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Single-trial modeling separates multiple
overlapping prediction errors during reward
processing in human EEG
Colin W. Hoy 1✉, Sheila C. Steiner1 & Robert T. Knight1,2

Learning signals during reinforcement learning and cognitive control rely on valenced reward

prediction errors (RPEs) and non-valenced salience prediction errors (PEs) driven by surprise

magnitude. A core debate in reward learning focuses on whether valenced and non-valenced

PEs can be isolated in the human electroencephalogram (EEG). We combine behavioral

modeling and single-trial EEG regression to disentangle sequential PEs in an interval timing

task dissociating outcome valence, magnitude, and probability. Multiple regression across

temporal, spatial, and frequency dimensions characterized a spatio-tempo-spectral cascade

from early valenced RPE value to non-valenced RPE magnitude, followed by outcome prob-

ability indexed by a late frontal positivity. Separating negative and positive outcomes revealed

the valenced RPE value effect is an artifact of overlap between two non-valenced RPE

magnitude responses: frontal theta feedback-related negativity on losses and posterior delta

reward positivity on wins. These results reconcile longstanding debates on the sequence of

components representing reward and salience PEs in the human EEG.
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Adaptive behavior requires predicting relationships
between stimuli, actions, and outcomes to decide which
choices maximize reward. Predictive coding is a general

computational framework that learns these mappings based on
surprise as measured by prediction errors, computed as the dif-
ference between observed and expected outcomes. Reward pre-
diction errors (RPEs) convey the valence (better or worse?) and
magnitude (how surprising?) of a reward relative to expectations.
RPEs are encoded by transient firing rate modulations of mid-
brain dopamine (DA) neurons1–3, and early work in reinforce-
ment learning (RL) established that simple and efficient model-
free algorithms such as temporal difference learning can account
for basic reward learning phenomena by using RPEs to update the
expected value associated with a stimulus without the need for
additional modeling of the influence of actions4.

In contrast, sensorimotor and abstract cognitive control loops
depend on non-valenced PEs to learn action-outcome
contingencies5. For example, the predicted response-outcome
(PRO) model asserts that the medial prefrontal cortex (MPFC)
controls action selection by tracking salient, unexpected outcomes
independent of valence6. Valenced and non-valenced PEs have
complimentary contributions to learning7, and current model-
based reinforcement learning algorithms combine both valenced
reward and non-valenced state, action, and outcome predictions
to account for more complex behaviors by modeling relationships
between an agent’s actions and the environment8–11. Recent
animal investigations of reward and control emphasize the mul-
titude of learning signals represented by subpopulations of mid-
brain DA neurons12, including aversive outcomes and stimulus
salience independent of valence13–15, as well as sensory, cognitive,
and reward variables16.

Non-invasive human electroencephalography (EEG) findings
have identified a variety of learning-related event-related poten-
tials (ERPs) and time-frequency signatures17, but their specific
relationships to reward and control PEs are still debated. Seminal
early studies identified a posterior scalp positivity generated ~300
ms after detection of an infrequent stimulus called the P318,19 and
a fronto-central negativity elicited ~80 ms after incorrect com-
pared to correct responses called the error-related negativity
(ERN)20,21. Subsequent extensive literature has revealed these
ERPs to be part of large families of similar components. P3-style
ERPs are characterized by slow ramping dynamics peaking from
~300–600 ms and in delta frequencies (~1–4 Hz)22 with at least
two different scalp topographies. The P3b has a posterior max-
imal topography and is elicited by detected events conveying
various forms of salient information leading to working memory
and model updates, while the P3a has an earlier latency, fronto-
central topography and is generated by attention and orienting to
novel, task-irrelevant stimuli23–25 (see ref. 26 for review). Note
that both the P3a and P3b are not unitary physiological events but
rather reflect the summed activity of multiple intracranial
sources27. ERNs are related to a family of faster latency
(~200–300 ms) N2 negativities over fronto-central sensors gen-
erated in part by phase-locking in theta frequency (~4–8 Hz)
MPFC activity triggered by unexpected events requiring beha-
vioral adjustment28–30 (for reviews, see ref. 31 for stimulus-locked
N2s and ref. 32 for response-locked ERNs).

Reward feedback conveys multiple informative variables with
varying salience and elicits both N2- and P3-like ERPs that
overlap in time and space, leading to longstanding debates over
which components track different aspects of feedback. Founda-
tional studies focused on the N2-like feedback-related negativity
(FRN) occurring ~200 ms at frontal sites after loss feedback
compared to wins33,34. An early, influential RL theory (originally
called the RL-ERN theory) proposed the FRN represents
valenced, quantitative RPE value driven by midbrain DA

projections to MPFC35. This hypothesis predicts FRN sensitivity
to all the feedback properties that determine RPEs: outcome
valence, magnitude, and probability36. However, two recent meta-
analyses found mixed evidence for magnitude and probability
effects37,38. Reports of larger FRNs to unexpected positive
outcomes29,39–42 led to an alternative account called the salience
theory, which proposes the FRN represents the degree of surprise
of an outcome regardless of valence, similar to non-valenced
action-outcome PEs driving cognitive control in the PRO model.

A third prominent proposal called the independent coding
hypothesis posits the FRN represents binary reward valence
instead of scalar RPE value, while the subsequent P3 tracks non-
valenced RPE magnitude43–45. This interpretation is complicated
by more recent observations of a P3-like positivity called the
Reward Positivity (RewP) that tracks RPE magnitude specifically
on positive outcomes (see ref. 46 for review)47–52 that overlaps in
space and delta frequencies with other non-valenced P3
components53,54. Importantly, this suggests losses and wins
generate distinct FRN and RewP ERPs with opposite polarities
that interact to some degree depending on their overlap in time
and space48,55. As a result, it remains unclear after decades of
research whether FRN and/or RewP ERPs are driven by valenced
RPEs, non-valenced salience PEs, or one of the valenced/non-
valenced input variables contributing to these PEs (e.g., outcome
valence, magnitude, or probability).

An important challenge in resolving this debate is disen-
tangling overlapping ERP components. For example, the FRN is
commonly measured by averaging ERP amplitude across time,
but the epochs used in mean window analyses cover both classic
N2 and P3 windows38. The FRN is also often measured by the
peak-to-peak amplitude difference between the N2 and the pre-
ceding P2 positivity to account for influences of early P3 ramping.
However, individual ERP peaks are variable and may not corre-
spond to unique neural sources56–58, rendering their use as
reference measures questionable. For example, the P2 shows
confounding effects of surprising positive reward54,59. Difference
waves are commonly used to isolate target variables such as
valence by subtracting ERPs across conditions matched for con-
founding variables (e.g., magnitude or probability). Indeed, win-
loss difference waves are commonly used as the operational
definition of the FRN and RewP38,54,60,61. However, this sub-
traction logic can determine neither which ERP nor which con-
dition was modulated and thus is not well suited to unraveling the
dual multiplicity of ERPs and learning signals, particularly since
the FRN and RewP may have distinct neural mechanisms sup-
porting different computational roles52,62,63. Here, we use the
term FRN to refer to the early, feedback-locked frontal N2-like
ERP that is most prominent on but not specific to losses and the
term RewP to refer to the subsequent feedback-locked P3-like
ERP specifically following wins. We return to the definitions of
FRN and RewP components and their relationship to other ERPs
and difference wave contrasts in the discussion.

The overlap of ERPs in time-domain analyses has made time-
frequency decompositions an important tool for separating the
FRN and RewP into theta and delta frequencies, respectively.
Several studies have shown theta is sensitive to negative
RPEs51,53,63,64, but it has also been reported to track non-
valenced probability and magnitude65–67. Likewise, delta activity
is linked to both non-valenced surprise24,25,68 and positive
RPEs46,51,53,63,69. These mixed results highlight how individual
measures of neural activity may be insufficient to distinguish
between ERP components such as the RewP, P3a, and P3b that
overlap in one or more dimensions (e.g., frequency) but corre-
spond to distinct cognitive variables.

Single-trial modeling methods have provided clarity into the
theoretical debates in reward processing EEG signals. RL models
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estimate latent cognitive variables such as reward expectations,
which can change the subjective meaning of and ERP response to
reward feedback36,70,71. Importantly, model-based single-trial
correlation or regression analyses provide enhanced statistical
power compared to traditional categorical statistics applied to
condition-averaged data72,73, which can be leveraged to map the
evolution of cognitive variables in high resolution across multiple
timepoints, channels, and frequencies. This framework has been
used to separate overlapping components51,63,66,69,74. In parti-
cular, this approach enables data-driven discovery of RL variable
representations in EEG data that are not time-locked to ERP
peaks75,76, and allows formal model comparisons between com-
peting hypotheses24,25,68. Here we use these methods to compare
the predictions of the main competing hypotheses across the
different measurements of the FRN and RewP.

Our goal was to combine these modeling and signal analysis
tools to provide a comprehensive assessment of the core theo-
retical and measurement issues underlying the FRN and RewP
debate. We start by estimating PEs from individual participant
behavior in an interval timing task designed to dissociate the
valence, magnitude, and probability of outcomes. We then use
formal model comparisons to test the predictive power of out-
come and PE features central to RPE, salience, and independent
coding hypotheses using mixed-effects multiple regression ana-
lyses applied across temporal, spatial, and spectral dimensions of
wins and losses to separate overlapping components in initial and
replication cohorts. To relate our results to previous EEG litera-
ture, we perform analogous modeling of mean window and peak-
to-peak FRN and RewP metrics, in addition to quantifying the
overlap in our reward feedback ERPs based on correlations with
canonical N2 and P3 benchmark ERPs measured in a three-tone
oddball task collected from a subset of the same participants.

