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Auditory cortical micro-networks show differential
connectivity during voice and speech processing in
humans
Florence Steiner 1,2,4, Marine Bobin 1,2,4 & Sascha Frühholz 1,2,3✉

The temporal voice areas (TVAs) in bilateral auditory cortex (AC) appear specialized for

voice processing. Previous research assumed a uniform functional profile for the TVAs which

are broadly spread along the bilateral AC. Alternatively, the TVAs might comprise separate

AC nodes controlling differential neural functions for voice and speech decoding, organized

as local micro-circuits. To investigate micro-circuits, we modeled the directional connectivity

between TVA nodes during voice processing in humans while acquiring brain activity using

neuroimaging. Results show several bilateral AC nodes for general voice decoding (speech

and non-speech voices) and for speech decoding in particular. Furthermore, non-hierarchical

and differential bilateral AC networks manifest distinct excitatory and inhibitory pathways for

voice and speech processing. Finally, while voice and speech processing seem to have dis-

tinctive but integrated neural circuits in the left AC, the right AC reveals disintegrated neural

circuits for both sounds. Altogether, we demonstrate a functional heterogeneity in the TVAs

for voice decoding based on local micro-circuits.

https://doi.org/10.1038/s42003-021-02328-2 OPEN

1 Cognitive and Affective Neuroscience Unit, University of Zurich, Zurich, Switzerland. 2 Neuroscience Center Zurich, University of Zurich and ETH Zurich,
Zurich, Switzerland. 3 Department of Psychology, University of Oslo, Oslo, Norway. 4These authors contributed equally: Florence Steiner, Marine Bobin.
✉email: sascha.fruehholz@uzh.ch

COMMUNICATIONS BIOLOGY |           (2021) 4:801 | https://doi.org/10.1038/s42003-021-02328-2 | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-02328-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-02328-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-02328-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-02328-2&domain=pdf
http://orcid.org/0000-0002-0298-6294
http://orcid.org/0000-0002-0298-6294
http://orcid.org/0000-0002-0298-6294
http://orcid.org/0000-0002-0298-6294
http://orcid.org/0000-0002-0298-6294
http://orcid.org/0000-0002-7715-5858
http://orcid.org/0000-0002-7715-5858
http://orcid.org/0000-0002-7715-5858
http://orcid.org/0000-0002-7715-5858
http://orcid.org/0000-0002-7715-5858
http://orcid.org/0000-0002-6485-3817
http://orcid.org/0000-0002-6485-3817
http://orcid.org/0000-0002-6485-3817
http://orcid.org/0000-0002-6485-3817
http://orcid.org/0000-0002-6485-3817
mailto:sascha.fruehholz@uzh.ch
www.nature.com/commsbio
www.nature.com/commsbio


The temporal voice area (TVA) is a neural cluster specialized
for voice processing in the auditory cortex (AC)1. The
cortically extended TVA includes three bilaterally sym-

metric patches located on the caudal-to-rostral axis in posterior
(pST), mid (mST), and anterior superior temporal cortex (aST)1,2,
pointing to a diverse collection of TVAs. The TVA and especially
its patches have been found to rather uniformly respond to voices
on a perceptual level beyond the decoding of basic acoustic
features3,4. By this notion of a uniform response profile of the
TVA and its subpatches, we refer to the observation that previous
studies did not directly test a potential functional difference
between subareas of the TVA or its patches1. Previous studies
only reported some posthoc and rather indirect evidence5 as well
as theoretical explanations2,6,7. This lack of investigations left
some uncertainty regarding the differential involvement of the
voice patches in voice recognition processes. However, based on
these previous reports, there might be evidence that some sub-
parts of the TVA decode certain types of voice information7, such
as voice identity and speech decoding in anterior TVA8–10 and
voice-specific acoustical processing in mid-TVA11–13. None-
theless, a clearer and direct functional description of TVA sub-
areas for generically discriminating voice signals from other
auditory signals at the functional level of auditory object dis-
criminations and classifications is missing.

Given these previous reports of a functional homogeneity for
voice processing in the TVA, including the frequently proposed
voice selectivity14, the notion of a spatially extended organization
of bilateral TVAs including multiple voice subpatches seems a
little bit surprising. Considering the differential working princi-
ples of AC subregions underlying the TVA15, this uniformity
might be rather unlikely. We here accordingly tested if the TVA is
instead composed of a local and differential AC network that
functionally shifts sound information across TVA subregions to
discriminate various nonverbal (non-speech) and speech-based
voice sounds from other sounds. We used functional neuroima-
ging in 52 human participants while they listened to various voice
(speech, nonverbal) and non-voice sounds (animals, natural—
such as the sound of rain, and artificial—such as the sound of
a car).

