings for every canonical factor for the variable and
each column is the order of the estimated canonical factors. By taking the
dissimilarity measure between each row, we get a measure of how similarly any two
variables behave across all the estimated factors. The dissimilarity is able to be
taken across domains, meaning how the brain and behavior variables interact
within their respective factors can be inspected directly.

The first factor of the CCA represents the factor structure of each domain that
creates the strongest correlation between the datasets, while each subsequent factor
represents the next orthogonal configuration that has the next strongest
correlation. By comparing the variable loadings of each factor between two
variables we can represent how the variables interact with each other across every
estimated canonical factor. We use this full vector of estimated factor scores to

determine the distance by calculating the dissimilarity between every unique pair of
variables. A dissimilarity measure:

SfMg ¼ 1� jcorrfx;ygj ð4Þ

where x and y are any pair of variable loadings in an [n × 1] vector. Each vector
consists of the n loadings for each canonical factor estimated in the model for each
variable. The correlation between these vectors would represent how similarly the
variables contribute to each of the estimated canonical factors. Every unique
combination of x and y created a symmetric matrix of size [710 × 710] with the
respective dissimilarity value between every variable estimated. The values
represent how dissimilar any pair of variables behave across every estimated factor.
The higher the score between the variables, the more independently they interact
across all the estimated canonical factors. Likewise, the lower the score between the
variables, the more similarly they behave across factors. To summarize this
information, we sorted these measures into established behavior domains and brain
networks. This better reveals how variables within a specific domain behave with
variables from another domain. From this sorted matrix, we estimate the modules
by averaging each value within a module into a single value. This creates a matrix
of size [modules × modules] with the mean and standard deviation of dissimilarity
values for every variable within that group. These values represent on average how
the behavior domains and brain networks interact with each other across all the
factors. However, the most important interaction for our purpose is the interaction
between the brain-behavior averages, or how well the behavior domains
correspond to the structural connectivity within established functional networks
(Fig. 4e).

To do so, we computed the loadings by correlating the original normalized data
and the CCA factors for each canonical correlate estimated (columns of D1,2 with
columns of F1,2, respectively). Two matrices were generated with this approach, one
for the behavioral and one for the brain network loadings (L1 and L2). These
loadings were then stacked into a matrix where each row is a variable and each
column is the corresponding canonical axis (Supplementary Fig. 4a) and used to
compute the dissimilarity matrix between all brain regions and behavioral tasks.
This creates a symmetric matrix where the pairwise dissimilarity distance between
all rows of the stacked matrices was computed using Eq. (4) (Fig. 3a; ref. 92). The
axes are the size of the number of variables included in the model and a value for
each pair of variables indicating how similarly they behave across all canonical
factors.

Chord plot. To better visualize the association between brain and behavior we
transformed the brain-behavior dissimilarity value back to correlations: r= 1−SM.
These values were then used for a modified chord plot visualization. For this plot,
the r values were normalized by rescaling them to better show the brain-behavior
interactions. First, r was normalized between 0 and 1. Second, r values below the
top 75th percentile were eliminated (Supplementary Fig. 4h-j). Third, r was mul-
tiplied by 1000 and squared to visually emphasize any difference in values. The
chord plots represent the strength of the association between the CCA loadings of
the brain networks and behavioral domains. Two aspects of this plot inform our
analysis. (A) Each wedge of the chord shows the total association in a domain; the
larger the wedge for a particular domain the larger the contribution to the CCA
loadings. (B) The thicker the bands connecting a behavioral domain and a brain
network, the stronger the association between the loadings in those variables.

Evidencing the effect of age to the CCA by computing the difference in RSA between
M1 and M2. To determine the impact of age on the brain-behavior relationship, we
repeated the whole cross-validated CCA procedure, but first age was regressed
along with the other covariates before the CCA was performed, referred to asM2 in
the text. This effectively removes the association with age from the subsequent
analyses as described in “Results”. When the RSA analysis is repeated with M2, the
resulting dissimilarity modules reflect the brain-behavior interaction with the
variability of age removed. What is left represents the difference between models
with and without age. By taking the difference between the S1 and S2 we are able to
show the impact of age on the brain-behavior relationship (Sd). The difference
between these modules is the impact of age on the connection between these scores.

Statistics and reproducibility
Model selection. Cross-validation was used to select the best CCA model. The mean
model parameters across 10,000 cross-validation thought was selected as the
dominant model of CCA and used for primary analysis.

Statistical significance. Bootstrap methods were used to test the statistical sig-
nificance of the correlations and loadings within the CCA models (M0,M1, andM2).
The bootstrap tests were implemented by assuming a null hypothesis of no corre-
lation between the two variables (or parameters sets). For each of the various tests
described in the “Results” section, a sampling distribution of the mean was gen-
erated by resampling the data (or model parameters) with replacement. For each
bootstrap test, 10,000 samples of the data (or model parameters) were generated.
The probability of the empirically observed correlation given the sampling dis-
tribution was reported (p).
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Reproducible network neuroscience data preprocessing. As part of this work, a fully
automated and reproducible processing pipeline was created. The pipeline is
composed of seven composable web services, called Apps (Table 1). The data
processing pipeline removed artifacts, performed fiber model fitting using a recent
robust method (see ref. 96 and bl.app.68) and generates whole-brain tractograms
using a novel pipeline called Reproducible Anatomically Constrained Ensemble
Tracking (RACE-Track; bl.app.101). The network generation process combines
regions of interest from an atlas (bl.app.23) to build connectivity matrices. The data
preprocessing Apps can be accessed for reuse at brainlife.io/apps and by accessing
the data and processing record: brainlife.io/pubs: https://doi.org/10.25663/brainlife.
pub.21.

Data availability
The source data are provided by the Cambridge Aging Neuroscience Project https://
camcan-archive.mrc-cbu.cam.ac.uk/. Brain data derived as part of this project and used
as features for all the analyses are available on brainlife.io/pubs:https://doi.org/10.25663/
brainlife.pub.21. Source data from the plots is distributed in Supplementary Data 1. All
other data are available from the corresponding author upon reasonable request.

Code availability
Code is available on github at https://github.com/bcmcpher/cca_aging.
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