We found that when modeling wins and losses together as
done in standard analyses, early, frontal theta activity underlying
the FRN is best described by valenced RPE value, while non-
valenced RPE magnitude and probability effects drive later delta
activity consistent with P3 ERPs. Model comparisons show these
data are better explained by RL-based PEs than outcome features
and confirm the importance of predictive coding principles. Mean
window and peak-to-peak FRN analyses replicated these RPE
value effects but also showed non-valenced effects and were
unstable across the two cohorts. These results suggest the FRN
represents a scalar, quantitative RPE while two P3 ERPs encode
non-valenced RPE magnitude and outcome probability. However,
these conventional analyses combining wins and losses confound
the FRN on negative trials and the RewP on positive trials, and
comparisons to oddball task ERPs suggest a mixture of N2 and P3
contributions to the RPE value window. Indeed, modeling EEG
amplitude, topographies, and time-frequency power after separ-
ating wins and losses reveals that the valenced RPE value effect is
an artifact of non-valenced RPE magnitude driving two over-
lapping FRN and RewP components in theta for losses and delta
for wins, respectively, while the late frontal probability effect in
delta is stable across outcomes. Finally, we use subjective ratings
obtained in a follow-up behavioral experiment to confirm these
EEG results cannot be explained by subjective biases in reward
contingencies. Collectively, these results provide strong evidence
that human EEG following reward feedback is composed of a
sequence of multiple overlapping neurophysiological signatures
best accounted for by specific PEs in a predictive coding
framework.

Results
We collected and analyzed EEG from 32 cognitively normal young
adults split into initial (n= 15) and replication (n= 17) cohorts.

Participants performed an interval timing task designed to dis-
sociate the key variables underlying the PEs central to the debate
between RL, salience, and independent coding accounts: outcome
valence, magnitude, and probability. At the beginning of each trial,
participants saw a target zone cue whose size indicated the tem-
poral range of responses tolerated as correct (Fig. 1a). Participants
then estimated the temporal interval by means of extrapolation
from visual motion, and received audiovisual feedback indicating
their reaction time (RT) and whether it was within or outside the
tolerance (i.e., a win or loss). After each trial, the error tolerance
was titrated by two staircase algorithms (Fig. 1b) to clamp accu-
racy at 82.7 ± 1.7% and 18.1 ± 2.5% (mean ± SD) in easy and hard
blocks, respectively (Fig. 1c). This design dissociates outcome
valence and probability to separate valenced and non-valenced PE
features by comparing surprising wins and losses. Neutral out-
comes with no RT feedback were also delivered on a random
subset of 12% of trials to manipulate outcome magnitude as
another source of surprise.

Behavioral modeling. To directly compare the predictive power
of RL, salience, and independent coding theories, we used com-
putational modeling of individual participant behavior to derive
single-trial estimates of valenced RPE value, as well as two sources
of salience: non-valenced RPE magnitude and outcome prob-
ability. For each participant, we used logistic regression to fit the
relationship between the interval tolerance and binary win/loss
outcomes across the entire session (Fig. 1d; see inset for group
model fits). The resulting model yields the probability of that
participant winning for any given tolerance, which was then
linearly scaled to the range of rewards (1, 0, and −1 for winning,
neutral, and losing outcomes) to quantify expected value for every
trial. We then contrasted expected value with actual outcomes to
obtain single-trial RPE values and derived the absolute value of
RPEs to obtain RPE magnitudes. Outcome probability was
determined by the frequency of each outcome in each condition.
Notably, RPE values for neutral outcomes were non-zero and
switched valence across blocks (negative for easy and positive for
hard blocks; see model predictions in Supplementary Fig. 1a),
suggesting they could be interpreted as omissions of the expected
outcome.

To compare this RL model to simple win/loss contrasts
standard in the FRN and RewP literature that do not account for
predictive coding, we also computed an outcome-based model
composed of reward value (1, 0, and −1), reward magnitude
(absolute value of reward value), and outcome probability.
Finally, to test the hypothesis that the FRN tracks binary valence
but not scalar value or magnitude, we added a modified outcome
model that replaced the outcome value on neutral trials with
valence based on reward omission relative to expected value (see
Supplementary Fig. 1b for outcome-based model predictions).

Single-trial regression reveals a spatio-temporal cascade of PE
components. According to the RL theory, the valenced RPE
values derived from our behavioral model should predict FRN
amplitude35,36, while the independent coding hypothesis suggests
the FRN is sensitive only to binary reward valence and not scalar
value (i.e., combined valence and magnitude)43–45. In contrast,
the salience theory predicts that FRN amplitude should scale with
how surprising each outcome is6,39,66, which increases with non-
valenced RPE magnitude and decreases with outcome probability.
Importantly, disentangling these outcome and PE features and
resolving this debate depends on addressing the overlapping ERP
component problem that confounds traditional mean window
and peak-to-peak amplitude measurements60. Here, we leverage
known timing differences between early FRN and later P3 activity
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by predicting single-trial evoked amplitude at every time point
from 50 to 500 ms post-feedback using mixed-effects multiple
regression analyses to adjudicate between different PEs. Within
this framework, we use formal model comparisons to test whether
RL models combining expected value, RPE value, RPE magnitude,
and outcome probability predict ERP amplitudes better than
standard models composed of outcome magnitude, probability,
and either scalar value or binary valence. These analyses were
conducted separately at frontal Fz and posterior Pz electrodes to
assess the FRN and longer latency positivities.

Grand-average ERPs show FRN peaks ~200–250 ms post-
feedback at frontal electrode Fz and P3 peaks ~300–350 ms at
posterior Pz (Fig. 2a,b; see also Supplementary Fig. 9a). Model
coefficients are plotted below in Fig. 2c,d for the best performing
model, which includes RL features of expected value, RPE value,
RPE magnitude, and probability (see Supplementary Fig. 2 for
difference wave contrasts for each of these variables). The most
prominent result is a large effect of RPE value peaking in the FRN
window at 216 ms in electrode Fz (βmax= 4.572, qFDR < 10−10;
Fig. 2c). In accordance with the RL theory, this positive model
coefficient indicates that more negative RPE values are associated
with more negative amplitudes. In other words, larger FRNs with
more negative amplitude are associated with worse-than-expected
outcomes, and better-than-expected outcomes drive more
positive amplitude. The RPE value effect decreases as the FRN
subsides, and a significant positive RPE magnitude effect emerges.

This RPE magnitude effect is maximal in electrode Pz at 308 ms
(βmax= 1.703, qFDR < 10−10; Fig. 2d), indicating larger non-
valenced RPE magnitudes are associated with larger P3
amplitudes. This result replicates the non-valenced effect of
magnitude matching a posterior P3b predicted by the indepen-
dent coding hypothesis43, but this analysis included both positive
and negative outcomes and cannot disambiguate potential
contributions of a RewP specific to positive RPEs.

The temporal coincidence of significant model coefficients for
RPE value and magnitude in the epoch between FRN and P3
peaks suggests that previous findings supporting the salience
theory could be explained by component overlap confounds,
particularly since FRN and RewP amplitude is commonly
quantified as the mean amplitude from ~228–344 ms38, an epoch
that encompasses both FRN and P3 activity. To compare our
time-resolved single-trial regression analyses to metrics more
commonly used in the field, we computed mean window and
peak-to-peak estimates of the FRN, as well as mean window
measures of the P3 (Supplementary Fig. 3a). As predicted, RL
model coefficient results using traditional mean window and
peak-to-peak estimates of the FRN confirmed the strong RPE
value effect. However, they also show significant but divergent
non-valenced effects, with mean window predicted by probability
and peak-to-peak predicted by RPE magnitude (Supplementary
Fig. 3b,3c). Importantly, these conflicting non-valenced FRN
effects using traditional methods were unreliable across

Fig. 1 Task design, performance, and behavioral modeling of prediction errors. a Participants pressed a button timed to the estimated completion of
lights moving around a circle. The gray target zone cue displayed error tolerance around the 1 s target interval. An example participant RT distribution is
centered at the target interval. Audiovisual feedback is indicated by the tolerance cue turning green for wins and red for losses. A black tick mark displayed
RT feedback. On 12% of randomly selected trials, blue neutral feedback was given with no RT marker. b Example recording session for one participant for
training (first 35 trials) and experimental blocks. Staircase adjustments of tolerance are plotted as a solid purple line, and the dotted purple line indicates
the minimum bound on tolerance at ±15ms. Accuracy for easy and hard blocks is plotted as white circles on gray backgrounds and black diamonds on
white backgrounds, respectively. c Separate staircase procedures resulted in group accuracies of (mean ± SD) 82.7 ± 1.7% for easy and 18.1 ± 2.5% for hard
blocks. Error bars indicate standard deviation across participants, with individual participant (n= 32 participants) accuracy overlaid as gray lines. d
Tolerance and outcome data for the same example participant. Larger markers show block-level accuracy; smaller markers show binary single-trial
outcomes. Model fit using logistic regression provides single-trial estimates of win probability, which can be converted to expected value. Inset shows win
probability curves across all 32 participants.
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replication cohorts (see Supplementary Table 1 for RL model
results across cohorts for FRN and P3 mean window and peak-to-
peak metrics). Similarly, RPE magnitude was significant in the RL
model regression for the P3 mean window analysis at Pz in both
cohorts (Supplementary Fig. 3d), but RPE value was significant in
only one cohort, confirming that mean window and peak-to-peak
metrics are less reliable.