We tested two main questions in our study. Our first question
concerned the notion of rather integrated or rather separated
neural pathways for voice signal processing and voice signal
differentiation in the AC. By integrated neural pathways, we refer
to the potential observation that different types of voice signals
(voice signals in general, speech signals) are processed along
similar neural pathways in the AC, and also that this processing
integrates the distributed information decoding across different
local AC processing nodes. Contrarily, separated neural pathways
would show disintegrated processing of various voice signals,
separated across different neural AC nodes. More specifically, we
expected that if the neural processing of voice and speech signals
is integrated, activation patterns observed for these two types of
voice signals would co-localize in similar brain areas of higher-
order AC since separate studies have shown similar peak activity
locations for voice processing1,16 and for speech recognition17,18

from anterior to posterior ST. However, there are also indications
of a spatial separation for the neural processing of voice and
speech signals19, pointing to some functional dis-integration of
both processes. The same reasoning would apply to the expected
neural network underlying voice and speech processing in terms
of neural (dis-)integration. If speech processing (speech as a
specific voice signal) would depend on the more general voice
processing (voice signals as a general category), we would expect
that neural speech processing nodes would integrate with and
hierarchically follow the neural voice processing nodes in terms of
the neural network architecture20. However, voice processing

could also be neurally disintegrated from neural speech proces-
sing, since voice signals are also used to decode socially relevant
information apart from speech information21,22.

Our second question concerned whether cortical voice pro-
cessing follows documented functional hierarchies in the AC for
auditory object processing20. A typical processing hierarchy in the
AC includes an information flow from primary, secondary, to
higher-level AC regions, which has been largely demonstrated for
sound feature processing and the processing of simple auditory
objects20. Common models for the neural processing of auditory
objects and communications signals also suggest an anterior-
oriented and posterior-oriented gradient for voice and speech
signal analysis in higher-order AC21,23, referring to the origins of
a ventral and dorsal processing stream for a detailed commu-
nication signal analysis. The neural treatment of rather complex
and socially relevant voice sounds might however also include a
non-hierarchical AC processing, which dynamically shifts rele-
vant information between low-order and higher-order AC
regions5,24 for sound analysis as well as voice detection and voice
type discrimination, respectively. Concerning this question of a
(non-)hierarchical organization of the AC micro-networks for
voice and speech processing, we expected that the neural network
would follow a processing stream from primary/secondary AC to
mST, and from mST to either aST (ventral stream) or pST (dorsal
stream) in case of a strongly hierarchical organization. In the case
of a non-hierarchical organization, we especially expected feed-
forward and/or backward projections between low- and higher-
order AC as well as a neural co-dependence of voice and speech
processing (i.e., neural nodes for voice and speech processing
influence each other) rather than a strict neural hierarchy (i.e.,
neural speech processing is dependent on voice processing
nodes).

To answer these questions, we used dynamic causal modeling
(DCM) to determine the effective neural network connectivity of
fMRI data from the human AC during voice processing. DCMs
are generative models of neural connectivity in a Bayesian sta-
tistical framework that allow modeling the directional con-
nectivity between brain regions based on experimental conditions
that influence causal interactions in a defined neural network25.
Using DCM, we tested networks with three major properties: (a)
certain sound conditions provide input to the neural network
(i.e., they drive neural activity in network nodes), (b) the network
has general effective connectivity between regions that are inde-
pendent of sound conditions (i.e., intrinsic and extrinsic con-
nectivity reflecting within-node and between-node coupling), and
(c) certain sound conditions can modulate the connectivity
between network nodes (i.e., modulate within-node and between-
node coupling). Previous studies attempted to determine the
neural network for voice processing but focused on a non-
directional network analysis (i.e., without modeling and deter-
mining the direction of the connections in an empirical Bayes
framework)5 and/or by only focusing on large-scale inter-lobe
and inter-hemispheric neural networks26,27.