Finally, the probability predictor reveals a significant relation-
ship to ERP amplitude that peaks later at 380 ms in Fz (βmax=
−2.842, qFDR < 10−10; Fig. 2c). Observing this late, frontal
positivity in response to unlikely outcomes was possible because
we dissociated outcome probability and RPE magnitude as two
distinct sources of salience.

Time-resolved model comparisons for Fz and Pz (Fig. 2e,f,
respectively) are plotted as Akaike Information Criterion (AIC)
values relative to a baseline model containing only random
intercepts capturing each participant’s mean amplitude across
conditions. Lower AIC values mean better model performance.
Figure 2e shows that RL-based models including RPE value
capture more variance in EEG amplitude during the FRN window

at Fz than outcome value or valence models (see Supplementary
Fig. 4c–f for outcome-based model coefficients; see Supplemen-
tary Table 2 for AIC model comparison values averaged within
peak model coefficient windows). The model with binary
outcome valence performs better than the outcome-based model
with scalar value, and these model results hold for both mean
window and peak-to-peak estimates of FRN amplitude (Supple-
mentary Fig. 3e,f). The only difference between outcome value
and outcome valence models is whether neutral trials in easy and
hard blocks are treated as outcomes with identical values (zero) or
as omissions of expected rewards with opposite valence (1 or −1).
Similarly, Fig. 2f shows that the RL-based models outperform the
outcome value and valence models at Pz throughout the FRN and
P3 epochs, which is confirmed by model comparisons using the
mean window estimates of P3 amplitude in Supplementary
Fig. 3g. These results confirm that FRN and P3 ERPs are best
viewed through the predictive coding lens of PEs.

Since RPE magnitude and probability are correlated (see
Methods), we also used model comparisons as a control to
examine whether the variance explained by these two non-

Fig. 2 Single-trial modeling of ERP amplitude reveals a sequence of prediction errors. a Feedback-locked grand-average ERPs at Fz plotted for each
condition, with shaded error bars indicating standard error of the mean across 32 participants. FRN is evident as prominent negative deflections at Fz ~200
ms post-feedback. Vertical black line shows feedback onset. Gray shading shows 100ms window used to average FRN amplitude. b Same for posterior
electrode Pz, which shows large P3 positivities at ~300ms. Gray shading shows 100ms window used to average P3 amplitude. c Model coefficients from
single-trial multiple regression at each time point from 50 to 500ms at Fz show a strong early peak of valenced RPE in the FRN window, followed by later
probability effect in the P3 time range. Bolding indicates significant timepoints (qFDR < 0.05; n= 32 participants). Gray shading shows 50ms windows used
to average ERP amplitude at maximal RPE value and probability effects. d Same for electrode Pz. Note the increased non-valenced RPE magnitude
coefficient in the P3 window. Gray shading shows 50ms window used to average ERP amplitude at the maximal RPE magnitude effect. e Comparison of
model performance at Fz over time via Akaike Information Criteria (AIC; more negative indicates higher performance) relative to baseline model. RL model
with RPE value beats outcome-based models in the FRN window, and model performance drops in the P3 window when probability is excluded. f Same for
Pz. RL model performance drops during P3 peak window when RPE magnitude is excluded, while RL model performance drops during late positivity window
when probability is excluded. See Supplementary Fig. 5 for RL model performance (R2) across electrodes, which peaks in the FRN time window for Fz and
the P3 time window for Pz.
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valenced salience PEs dissociated in time and space. When the
RPE magnitude predictor is excluded, RL model performance
drops at Pz near the peak of the P3 (Fig. 2f). When the probability
predictor is excluded, performance drops later during the
downslope of the P3 at Pz and from ~350–450 ms at Fz
(Fig. 2e,f; model coefficients plotted in Supplementary Fig. 4g–j),
confirming that these two sources of salience correspond to
separable EEG components (see also dissociations with Oddball
ERP correlations below).

Collectively, these results characterize a cascade of multiple PEs
unfolding during the FRN and RewP epochs in reward processing
EEG, starting with an early, frontal, valenced RPE value signal in
the FRN time window, followed by a later, posterior, non-
valenced RPE magnitude effect in the P3 window, and finally a
later, fronto-central probability effect. These findings replicate
evidence supporting the RL account of the FRN as a scalar,
quantitative RPE instead of binary valence35–37 and the
independent coding proposal’s separation of early valenced
effects in the FRN window from two later non-valenced P3
effects43,45. We reassess the interpretations of these effects after
characterizing their spatial and frequency distributions, their
correspondence with benchmark N2 and P3 ERPs from the
oddball task, and most importantly when separating losses and
wins to avoid confounding overlapping FRN and RewP ERPs.

Scalp topography dynamics delineate PE components. To fur-
ther disentangle the spatial topographies of sequential PE effects
and relate them to known N2 and P3 scalp distributions, we
applied single-trial multiple regression analysis across all elec-
trodes in three 50 ms windows centered on the peaks of each
model coefficient from the time-resolved analysis (see highlighted
windows in Fig. 2c,d). Model coefficients for valenced RPE value,
non-valenced RPE magnitude, and outcome probability are
plotted as scalp topographies in Fig. 3 (see Supplementary Fig. 6
for evoked amplitude topographies by condition). This analysis
confirmed that the largest effect was the valenced RPE value in
the early window at anterior frontal sites (βmax= 3.887 in the 216

ms window at electrode F1, qFDR < 10−10), which then dropped
off in magnitude in the middle window before a smaller resur-
gence in the late window. The non-valenced RPE magnitude
effect was maximal in the middle 308 ms window at posterior
parietal electrodes (βmax= 1.859 at electrode PO3, qFDR < 10−10).
Finally, the probability effect was focused in fronto-central elec-
trodes in the later 380 ms window (βmax=−2.523 at electrode
C4, qFDR < 10−10). The spatio-temporal distributions of these
effects confirms the association between valenced RPE value and
the early FRN epoch in frontal electrodes34,35,74, while non-
valenced RPE magnitude shows a posterior, parietal distribution
matching the P3b24,26.

Single-trial regression of time-frequency power dissociates PE
effects in theta and delta bands. Although the N2/FRN and P3/
RewP are defined as ERP phenomena, their waveform char-
acteristics are associated with theta (4–8 Hz) and delta (1–4 Hz)
frequencies, respectively26,30,51,65,77. To further dissociate con-
tributions of RPE value, RPE magnitude, and probability to these
overlapping components, we extracted feedback-locked time-
frequency representations (TFRs) of evoked power at Fz (Sup-
plementary Fig. 7) and Pz (Supplementary Fig. 8). Single-trial
multiple regression with our RL model across wins and losses
revealed a strong negative relationship between RPE value and
theta power (βmax=−1.405 at [292 ms, 6 Hz] in electrode Fz,
qFDR < 10−10; Fig. 4a). The delayed peak of this theta effect
relative to the FRN latency highlights the spread of this RPE value
effect spanning across several cycles of theta (see also theta fre-
quency fluctuations of RPE value coefficients in Fig. 2c). In
contrast, RPE magnitude significantly predicted posterior delta
power (βmax=−0.447 at [260 ms, 3 Hz] in electrode Pz, qFDR=
5.05 × 10−10; Fig. 4b), consistent with the upward ramp of the P3.
Probability best predicts 4 Hz power at 392 ms post-feedback
(βmax=−0.871 in electrode Fz, qFDR < 10−10; Fig. 4a). Overall,
more negative RPEs predicted stronger theta power in accordance
with the RL theory of the FRN35, while delta power associated
with P3 ERPs increased with larger RPE magnitudes and more
unlikely events as predicted by the independent coding
hypothesis43.

Correlations with Oddball task ERPs quantify contributions of
overlapping components. To further disambiguate the con-
tributions of overlapping FRN and P3 ERPs to RPE value, RPE
magnitude, and probability effects, we compared feedback-locked
ERPs in the Target Time task to reference N2 and P3 ERPs in a
canonical Oddball task. A subset of the Target Time participants
(n= 22) performed a three-tone Oddball task in which they
attended to a stream of audiovisual stimuli and were instructed to
press a button after rare targets (12.25% of trials) among common
standard (75.5% of trials) and rare, task-irrelevant novel stimuli
(12.25% of trials; see Methods for details). Figure 5a shows frontal
Oddball ERPs at Fz with a prominent N2c in the target condition
and a smaller N2b in the novel condition, both associated with
control allocation in response to unexpected rare stimuli but
differing in task contingencies31,78. Posterior Oddball ERPs at Pz
in Fig. 5b and spatial topographies in Fig. 5c show novel stimuli
elicit a central P3a associated with bottom-up orienting of
attention, and target stimuli elicit a classic posterior P3b related to
top-down model updating26. Since the timing, topographies,
frequency characteristics, and potential intracranial sources of the
FRN and RewP are shared with ERPs in the larger families of N2
and P3 components, respectively31,47,67,68,78–80, we used indivi-
dual participant ERPs averaged in a 50 ms window centered on
the grand-average N2 and P3 peaks in target and novel Oddball
conditions as benchmarks to determine the relative contributions

Fig. 3 Spatio-temporal dynamics of prediction errors across ERP scalp
topographies. Single-trial regression over all 64 electrodes is computed for
three 50ms windows centered on the largest peak in model coefficients for
RPE value (216ms at Fz), RPE magnitude (308ms at Pz), and probability
(380ms at Fz) from Fig. 2. Stars indicate significant electrodes (qFDR <
0.05; n= 32 participants). Valenced RPE value shows a frontal distribution
in the early window (top left). Non-valenced RPE magnitude is maximal at
posterior electrodes in the middle window (center). Probability is maximal
at fronto-central sensors in the late window (bottom right). See
Supplementary Fig. 6 for evoked potential voltage topographies.
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of N2-like and P3-like activity to ERPs underlying the PE effects
observed in our multiple regression analyses (as highlighted by
colored window overlays in Fig. 2c,d).