For an AC neural network analysis of voice processing, we
therefore entered left and right neural nodes for voice and speech
processing into a DCM analysis. We built the DCM models based
on anatomical AC connectivity patterns between low-order and
higher-order AC nodes28–30, including the AC nodes that were
specific to nonverbal31 and speech-based voice processing32 as the
two common modes for voice signal analysis. We tested left and
right AC functional connectivity models on a local micro-
network level with the following constraints: (a) We allowed
bidirectional connections between neighboring nodes in the AC,
given that AC regions predominantly communicate with neural
nodes in short-range connections20,23; (b) driving inputs to
neural nodes were defined by dominant experimental conditions
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into each node; and (c) modulation of connections between nodes
by specific voice and speech sound condition.

These general neural network architectures for the left and
right AC were then entered as full connectivity models into a
parametric empirical bayes (PEB)33 procedure to iteratively
eliminate uninformative network parameters. The PEB procedure
includes three important subcomponents in a Bayes framework to
search the connectivity model space and to estimate network
parameters: First, it simultaneously models and estimates para-
meters on the participant and group data level; second, using a
Bayesian model reduction (BMR) approach the PEB approach
prunes away rather unimportant and non-consistent network
parameters as quantified by their posterior probability; and third,
using a Bayesian model averaging (BMA) approach, the final
model and its network parameters (i.e., posterior probabilities)
result from the weighted averaging of these parameters, and thus
takes into account all estimated models from the BMR approach
leading to valid estimation and representation of neural network
properties. Based on this DCM-PEB modeling approach, the
resulting connectivity patterns were expected to represent
underlying functional pathways for voice and speech processing
in local AC networks in the left and the right hemisphere. We
tested the AC neural networks for voice processing separately in
the left and the right AC because we were mainly interested in
determining the local AC micro-network rather than inter-lobe
and inter-hemispheric large-scale networks26,27.

Results
Before modeling the neural AC connectivity, we first defined the
left and right AC nodes that responded to voice sound processing
in general and to speech sound in specific. Contrasting neural
activity for all voices against all non-voice sounds (n= 52 parti-
cipants), we found broadly extended activity in both left and right
AC that commonly defines bilateral TVAs1,34. This activity

showed a large spatial extent with local activity peaks distributed
from anterior to posterior ST, including broad coverage of the
higher-order auditory cortical region Te3 (Fig. 1a)35. Similar to
previous observations1,5, we found three peaks in the left AC
(aST, pST, posterior superior temporal sulcus (pSTS)) and three
peaks in the right AC (aST, mST, pST)36 (Fig. 1a, Table 1a).
Activity in bilateral aST/pST was common to both speech-based
and nonverbal voice processing (Table 1b, c), while activity in left
pSTS and bilateral mST seemed specific for speech processing as a
specific type of voice sounds (Fig. 1b, lower panel; Table 1d). For
each of those peak locations we created an ROI (a sphere of 3 mm
radius around the peak) to be used in the DCM analysis. Fig-
ure 1d shows the beta estimates (i.e., the level of activation) in
each condition for each of the ROIs.

Using this observed specialization in ST/STS subregions for
voice and speech processing, we defined differential neural net-
works for left and right AC using DCM (Fig. 2). We modeled left
and right AC networks separately24,37, given that we were pri-
marily interested in the local AC micro-networks and given that
we aimed at keeping the entire model space in an appropriate
range. Our DCM models included three sets of important net-
work parameters: (a) We included driving inputs (C matrix) to
each neural node given the specific experimental condition that
was driving activity in this region (voice, speech, or all sounds);
driving inputs were time-series of neural node activations that
were mean-centered prior to entering them in the DCM models;
(b) effective connectivity within (intrinsic) and between nodes
(extrinsic) was included as coupling parameters between neigh-
boring nodes (A matrix); the resulting A matrix parameters
reflect the mean connection weights across all experimental
conditions33; and (c) certain experimental conditions were
allowed to linearly modulate the connections between neural
nodes (B matrix); the modulatory condition was chosen based on
the specific condition driving the activity of the node that was the
origin of the connection (e.g., the connection from left mST to