Group-level correlations between Oddball ERPs and Target
Time condition ERPs averaged at Fz in the RPE value peak
window showed significant relationships between both Novel
N2b and Target N2c ERPs and negative RPE conditions, with
weaker but significant relationships between the stronger Target
N2c and positive valence RPE conditions (Fig. 5d). These
relationships suggest strong contributions of N2-like activity to
the RPE value epoch in the Target Time task, particularly for
conditions requiring control allocation such as button presses to
targets in the Oddball task and adjustments in RTs following
losses in the Target Time task (see elevated FRN mean window
and peak-to-peak estimates in Supplementary Fig. 3a). However,
significant correlations between the fronto-central P3a from the
novel Oddball condition and four out of six Target Time
conditions indicate additional influences of P3-like activity,
reinforcing the risks of interpreting reward processing in the
FRN/RewP epoch as a unitary phenomenon.

Comparisons between Oddball and Target Time ERPs at Pz in
the RPE magnitude window show significant correlations
specifically with Novelty P3a and Target P3b ERPs (Fig. 5e).
Interestingly, the fronto-central Novelty P3a correlated with all
Target Time conditions except hard losses, while the posterior
Target P3b correlations were weaker and only significant for wins
and easy neutral outcomes, despite these analyses being
conducted at posterior Pz where the RPE magnitude effect was

maximal. No Oddball ERPs correlated significantly with Target
Time ERP amplitudes in the later probability window at Fz
(Fig. 5f). These results suggest the RPE magnitude effect is mainly
driven by P3-like activity, while the later frontal probability effect
has no clearly analogous ERP in the Oddball task.

Separating outcomes by valence dissociates FRN and RewP
RPE magnitude effects. The mixture of N2 and P3 contributions
to the RPE value window identified by Oddball ERP correlations
revives concerns that the sequence of PE effects described above
may be confounded by component overlap. In particular, our
multiple regression results thus far account for competition
between valenced and non-valenced PE predictors, but like dif-
ference waves, they still rely on contrasts between negative and
positive outcomes that cannot distinguish between overlapping
ERPs. To disentangle the roles of FRN and RewP ERPs in the
sequence of PEs described above, we repeated our ERP and TFR
multiple regression analyses separately for negative (easy loss,
easy neutral, and hard loss) and positive (easy win, hard win, and
hard neutral) outcomes using only RPE magnitude and prob-
ability predictors to avoid multicollinearity.

Model coefficients at Fz confirm that RPE magnitude exerts
opposite effects across negative and positive valenced outcomes in
the FRN window (Fig. 6a,b). On negative outcomes, the RPE
magnitude predictor shows a significant negative effect in the FRN
window only at frontal electrode Fz (βmax=−1.833 at 216ms,
qFDR < 10−10; Fig. 6a) but also shows notable rhythmic

Fig. 4 Time-frequency power signatures of prediction errors. a Model coefficients fit to evoked power at each time-frequency point for frontal electrode
Fz, with nonsignificant points (qFDR > 0.05; n= 32 participants) plotted opaquely. Red stars indicate maximal coefficients for each model predictor across
both electrodes. Valenced RPE value coefficients peak in frontal theta power, and non-valenced probability coefficients peak later in frontal delta power. b
Same for Pz. Non-valenced RPE magnitude coefficients peak in posterior delta power.
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fluctuations such that the maximal effect is at a second peak at
384ms (βmax=−1.953 at Fz, qFDR < 10−10). On positive out-
comes, RPE magnitude shows a sustained positive ramp that
builds up to a maximum in the P3 window at posterior site Pz
(βmax= 2.743 at 312ms, qFDR < 10−10; Fig. 6b), with a similar but
smaller significant effect at frontal Fz (βmax= 2.065 at 272ms,
qFDR
< 10−10). In contrast, the late probability effect has a consistent
sign and frontal distribution across positive and negative domains
(positive: βmax=−2.646 at 336ms in electrode Fz, qFDR < 10−10;
negative: βmax=−3.742 at 392ms in electrode Fz, qFDR < 10−10).

Modeling ERP amplitude topographies averaged in 50 ms
windows centered on the peaks of the original RPE value, RPE
magnitude, and probability effects in Fig. 2 confirms the
distinct spatio-temporal dynamics of RPE magnitude effects for
negative and positive feedback. For negative outcomes, RPE
magnitude model coefficients show significant negative effects
in fronto-central sensors in the early FRN window at 216 ms
(βmax=−1.556 at electrode F2, qFDR < 10−10) which dissipate
in the middle P3 window and return to their strongest levels at
the late 380 ms window (βmax=−1.684 at electrode C4, qFDR <
10−10; Fig. 6c). For positive outcomes, RPE magnitude shows
significant positive model coefficients that are maximal at
central and posterior sites in the middle P3 window (βmax=
2.683 at electrode CP1, qFDR < 10−10; Fig. 6d). As in the ERP
time-domain analyses, the probability predictor shows a
significant negative effect strongest in the late window at
fronto-central sensors regardless of valence (negative: βmax=
−3.093 at 380 ms in electrode F1, qFDR < 10−10, see Fig. 6c;
positive: βmax=−2.099 at 380 ms in electrode C4, qFDR < 10−10,
see Fig. 6d).

These ERP results suggest qualitative differences in responses
to positive and negative feedback, and separate regressions of
TFR power for positive and negative outcomes reveal a
dissociation of theta and delta power underlying the FRN and
RewP components driving these RPE effects. Specifically, RPE
magnitude shows a strong positive effect in frontal theta
frequencies on negative trials (βmax= 0.823 at [292 ms, 7 Hz] in
electrode Fz, qFDR < 10−10), but this effect shifts to posterior
delta power on positive outcomes (βmax= 0.871 at [260 ms, 3
Hz] at Pz, qFDR < 10−10). Again, the late probability effect
shows a consistent negative effect strongest in delta frequencies
at Fz that is stable regardless of valence (negative outcome:
βmax=−0.734 at [416 ms, 4 Hz] at Pz, qFDR < 10−10; positive
outcomes: βmax=−1.057 at [388 ms, 4 Hz] at Pz, qFDR < 10−10).
In sum, the large valenced RPE value effect seen when
contrasting wins and losses in the FRN/RewP window is
composed of the superposition of two separate non-valenced
RPE magnitude effects: early frontal theta activity drives
negative FRN amplitudes on negative outcomes, and prolonged,
more posterior delta activity increases positive RewP
amplitudes.

ERP PE sequence results are robust to biases in subjective
reward expectations. Reward expectations are as critical to RPEs
as the outcome, and failure to account for differences in these
predictions across paradigms contributes to the disagreements in
the reward EEG literature. For example, comparing ERPs fol-
lowing easy and hard neutral trials with identical feedback but
opposite reward expectations showed FRN latency shifts
according to RPE valence that matched those observed in losses
and wins, respectively (see Supplementary Note 1). Furthermore,

Fig. 5 ERP comparison between Target Time feedback and 3-tone Oddball tasks. a Stimulus-locked grand-average Oddball ERPs at Fz plotted for each
condition, with shaded error bars indicating standard error of the mean across 22 participants. N2 is evident ~250ms in target and to a lesser extent in
novel conditions. b Same for Pz. P3 is evident at ~350ms in target and novel conditions. c Spatial topographies of grand-average ERPs averaged during N2
(200–300ms) and P3 (300-450ms) windows. Note the posterior distribution of the Target P3b and central distribution of the Novel P3a. d Correlation
matrix between N2 and P3 ERPs in Oddball task and mean amplitude of 50ms window centered on maximal RPE value effect at Fz in Target Time
conditions. Asterisks indicate significance at qFDR < 0.05 (*), qFDR < 0.01 (**), and qFDR < 0.001 (***) across 22 participants. Note strong correlation
between Oddball N2s and Target Time conditions with negative valence, especially for the Oddball Target N2c. e Same but correlating N2 and P3
amplitudes from Oddball task with mean amplitude of 50ms window centered on maximal RPE magnitude effect at Pz in Target Time conditions. f Same
but correlating N2 and P3 amplitudes from Oddball task with mean amplitude of 50ms window centered on maximal probability effect at Fz in Target Time
conditions.
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previous work has indicated participants’ subjective reward
expectations may deviate from objective probabilities established
by the experimental design or modeled from behavior39,70. To
assess whether this issue impacted our results, we collected an
additional behavioral dataset to measure subjective ratings of
reward expectations before feedback (see Methods). Ratings
tracked difficulty (easy/hard) and trial outcomes (win/loss) and

revealed subjective biases such that participants underestimated
their probability of winning in easy conditions and overestimated
it in hard conditions (Supplementary Note 2 and Supplementary
Fig. 10). The EEG results in Fig. 2 were reproduced when
incorporating similar biases into our RL model, providing evi-
dence that our conclusions are robust to differences between
subjective and model-based reward expectations.
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Discussion
We tested competing valenced and non-valenced explanations of
reward feedback-locked EEG signatures by separating overlapping
ERP components and cognitive variables using single-trial beha-
vioral modeling and multiple regression across temporal, spatial,
and spectral dimensions. Analyses using the standard approach of
combining wins and losses implied early frontal theta activity in
the FRN epoch represented valenced, scalar RPE value, and sub-
sequent posterior delta band activity at the P3 peak indexed non-
valenced RPE magnitude, seemingly supporting a combination of
classical RL and independent coding theories35,43. However,
repeating the regression analyses for wins and losses separately
revealed the early valenced RPE value effect was an artifact of
overlap between two distinct non-valenced RPE magnitude effects,
providing support for both the salience account6,28 and a revised
version of the RL theory46,47. Specifically, our data confirm recent
studies arguing negative RPEs elicit a frontal negativity and theta
power consistent with the FRN62,63,74,81,82, while positive RPEs
elicit a slower, ramping positivity in delta frequencies consistent
with the RewP46,50,51,53,61,63,69. Correlations with benchmark
ERPs from an Oddball task in the same participants highlighted
mixed contributions of both N2-like and P3-like components in
the window of the original valenced RPE value effect, consistent
with FRN and RewP overlap. In contrast, we also observed a novel
later fronto-central positivity on the downslope of the P3 that
tracks outcome probability, was stable across wins and losses, and
had no corresponding Oddball ERP. Notably, traditional mean
window and peak-to-peak ERP metrics were less reliable than
single-trial modeling and failed to disentangle these overlapping
components and their relationships to PEs. Finally, model com-
parisons showed PEs captured EEG features better than outcome
properties, and reward expectations modulated FRN latency on
neutral trials, emphasizing that EEG signatures of reward pro-
cessing are best viewed through the lens of predictive coding.
Below, we discuss how our analysis strategy addresses core theo-
retical and measurement issues in the literature and the implica-
tions of our findings on the nature of reward processing EEG
components and their proposed relationships to learning signals.

Methodological implications. Methodologically, our behavioral
modeling and multi-dimensional regression approach improves
on traditional ERP analyses in several ways. In terms of theory,
many reward EEG studies use categorical ANOVA statistics40,79,82

and test ERP sensitivity to experimental manipulations of out-
come valence, magnitude, and probability that indirectly reflect
hypothesized PE computations49,51,52. Instead, we directly test the
central tenets of the main proposals in the field by combining

single-trial estimates of RPEs derived from individual participant
behavior into mixed-effects multiple regression analyses providing
several advantages. Regression analyses incorporate directional
hypotheses with continuous instead of categorical variables, pro-
duce signed model coefficients that obviate the need for post-hoc
tests, and provide flexibility to analyze negative and positive
outcomes separately and avoid confounding the overlapping FRN
and RewP in a win-loss difference wave contrast. In contrast to
single variable correlations, multiple regression partitions variance
appropriately between the model’s competing valenced and non-
valenced predictors in a single analysis. Including random inter-
cepts for each subject in a mixed-effects model also enhances
statistical power to allow high-resolution analyses72,73. Impor-
tantly, regression frameworks provide formal model comparisons
that quantitatively determined that EEG signatures of reward
feedback are better described by modeling latent cognitive vari-
ables in a predictive coding framework65,75,76 than by the
experimentally manipulated outcome features used in standard
analyses43,51,52.

Regarding ERP measurement, single-trial regression at each
time, electrode, and time-frequency point provides the high
spatio-tempo-spectral resolution needed to disentangle multiple
overlapping components17,83,84. In contrast, traditional mean
window and peak-to-peak metrics provide a single measurement
influenced by mixtures of components, usually averaged across
trials and tested at the group level38. For the FRN window, these
traditional methods replicated the valenced RPE value regression
result, but also found significant non-valenced effects of RPE
magnitude or probability depending on the metric, suggesting
potential confounds from overlapping components. Notably,
these non-valenced effects using traditional metrics were the only
results that did not replicate across both cohorts, potentially due
to their lower statistical power relative to the single-trial mixed-
effects modeling. Also, mean window and peak-to-peak measure-
ments are usually aligned to observable peaks, a strategy that
would have failed to detect the late probability effect. In sum,
these results highlight the benefit of unbiased, high-resolution,
multi-dimensional regression analyses for separating and inter-
preting overlapping components.

Theoretical implications: Predictive coding. Our results
emphasize the importance of accounting for reward expectations
when interpreting reward processing EEG. Quantitative model
comparisons showed a model comprised of outcome value,
magnitude, and probability—features commonly associated with
the FRN and RewP but that do not account for expectations—
performed worse than the RL-based model across all ERP

Fig. 6 Separating outcomes by valence disentangles overlapping ERP and time-frequency power signatures of prediction errors. Left column is for
negative outcomes (easy loss, easy neutral, and hard loss), while right column shows results for positive outcomes (easy win, hard win, and hard neutral). a
Model coefficients for effects of RPE magnitude and probability on ERP amplitude in only negative outcomes at frontal site Fz (top) and posterior site Pz
(bottom). Bolding indicates significant timepoints (qFDR < 0.05; n= 32 participants). ERP amplitude significantly decreases with RPE magnitude in the early
FRN window only at Fz, and this effect fluctuates rhythmically to rebound and peak at a later epoch. b Same for only positive outcomes. RPE magnitude
shows a different pattern than on negative outcomes, with a significant positive relationship with ERP amplitude peaking in the RewP/P3 window and at
posterior Pz. In contrast, the late, frontal probability effect shows a consistent late, negative relationship with amplitude across positive and negative
valence. c Single-trial regression over all 64 electrodes is computed for only negative outcomes in the same three 50ms windows from Figs. 2 and 3. Stars
indicate significant electrodes (qFDR < 0.05; n= 32 participants). RPE magnitude shows significant negative effects in frontal sensors during the early and
late windows, while probability shows a strong negative effect in fronto-central sites in the late window. d Same for only positive outcomes. The late,
fronto-central negative effect of probability matches negative outcomes, but RPE magnitude effects are strongest in central and posterior sensors in the
middle window. e Model coefficients fit to evoked power on negative outcomes for frontal electrode Fz and posterior electrode Pz, with nonsignificant
points (qFDR > 0.05; n= 32 participants) plotted opaquely. Red stars indicate maximal coefficients for each model predictor across both electrodes. RPE
magnitude coefficients peak in frontal theta power, and probability coefficients peak later in frontal delta power. f Same for positive outcomes. The maximal
RPE magnitude effect shifts to delta frequencies in posterior channels, indicating distinct mechanisms for RPE encoding on wins and losses. In contrast,
probability effects maintain their late frontal delta distribution.
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features. The outcome-based model was improved when outcome
value was replaced with outcome valence to account for different
reward expectations on neutral trials in easy and hard conditions,
although this outcome valence model was still worse than the RL
model based on PEs. The importance of predictive coding was
especially apparent on neutral trials with identical outcomes but
different feedback valence based on expectations. FRN peak
latencies were modulated by RPE value, and similar to losses and
wins, FRN peak latency was earlier for neutral feedback with
negative than positive RPEs. However, Williams et al. found an
opposite FRN latency shift with wins occurring earlier than losses
in a large (n= 500) gambling dataset using only visual
feedback54. The latency of FRN and RewP ERPs in our data are
also earlier than reported in recent meta-analyses38, likely because
feedback in our task includes auditory components, which gen-
erate faster FRN latencies33. These discrepancies and the presence
of multiple overlapping components indicate that although our
latency results provide evidence of the influence of reward pre-
dictions on neutral trials, they should be interpreted with caution
and may not generalize to paradigms with different feedback
stimuli or task demands58,60,85.

In contrast to these different brain responses to neutral
outcomes, post-experiment survey data indicated participants’
explicit interpretations of neutral feedback did not differ across
easy and hard conditions. This finding supports assertions that
the FRN is generated by a habitual, model-free reward learning
circuit that bypasses conscious representations of goal-directed
task structure and instead relies on implicit associative learning
mechanisms37,71. Nonetheless, previous work indicates that
failure to account for subjective expectations can obscure
reward EEG effects and confound their interpretation70. To
address this issue, we collected subjective ratings of win
probabilities in an additional behavioral experiment that
showed participants’ subjective expectations tracked our
difficulty manipulation and their likelihood of winning or
losing. We employed a control RL model incorporating
subjective biases representative of those ratings to eliminate
concerns that differences between subjective and model-based
reward expectations influenced our EEG conclusions. However,
these behavioral data and modeling analyses do not account for
differences in subjective biases across participants or predic-
tions on individual trials (e.g., accurately identifying errors on
easy trials before feedback). Future studies may define how
these effects modulate EEG signatures of PEs.

Theoretical implications: ERP components. Taken together,
these observations clarify core issues in human reward processing
EEG, confirming and extending recent proposals by disentangling
the sequence of scalp ERP and TFR signatures unfolding after
feedback and assessing their relationships to various cognitive
PEs and canonical N2 and P3 ERPs. We employed mean window,
peak-to-peak, and high-resolution regression analyses across wins
and losses aiming to replicate commonly used win-loss difference
waves38,46,60. Our results support a combination of the early,
classical RL and independent coding theories, mainly that the
FRN window represents a scalar, quantitative RPE instead of
binary valence and the P3 represents non-valenced RPE magni-
tude. The overlapping epochs of significance for valenced RPE
value and non-valenced RPE magnitude and probability pre-
dictors may also explain why some studies find no difference of
valence and instead support the salience account, particularly
since mean window and peak-to-peak metrics vulnerable to P3
confounds introduce significant non-valenced effects in our data.
However, these approaches failed to capture the true nature of
these components.

As suggested by the original authors of the RL theory,
interpretations of any analysis that fails to separate wins and
losses are flawed because they confound the FRN and
RewP contributions on negative and positive outcomes,
respectively47,55,63. Instead, temporal and spatial overlap of two
distinct quantitative but non-valenced RPE magnitude effects in
frontal theta on losses and posterior delta on wins creates the
appearance of a valenced RPE value effect. Note that symmetric
deflections in opposite directions caused by the FRN and RewP
could potentially cancel out the quantitative tracking of RPE
magnitude and explain why some authors observed only binary
valence in this time window36,43–45.