Fig. 1 Neural AC activity for voice and speech processing. Contrast images were thresholded at p < 0.05 including a voxel-wise FWE correction (n= 52
human participants). White dashed outline represents the auditory region Te3. a TVA in bilateral AC for contrasting voice against non-voice sounds. Four
peak locations were found in left AC, with three peaks located within the auditory region Te3 (aST, mST, pST) and one posterior to Te3 in posterior
superior temporal sulcus (pSTS). Two peaks in the right AC were located inside Te3 (aST, mST) and one posterior to Te3 in pST. b Contrasting speech
against non-voice sounds [Speech vs. non.voice] revealed two left AC peaks (mST, pSTS) and one right peak (mST); these peak activations were confirmed
when specifically contrasting speech against nonverbal voices [speech vs. nonverbal]. c AC activity for all five conditions compared against baseline [all
conditions], with specific peaks in bilateral HG that were also located inside the TVA [voice vs. non-voice]. d Violin plots for the percent signal change
quantified from beta estimates for all five conditions (spe speech, nsp nonspeech/nonverbal, ani animal, art artificial, nat natural sounds) for all ROIs (built
as a sphere of a 3 mm radius around peak locations); horizontal bar indicates the mean, the inner vertical indicates the first to third quantile of the data
distribution.
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aST was allowed to be modulated by the speech condition, as mST
was responding with higher activity to speech sounds). Besides
regions in the ST, these neural networks finally also included
nodes in bilateral Heschl’s gyrus (HG) that were sensitive to any
incoming sound (Fig. 1c; Table 1f). The sensitivity to any
incoming sound is not surprising, given that large parts of the
HG, including the parts activated here, belong to the primary AC
(cortical region Te1)35,38, which acts as the low-level processing
unit of all kinds of acoustic stimuli. Specifically, also the TVA
often includes HG activity1, which seems to serve as a basic
acoustic processing node in the TVA network. More importantly,
the HG was included in the DCM models in order to test for a
hierarchical or non-hierarchical network architecture for voice
and speech processing20.

The full left and right DCM models (Fig. 2) were then entered
into a hierarchical PEB analysis (n= 52 participants) on the A
and B matrix parameters33. This resulted in a left effective neural
network (i.e., mean functional connectivity independent of
experimental conditions, A matrix) with positive and excitatory
bidirectional connections between HG and ST nodes for voice
processing and with positive forward and negative backward
connections from HG to ST speech processing nodes (Fig. 3a, left
panel; Table 2). There were also positive connections between
voice and speech processing nodes in ST. Some of these con-
nections were additionally modulated by the experimental con-
ditions as evidenced by significant parameters of the B matrix
(Fig. 3b, left panel; Table 2). First, the aST and pSTS seemed
relatively independent nodes for voice and speech processing,
respectively, given that they showed only minor and negative
modulation of forward connections originating from these
nodes. Second, there was a specific integrated HG-ST network,
which included a sub-branch of HG-pST connectivity where

modulations of connections supported general voice processing,
and a HG-mST sub-branch with modulated connections for
specific speech processing. Both mST and pST had modulated
inter-connections, such that general voice processing might
support specific speech processing and vice versa.

Compared to the left neural AC network, the network archi-
tecture for voice and speech processing in the right hemisphere
showed both similarities and differences (Fig. 3, right panels). In
terms of basic network connectivity (A matrix) (Fig. 3a, right
panel; Table 3), as in the left hemisphere, the right ST voice
processing nodes showed positive and excitatory bidirectional
connections from and to HG. However, the mST, as the sole
speech processing node, only showed a positive connection to HG
but received no input from it. Yet, in addition to the unidirec-
tional positive connections between the ST nodes in the left AC,
here the neighboring ST nodes were all bidirectionally connected.
While the mST showed positive connections to both voice pro-
cessing nodes, the aST had a negative and the pST a positive
connection to the mST. Thus, there were slightly differential
network effects in the anterior and posterior AC in the right
brain, which was also confirmed by the condition-specific mod-
ulation of connections in the right AC (B matrix) (Fig. 3b, right
panel; Table 3). The pST showed a negative and thus inhibitory
modulation from HG and the aST negative modulation to HG.
The aST showed very similar independence in both hemispheres.
Unlike the positive integration of neural processing in pST and
mST in the left AC, in the right AC, we found that pST and mST
were mostly negatively integrated for voice and speech proces-
sing, including the HG as a low-level AC region.