Cavanagh et al. and others have argued the frontal theta
response underlying the FRN is an instance of a general MPFC
control mechanism elicited by feedback that requires
adaptation28,29,67,78. Time estimation tasks like ours employ an
implicit win-stay lose-switch strategy in which control adjust-
ments are needed after losses but not wins. Consequently, the
FRN mainly appears following negative outcomes, although we
do observe weak FRN-like deflections after positive feedback,
potentially because vectoral RT feedback allows adjustments of
motor timing even when previous responses were correct (e.g.,
when the target zone is large on easy trials). Importantly, this
argument can also explain evidence supporting the salience
theory based on paradigm differences in which conditions elicit
non-valenced control PEs that trigger MPFC theta responses6,28.
For example, FRN and theta responses have been observed
following surprising positive outcomes in probabilistic learning
tasks when unexpected rewards may indicate shifting reward
contingencies that require modifying decision policies, thereby
dissociating control PEs from negative valence29,41,42,65,66. These
results suggest the FRN is not specific to negative RPEs as
proposed by the original RL theory but is instead better described
by a version of the salience theory in line with action-outcome
PEs from the PRO model6.

An outstanding question in the reward processing EEG
literature is the nature of the RewP and other P3-like
components. Our data substantiate claims that RPE magnitude
on positive outcomes modulates a delta frequency P3-like
component matching the RewP46–48,63,69. This effect appeared
strongest in posterior electrodes similar to the topography of a
P3b when analyzing wins and losses together. However, when
examining only positive outcomes, the RewP had a more central
distribution closer to a P3a, matching previous reports46,51,63,69.
Further, Oddball ERP comparisons showed activity in this epoch
correlated more with the P3a than with the P3b.

Whether the RewP is specific to positive RPEs is complicated
by the fronto-central evoked positivity following the FRN on
negative outcomes that also increases with RPE magnitude (see
Fig. 2 and Supplementary Fig. 9). Previous studies analyzing wins
and losses together have interpreted these two positive peaks as
the same P3 component representing non-valenced RPE
magnitude in both conditions along the lines of the independent
coding hypothesis43,74,86. However, our data show stronger theta
than delta power representations of RPE magnitude at that time
point for negative outcomes (see Fig. 6e), as well as rhythmic
fluctuations at theta frequencies in frontal RPE magnitude
coefficients (Fig. 6a). These observations fit with an alternative
interpretation that this positive peak on negative trials is not a P3
but instead due to phase reversal of the theta rhythm underlying
the FRN53,64. This later interpretation would also explain why the
RPE magnitude effect is stronger for losses in frontal sensors
where theta is maximal but stronger for wins at posterior sensors
where delta is maximal. Importantly, if the FRN and the following
positivity are in fact generated by the same phase reset in MPFC
theta activity—which is a more parsimonious explanation—they
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should not be interpreted as unique components representing
different aspects of PEs56–58. These observations also imply the
theta response on negative trials may mask the RewP in
commonly used difference wave contrasts. Notably, when the
RewP is defined as the peak of the win-loss difference wave, it is
maximal on the upslope of the P3 and at Cz54, which are the
precise points of maximal spatial and temporal overlap between
FRN and P3 components. Taken together, these data suggest the
RPE magnitude effect in our data is not a single non-valenced P3
as posited by the independent coding hypothesis but is due to
spatio-temporal overlap between the P3-like RewP specific to
positive RPEs and the positivity generated by phase reversal of
FRN-linked theta tracking negative RPEs53,54,62.

Our experimental design and modeling approach dissociated
outcome probability as a second source of non-valenced salience,
which has recently been shown to modulate DA coding of RPEs
in monkeys87. Our multiple regression analyses revealed this
predictor captured a late frontal positivity in delta frequencies
with no observable peak in grand-averaged ERPs and no direct
correlation with any Oddball ERPs, which to the best of our
knowledge has not been described previously. The latency of this
late frontal positivity matches the timing of a late probability
effect identified in the meta-analysis reported by Sambrook &
Goslin38, but its relationship to previously reported ERPs is
unclear. Its anterior topography and sensitivity to relatively novel
feedback fit the description of the classic P3a26, but previous
studies have ascribed the P3a label to the positivity following the
FRN74,86. Also, frontal P3a ERPs typically occur before posterior
P3b ERPs, which contradicts the order of posterior RPE
magnitude and anterior probability positivities in our results.
Furthermore, this effect did not correlate with the novelty P3a
from the Oddball task, although it is possible other components
such as the negativity driven by the second cycle of frontal theta
may have obscured this relationship. Alternatively, our late
probability effect could be related the late positive potential
(LPP), a positive ramping ERP that starts ~400–600 ms after
feedback and is enhanced by motivational importance, but this
seems unlikely given the LPP’s posterior distribution and
sustained time course of up to several seconds88. It is also
possible that this effect is an artifact of correlations between RPE
magnitude and probability in our model, but its replication across
cohorts and in wins and losses separately, as well as the
dissociable spatio-temporal patterns of model performance when
excluding either source of salience argue against this possibility.
Ultimately, this late fronto-central probability effect may
correspond to a P3a-like ERP with altered timing due to the
specific design of our task, but this finding should be replicated
using different paradigms.

Understanding the nature of these different components is
important for maximizing their potential in clinical applications.
For example, in a population with comorbid anxiety and
depression symptoms performing a probabilistic learning task,
theta power on losses correlated with anxiety subscores while delta
power on wins predicted depression, highlighting the dissociable
relationships between these EEG signatures and correlated
dimensions of psychopathology63. Strong links between DA and
reward circuits and the RewP make it a promising biomarker for
mood disorders and addiction46,89,90. DA markers predict
personality traits like extraversion and sensation seeking91,92, as
well as psychiatric risk for schizophrenia93, mood disorders94, and
addiction95. RewP amplitude also predicts extraversion96, depres-
sion symptoms97,98 and onset99, substance misuse100, and may
mediate the relationship between DA and aberrant reward
sensitivity in these disorders101. In contrast, components in the
family of ERPs driven by mid-frontal theta power (e.g., N2, ERN,
FRN) predict anxiety symptoms across multiple psychiatric

conditions102. These theta signals are hypothesized to reflect
enlarged control PEs due to abnormal sensitivity to threat, reward,
and punishment and hyperactive performance monitoring,
resulting in more cautious and avoidant behavior103,104. Finally,
P3 abnormalities are also observed in a host of disabling
neuropsychiatric disorders including substance use disorders105,
bipolar disorder106, and schizophrenia107. Given the complex
relationships between these overlapping components and dissoci-
able dimensions of clinical symptoms, refining specific mappings
between reward and control PEs and EEG features across multiple
dimensions could enhance the power and reliability of these
biomarkers and improve their diagnostic and therapeutic
potential.

In conclusion, our experimental design, computational model-
ing, and signal analysis approach provide a comprehensive
assessment of the sequence of EEG components elicited by
reward feedback and their relationships to control and reward
PEs. Multiple regression analyses across temporal, spatial, and
frequency dimensions of the data and correlations with canonical
N2 and P3 ERPs from the Oddball task elucidate a succession of
overlapping components, each corresponding to distinct PEs. We
demonstrate the pitfalls of using standard mean window, peak-to-
peak, and win-loss difference wave techniques that confound the
early, frontal, theta frequency FRN tracking non-valenced RPE
magnitude on negative trials and the concurrent ramping of more
posterior delta frequency RewP responses driven by RPE
magnitude on positive outcomes. Separating positive and negative
outcomes and distinguishing temporal, spatial, and frequency
dimensions confirmed an updated version of the salience account
of the FRN for negative RPEs that concurs with the PRO model,
provided evidence that positive RPEs elicit a P3-like RewP, and
identified a novel late frontal P3 tracking low probability
outcomes. In summary, we used traditional analyses contrasting
wins and losses to reproduce classical evidence of valenced RPE
value effects in the FRN window and non-valence RPE magnitude
effects in the P3 window that formed the foundations of early RL
and independent coding theories. However, follow-up analyses
separating wins and losses revealed those interpretations were
confounded by overlap of three distinct non-valenced salience
components. Instead, our data corroborate and extend modern
accounts of the FRN as an instance of control PEs generated by
MPFC theta and of the RewP as a P3-like component tracking
positive RPEs. Our findings demonstrate the power of behavioral
modeling and single-trial EEG regression to separate overlapping
components, adjudicate longstanding theoretical debates, and
improve the utility of potential ERP biomarkers for diagnosis and
treatment of neuropsychiatric disorders.

Methods
Experimental model and participant details. Target Time EEG data were col-
lected from 41 adult healthy participants (mean ± SD [range]: 20.5 ± 1.4 [18–25]
years old; 28 women; 37 right-handed) at the University of California, Berkeley.
Oddball EEG data were collected during the same session from a subset of 30 of
these participants, 19 of which were in the replication cohort. A separate cohort of
24 healthy adults (mean ± SD [range]: 30.6 ± 5.3 [21–44] years old; 12 women; 22
right-handed) completed a follow-up remote behavioral version of the Target Time
task to obtain subjective ratings of win probability. All participants reported no
history of psychiatric or neurological disorders and had normal, or corrected-to-
normal, vision. All participants were either financially compensated or given course
credit and gave written informed consent to experimental protocols approved by
the University of California, Berkeley Committees on Human Research.

Method details
Target Time behavioral task. The Target Time interval timing task was written in
PsychoPy108 (v1.85.3) and consisted of eight blocks (four easy and four hard in
randomized order) of 75 trials. Following central fixation for an intertrial interval
randomly chosen as 700 or 1000 ms (an earlier task design also included 200 and
400 ms ITIs for four participants in the initial cohort), trials began with pre-
sentation of counter-clockwise visual motion from the bottom of a ring of dots at a
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constant speed to complete the circle at the 1 second temporal interval. Participants
estimated the interval via button press using an RTBox (v5/6) response device109.
The width of a gray target zone indicated the tolerance for successful responses.
Veridical win/loss feedback was presented from 1800–2800 ms and composed of
(1) the tolerance cue turning green/red, (2) cash register/descending tones auditory
cues, and (3) a black tick mark denoting the response time (RT) on the ring.
Participants received ±100 points for wins/losses. Tolerance was bounded at
±15–400 ms, and separate staircase algorithms for easy and hard blocks adjusted
tolerance by −3/+12 and −12/+3 ms following wins/losses, respectively. Partici-
pants learned the interval in five initial training trials in which visual motion
completed the full circle. For all subsequent trials, dot motion halted after 400 ms
to prevent visuo-motor integration, forcing participants to rely on external feed-
back. Training concluded with 15 easy and 15 hard trials to initialize both staircase
algorithms to individual performance levels. Main task blocks introduced neutral
outcomes on a random 12% of trials that consisted of blue target zone feedback, a
novel oddball auditory stimulus, no RT marker, and no score change.

Oddball behavioral task and performance. The three-tone Oddball target detection
task was written in PsychoPy108 (v1.85.3) and consisted of 10 training trials fol-
lowed by three blocks of 130 trials each. Following central fixation for an intertrial
interval randomly chosen as 1.3 or 1.5 s, participants were presented with either a
standard (75.5% of trials), target (12.25% of trials), or novel (12.25% of trials)
audiovisual stimulus for 0.2 seconds. Participants were required to press a button
using an RTBox (v5/6) response device109 when they detected a target stimulus.
The visual stimulus was the same as the feedback stimulus in the Target Time task
—a ring of dots with a colored bar for the target zone—except without the black
tick mark indicating response time and the green, red, and blue colors of the target
zone were randomized to the standard, target, and novel conditions across parti-
cipants. The accompanying auditory stimulus was a 440 Hz tone for standards,
1760 Hz tone for targets, and a novel, randomly selected oddball stimulus for the
novel condition (different from Target Time neutral stimuli). Group-level accuracy
was 99.68 ± 0.0061% (mean ± SD), and reaction times were 0.364 ± 0.063 s (mean
± SD).

Post-experiment behavioral survey. Immediately following the EEG experiment, 33
participants (n= 24 remain after all exclusion criteria, see Methods) were given a
six-question survey to assess their interpretation of example pictures of winning,
neutral, or losing outcomes with small or large target zones to indicate easy or hard
contexts. This data are only available in a subset of participants because data
collection began three participants before implementation of the Oddball task. In
response to the question “How would you feel about this feedback?”, participants
rated each outcome on a 9-point Likert scale, where 1 indicated “Terrible!”, 5
indicated “I don’t care…”, and 9 indicated “Great!”. Answers are reported after
centering the ratings at the indifference point of 5.

Subjective ratings target time task. In a follow-up remote behavioral experiment,
participants downloaded and completed a version of the Target Time task optimized
to assess subjective ratings of win probability. In this version of the task, participants
completed six blocks of 75 trials after the same 35 training trials and responded using
the mouse. Importantly, after responding but before feedback, participants were asked
on every third trial to rate “How likely is it that you won on this trial by responding in
the target zone?” and responded by clicking on a slider bar rating scale between two
“0” and “100” tick marks at the far left and far right labeled “Definitely Lost” and
“Definitely Won”, respectively. Participants were given 20 seconds to respond before
the rating timed out and feedback was presented. Participants with prior knowledge of
outcome probabilities in the task (n= 2) were excluded after preliminary analyses
revealed qualitatively different (less variable) ratings.

Behavioral modeling. Target Time EEG participants were excluded because of
technical recording errors (n= 4 datasets with missing EEG or metadata necessary
for analysis), excessively noisy data (n= 2 datasets with >3 standard deviation
outliers in number of epochs or timepoints rejected based on visual identification
of large, global artifacts), or poor behavioral performance (n= 3 datasets where RT
outlier exclusion criteria resulted in <20 trials in any condition), leaving 32 par-
ticipants for analysis. All Target Time analyses were piloted on an initial cohort of
15 participants to finalize model parameters and statistical tests before results were
replicated in a second cohort of 17 participants. All findings except point estimate
results in Supplementary Fig. 3b–d successfully replicated across cohorts (see
Supplementary Table 1 for differences in these results across cohorts), so all other
results presented in the text and figures reflect all 32 datasets combined.

The relationship between the tolerance around the target interval and expected
value was fit to individual participant behavior using logistic regression.
Specifically, tolerance was used to predict binary win/loss outcomes across trials
using the MATLAB function glmfit with a binomial distribution and logit linking
function. Trials with neutral outcomes were excluded because they were delivered
randomly and thus not reflective of performance. The probability of winning (pwin)
for each participant was computed as:

pwin ¼ 1
1þ e�ðβ0þβ1 tÞ

ð1Þ

where β0 is the intercept and β1 is the slope from the logistic regression, and t is the
tolerance on a given trial. Expected value was derived by linearly scaling the
probability of winning to the reward function ranging from −1 to 1. RPE value was
then computed by subtracting expected value from the actual reward value, and
RPE magnitude was computed as the absolute value of RPE value. Outcome
probability was simply the proportion of each outcome across easy and hard blocks
separately. See Supplementary Fig. 1 for model predictions by condition.

Although RPE magnitude and probability predictors were correlated (r=
−0.71), variance inflation factors, which measures the degree of collinearity, were
VIFRPEmag= 2.0 and VIFProb= 2.0, which is below even the most stringent
recommended thresholds of 2.5 for excluding them from the same model110.
Nonetheless, the separate contributions of these two predictors were assessed using
versions of the RL model excluding each of these two predictors, and time-resolved
model comparison and coefficient results are plotted in Fig. 2e,f and in
Supplementary Fig. 4g–j, respectively (see below for details).

Notably, this model was fit across all blocks after training under the assumption
that participants learned the task during the 35 training trials, and that the staircase
algorithm was appropriately initialized to the participant’s skill level in the training.
Since our model is fit using behavior over the entire session, it is possible that it
would not describe early trials well, especially if learning occurs over the course of
the session. As control analyses, we computed expected value after replacing single-
trial win probabilities with block-level accuracy, as well as a rolling average of
accuracy on the last 5 or 10 trials. Our single-trial logistic regression model
outperformed all of these control models (higher R2 and lower AIC) for mean
window, peak-to-peak, and single-trial amplitude regression analyses.

To compare our main model based on RL principles to models similar to those
commonly used in the literature, we computed a similar model using only outcome
features that did not account for reward expectations. The Outcome Value model
included the value (−1, 0, and 1 for losses, neutral, and wins), magnitude (0 for
neutral, 1 for wins and losses), and probability (same as above) for each outcome.
The Outcome Valence model was identical to the Outcome Value model except the
value predictor was replaced by a valence predictor that treats neutral trials as
valenced reward omissions, meaning losses and easy neutral outcomes were coded
as −1 and wins and hard neutral outcomes were coded as 1.

Electrophysiology recording. EEG data were recorded using a BioSemi ActiveTwo
amplifier with a 64-channel active electrode system arranged according to the
extended 10–20 system at a sampling rate of 512 Hz. Horizontal electrooculogram
(EOG) were recorded from electrodes placed at both outer canthi, and vertical
EOG were recorded from an electrode placed below the right eye and right fron-
topolar electrode FP2. Additionally, two external electrodes were placed on each
ear lobe for use in offline re-referencing.

Electrophysiology and behavior preprocessing. Preprocessing and analysis used the
Fieldtrip toolbox111 and custom code in MATLAB and Python. EEG data were
bandpass filtered from 0.1–30 Hz, demeaned, re-referenced to the average of both
ear lobe channels, and then downsampled to 250 Hz. Excessively noisy epochs and
channels were removed by visual inspection. Independent component analysis
(ICA) was used to remove artifacts due to channel noise, muscle activity, heartbeat,
and EOG (i.e., components correlated with bipolar derivations of horizontal or
vertical EOG signals bandpass filtered from 1–15 Hz). Trials were segmented from
−0.15 to 2.8 s relative to trial onset, and missing channels were interpolated from
neighboring channels via Fieldtrip function ft_channelrepair. Final quality checks
rejected trials for behavioral outliers (RTs missing, <0.6 s, or >1.4 s) or EEG arti-
facts including muscle activity, large voltage shifts, and amplifier saturation iden-
tified via visual inspection and using the Fieldtrip function ft_reject_visual,
resulting in trial counts ranging from 448–524 (mean ± SD: 498.4 ± 20.1). In the
remote behavioral subjective rating task, outliers were rejected for the same interval
timing response RT criteria and for slow subjective ratings with RTs greater than
three standard deviations from the mean, resulting in 382–450 trials (mean ± SD:
437.1 ± 17.6) and 125–150 ratings per participant (mean ± SD: 143.5 ± 6.2). Odd-
ball EEG preprocessing was identical except trials were initially segmented from
−0.2 to 1.3 s, and RTs were rejected as outliers if less than 0.1 s or greater than 1.3
s, resulting in trial counts ranging from 334-389 (mean ± SD: 379.5 ± 10.9).