Discussion
In the present study, we aimed to investigate if the bilateral TVAs,
which were previously found in humans1 and nonhuman
primates39, consist of local and differential AC neural networks
that functionally shift sound information across TVA subregions
to discriminate various nonverbal and speech-based voice signals
from other sounds. We accordingly used functional neuroimaging
in humans to determine local cortical peaks in left and right AC
that responded with higher activity to voice than to non-voice
sounds. Based on the GLM approach to contrast functional brain
activity between conditions (Fig. 1), we found three peaks in the
left AC (aST, pST, pSTS) and three peaks in the right AC (aST,
mST, pST)36 that seemed sensitive to voice sounds in our
experiment. These activation patterns are similar to previous
reports1,5, such that all peak coordinates were completely over-
lapping with a previously defined TVA probability map1 (https://
neurovault.org/images/106/). Bilateral aST, mST and left pST
were located inside the higher-order auditory region Te3, which
seems a region that is central to neural dynamics voice processing
in the AC16,27. Finding this distribution of individual peaks in the
AC from the anterior to the posterior end of ST is a first indi-
cation of potential different functional roles of these peaks during
voice signal processing23,40,41. This distribution of voice proces-
sing peaks also points to a potential local neural network, which
we aimed to define in both the left and the right AC.

Although there are some limitations in the analogies described
between human and nonhuman primates voice-specific areas (see
also Bodin and Belin7), the existence of voice patches in monkeys
similar to humans was partially confirmed through fMRI
measurements39,42 and single-unit recordings4. In the different
studies, voice-sensitive patches (i.e., cortical activation occurring
for conspecific-voice processing) have been reported along the ST
(particularly the anterior part42) up to the STS, also with a
divergence between hemispheres and interesting variability in the
results43. While at a different extent, such observations suggest

Table 1 Neuronal peak activations.

Region T value MNI

x y z

(a) Voice>non-voice
L aST* 12.10 −58 4 −8
L pST* 22.00 −62 −20 0
L pSTS 11.19 −58 −36 6
R aST* 14.66 58 4 −8
R mST 18.34 62 −8 −4
R pST* 17.51 60 −26 2
(b) Speech>non-voice
L aST 7.23 −54 10 −14
L mST 18.71 −60 −8 −2
L pST 20.32 −62 −20 0
L pSTS 12.20 −58 −36 4
R aST 12.61 58 4 −8
R mST 16.57 62 −10 −2
R pST 15.16 58 −26 0
(c) Nonverbal>non-voice
L aST 8.41 −58 4 −8
L pST 15.10 −62 −20 0
R aST 11.17 58 4 −8
R pST 13.48 60 −26 2
(d) Speech>nonverbal
L mST* 8.23 −60 −8 −2
L pSTS* 5.82 −56 −36 4
R mST* 5.48 62 −12 −2
(e) Nonverbal>speech
–
(f) F contrasts (5 conditions)
L HG* 75.76 −44 −18 0
R HG* 99.41 53 −16 8

MNI coordinates of functional peak activations for contrasts between the five experimental
conditions (n= 52 human participants, degrees of freedom (df)= [1, 204]). Contrast images
were thresholded at p < 0.05 including a voxel-wise FWE correction. Peak locations marked with
* were entered into the DCM analysis.
aST anterior superior temporal cortex, mST mid superior temporal cortex, pST posterior superior
temporal cortex, pSTS posterior superior temporal sulcus, HG Heschl’s gyrus.
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that micro-networks specialized for vocalization processing might
already be latent in nonhuman primates.

In our study, we included both voice and non-voice sounds to
determine the TVA. The voice sounds were comprised of speech
and nonverbal (non-speech) stimuli. Speech32 and nonverbal
sounds31 are both of vocal nature, but they might receive some
differential processing dynamics in the AC. In our study using the
GLM approach (Fig. 1), we could separate local peaks in the AC
that were either sensitive to any voice sounds (speech, nonverbal)

or to speech sounds specifically. Unlike the common notion that
speech processing is usually accomplished rather down-stream of
the auditory processing hierarchy, towards higher-order AC
regions at the anterior and posterior ends of the ST23,44, we found
that speech processing units in our study are cortically sur-
rounded by voice processing units, with the exception of the left
pSTS. These data thus seem to suggest that speech processing
nodes are spatially integrated with voice processing nodes in a
local and probably non-hierarchical micro-network. However, we

Table 2 Results of the PEB analysis for the left AC network.