Event-related potentials and difference waves. EEG data were realigned to feedback
onset and cut to −0.2 to 1 s. ERPs were calculated for each participant by bandpass
filtering from 0.5–20 Hz, baseline corrected by subtracting the mean of 200 ms
immediately preceding feedback, and averaging across trials. Oddball ERPs were
identical except aligned to stimulus onset.

Difference waves were computed to facilitate visual comparisons to previous
FRN/RewP studies and to valence, magnitude, and probability effects from our
model-based multiple regression results. All difference waves were computed at the
individual level for both Fz and Pz and then plotted as grand-average waveforms
with standard error of the mean across participants. The simplest RewP contrast
was computed by subtracting the ERP averaged over all negative valence conditions
(easy neutral, easy loss, and hard loss) from the ERP averaged overall positive
valence conditions (easy win, hard neutral, and hard win). Outcome valence
difference waves were also computed between condition pairs matched for
outcome magnitude and probability: hard win minus easy loss (large magnitude,
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low probability), easy win minus hard loss (large magnitude, high probability), and
hard neutral minus easy neutral (small magnitude, low probability). Outcome
magnitude difference waves were computed by subtracting small from large
magnitude outcomes matched for valence and probability: easy loss minus easy
neutral (negative valence, low probability) and hard win minus hard neutral
(positive valence, low probability). Outcome probability difference waves were
computed by subtracting likely from unlikely outcomes matched for valence and
magnitude: easy neutral minus hard loss (negative valence, low magnitude) and
hard neutral minus easy win (positive valence, low magnitude).

ERP point estimates and latencies. To facilitate comparisons with prior FRN/RewP
studies, we computed traditional mean window and peak-to-peak point estimates
of FRN amplitude at electrode Fz. The mean window metric was calculated as the
mean amplitude of each participants’ condition-averaged ERPs in a 100 ms window
centered on that participant’s FRN peak latency computed across all conditions.
The peak-to-peak metric was calculated by subtracting the FRN peak amplitude
from the amplitude of the preceding positivity (P2) for each condition and par-
ticipant. To account for variability in ERP waveshapes at the single participant
level, peak-to-peak amplitude was only computed if a positive peak was found in
the interval 100–260 ms post-feedback that preceded a negative peak in the interval
180–300 ms. According to these criteria, peak-to-peak amplitude could not be
reliably computed on 11/192 ERPs. Additionally, the latency of the negative peak in
this analysis was used as the FRN peak latency, which was then normalized within
participant by subtracting the mean latency across all conditions.

To aid interpretation of ERP features underlying model-based results, we
computed reference ERPs in the Oddball EEG data quantified using the mean
across 50 ms windows of condition-averaged participant ERPs. For the Novel N2b
and Target N2c, mean windows were centered on the peak negativity from the
grand-average ERP at Fz between 0.2 and 0.3 s in their respective conditions. For
the Novel P3a and Target P3b, mean windows were centered on the peak positivity
from the grand-average ERP between 0.3 and 0.45 s at Cz and Pz, respectively.

Time-frequency representations. EEG data were realigned and segmented from
−0.2 to 1 s around feedback onset. Spectral decompositions were estimated at each
time point by convolving the signal with a set of complex Morlet wavelets, defined
as complex sine waves tapered by a Gaussian. The frequencies of the wavelets
ranged from 1–12 Hz in 1 Hz linear steps. The full-width at half-maximum
(FWHM) ranged from 1.184–0.096 s with increasing wavelet peak frequency,
which corresponds to three cycles per frequency. Task-evoked power was com-
puted as the square of the magnitude of complex Fourier-spectra and baseline
corrected by decibel conversion relative to a 200 ms baseline immediately preceding
feedback.

Statistics and reproducibility
Time-resolved modeling. We adopted a multiple linear regression framework to
directly compare the predictive power of valenced and non-valenced PEs derived
from our RL-based behavioral model and simple outcome features that do not
account for expectations. Our full RL model combines our single-trial model
estimates of expected value, valenced RPE value, non-valenced RPE magnitude,
and outcome probability in a linear mixed-effects model with random intercepts
for each participant to maximize statistical power by accounting for within par-
ticipant variance. This model was used to predict the temporal evolution of EEG
amplitude at each time point from 50 to 500 ms post-feedback using the MATLAB
function fitlme, which tests significance of model coefficients using two-sided t-
tests under the null hypothesis the coefficient is equal to zero. Resulting p-values
were corrected for multiple comparisons using false discovery rate112 across
timepoints and model predictors. For clarity, any p-values corrected for multiple
comparisons are reported as qFDR throughout the manuscript. These analyses were
run separately for electrodes Fz and Pz to assess frontal FRN and posterior
P3 ERPs.

To compare the performance of our RL-based and outcome-based models, we
ran the same time-resolved regression analyses using Outcome Value and Outcome
Valence models. Model performance was quantified using the Akaike Information
Criterion (AIC), which scores model performance based on variance explained
while penalizing models with extra parameters. Lower AIC values indicate better
model performance. To emphasize differences between models, AIC is reported
relative to a baseline model containing only random intercepts for each participant,
which is equivalent to the mean ERP across all conditions. Finally, the relative
contributions RPE magnitude or probability to predicting ERP amplitude in the P3
window are assessed by reporting AIC of the RL model when leaving out either of
these two correlated predictors.

FRN and P3 point estimate modeling. This modeling procedure was also used to
predict mean window and peak-to-peak measurements of FRN amplitude at
electrode Fz and mean window P3 amplitude at Pz. Since these metrics yield one
value per condition per participant, each model predictor was averaged within
condition for each participant. FDR corrections were applied across model pre-
dictors. AIC is reported for this procedure to compare the RL model with Outcome
Value and Outcome Valence models in the FRN point estimates and the RL model

with and without RPE magnitude and probability predictors in the P3 mean
window analysis. A nearly identical multiple regression analysis was used to predict
FRN peak latency, except the MATLAB function fitglm was used without the
random intercept for participants because peak latencies were already normalized
within participant. A two-sided paired samples t-test was used to test whether FRN
peak latencies were different between neutral feedback in easy and hard conditions.

Topography modeling. To examine the spatial distribution of PE effects on evoked
potentials, ERP amplitudes were averaged for all electrodes in three 50 ms windows
centered on the largest coefficient from the time-resolved regression for RPE value
(216 ms at Fz), RPE magnitude (308 ms at Pz), and outcome probability (380 ms at
Fz). The multiple regression model was then used to predict amplitude at each
channel in each window, and FDR corrections were applied across all channels,
model predictors, and windows.

Time-frequency power modeling. Time-frequency representations were analyzed
using the same mixed-effects multiple linear regression model to predict evoked
power at each time-frequency point from 0 to 500 ms and 1–12 Hz. FDR multiple
comparison corrections were applied across timepoints, frequencies, and model
predictors, again separately for Fz and Pz to assess frontal FRN and posterior
effects. These analyses were repeated for only negative and only positive outcomes
to test whether these results were driven by feedback of one particular valence.

Oddball-Target Time ERP correlations. Post-hoc exploratory analyses compared
Target Time ERP amplitudes in epochs showing maximal RL model-based effects
to canonical Oddball ERPs via inter-participant correlations. These analyses were
conducted in the subset of participants with both Target Time and Oddball EEG
data (n= 22) after excluding one participant for excessive number of trials rejected
due to noise in the Oddball EEG data and another participant for outlier Oddball
behavioral accuracy (both outliers >3 standard deviations from the group mean).
For each Target Time condition, individual participant amplitudes of Novel N2b,
Novel P3a, Target N2c, and Target P3b ERPs were used as benchmarks of parti-
cipant’s N2/P3 amplitudes and correlated with the 50 ms mean window amplitudes
in three epochs used for topography modeling: one at Fz centered on the peak RPE
value effect (216 ms), one at Pz centered on the peak RPE magnitude effect (308
ms), and one at Fz centered on the peak Probability effect (380 ms). Correlation p-
values were FDR corrected for the number of Oddball ERPs and the number of
Target Time conditions.

Post-experiment survey ratings. Subjective ratings for neutral trials were tested for
significant differences from the indifference point on the 9-point Likert scale after
subtracting 5 to center ratings, separately for easy and hard trials. Rating data were
tested using two-sided independent samples t-tests under the null hypothesis that
ratings were from a normal distribution with mean equal to zero.

Remote behavioral task subjective ratings. We evaluated whether objective win
probabilities derived from behavior deviated from participants’ subjective experi-
ences of reward probabilities. To accomplish this, we compared our measure of
expected value computed via logistic regression of observed wins and losses to
subjective ratings of win probabilities measured in the remote behavioral Target
Time task. We correlated single-trial model-based win probability with subjective
ratings across all participants and conditions, as well as independently for easy and
hard conditions. For each participant, subjective bias was quantified separately for
easy and hard conditions by the mean difference between subjective ratings and
model-based win probabilities. To test whether subjective ratings were sensitive to
the probability of winning or losing, ratings were z-scored within each participant
and condition. Two-sided independent samples t-tests were used to compare
normalized ratings before wins and before losses using group aggregated data for
only easy, only hard, and both easy and hard conditions combined.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets generated and/or analyzed during the current study are available in the
Open Science Foundation repository and can be found at https://doi.org/10.17605/OSF.
IO/JGXFR (ref. 113).

Code availability
Custom Python and MATLAB code used for preprocessing and analysis is available as a
GitHub repository (https://github.com/hoycw/PRJ_Error_eeg), which includes system
requirements and dependencies.
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