HG aST mST pST pSTS

A matrix (intrinsic and extrinsic fixed connections)
HG −0.43 (1.00) 0.38 (1.00) −0.19 (1.00) 0.70 (1.00) −0.50 (1.00)
aST 0.11 (1.00) −0.23 (1.00) 0.37 (1.00) – –
mST 0.11 (1.00) 0.02 (0.62) −0.43 (1.00) 0.24 (1.00) –
pST 0.07 (1.00) – 0.00 (0.00) −0.68 (1.00) 0.00 (0.00)
pSTS 0.13 (1.00) – – 0.42 (1.00) −0.39 (1.00)
B matrix (all trials)
HG −2.84 (1.00) – – – –
B matrix (voice trials)
HG −1.83 (1.00) −1.59 (1.00) – 2.24 (1.00) –
aST 0.29 (0.96) −1.07 (1.00) – – –
mST – −0.37 (0.98) 0.70 (0.88) 1.78 (1.00) –
pST 0.49 (1.00) – – −1.17 (1.00) –
pSTS – – – 1.13 (1.00) 0.59 (0.95)
B matrix (speech trials)
HG −1.70 (1.00) – 0.00 (0.00) – −1.06 (1.00)
aST – 0.00 (0.00) 0.00 (0.00) – –
mST 1.03 (1.00) – 0.72 (0.91) – –
pST – – 0.94 (1.00) 0.00 (0.00) −0.72 (1.00)
pSTS 0.26 (0.92) – – – 0.00 (0.00)

Expected posterior parameters (posterior probabilities in brackets) for the A matrix parameters (intrinsic and extrinsic fixed connections) and the B matrix parameters (modulation of connections);
sample of n= 52 human participants. The matrix is organized such that the origin of connections is represented by the columns, and the target of connections is represented by the lines.
aST anterior superior temporal cortex, mST mid superior temporal cortex, pST posterior superior temporal cortex, pSTS posterior superior temporal sulcus, HG Heschl’s gyrus.

Fig. 2 DCM model space.Model space for the DCM analysis including three conditions (all sounds, voice sounds, speech sounds). The full model included
driving inputs to each node from different conditions (arrows to nodes), intrinsic connections for each node (circular arrows), bidirectional extrinsic
connections between neighboring nodes (straight arrows), and modulations of connections by conditions (color of arrows). Gray shading indicates the
auditory area Te3. Black regions were defined based on their activity to all sounds, blue regions were defined based on their activity in the [voice>non-
voice] contrasts, and red region were defined by their activity in the [speech>nonverbal] contrast.

Fig. 3 DCM effective neural network modeling. Significant network effects (posterior probability > 0.99) in bilateral AC after a parametric empirical Bayes
(PEB)-based model reduction from the full model; sample of n= 52 human participants. a Neural networks based on the effective connectivity parameters
and b modulation of connections. Bold lines for positive effects, dotted lines for negative effects. Gray shading indicates the auditory area Te3.
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have to note that our experiment did not demand explicit speech
recognition. An explicit speech recognition task might more
directly require anterior and posterior ST activity10,17.

A further note concerns the point that we did not include the
right pSTS in our DCM analysis. This was based on the fact that
the right pSTS did not reach significance as peak activity location
in the various GLM contrasts that we performed. This was the
first reason why the right pSTS was not included in our DCM
analyses, because DCM requires that neural nodes show activa-
tions (and variations of activation) according to different condi-
tions of the experiment. Second, previous work by Venezia and
colleagues45 focused on human STS regions and they reported
that specific-speech activation in the left hemisphere is more
distributed and extends towards the posterior STS subregion,
while the right hemisphere clustered speech-specific activity in
rather anterior to mid STS subregions. Third, the pSTS is rather
known as an associative processing area, and seems responsive to
combined auditory and visual stimulation46,47. The right pSTS
has been linked in particular to long-term functional reorgani-
zation upon long lasting auditory deprivation, as demonstrated in
early-deaf adults48. Such an adaptable region might usually act as
an additional hub, recruited upon other speech-related contexts.
As part of a larger network involving visual information, the right
pSTS might influence the micro-circuit only in the presence of
additional inputs, related to speech and face recognition for
instance. A recent study provides evidence in this direction as the
right pSTS exhibits a strong driving role in face recognition
processing49.

Next, given this specific distribution of voice- and speech-
sensitive nodes in left and right AC, we determined the local
directional neural network between these nodes using DCM.
Using this modeling, we could identify local neural networks that
also showed some hemispheric differences. Concerning the left
hemisphere, we found that aST and pSTS seemed relatively
independent nodes for voice and speech processing according to
the modulation of connections (Fig. 3b). We specifically found an
integrated HG-ST network with two sub-branches, one for gen-
eral voice processing (HG-pST) and another one for speech
processing (HG-mST). The left AC thus seems to represent both
independent and integrated network dynamics across low-level
and high-level AC for voice and speech processing50, which only

partly resembles commonly assumed models of processing hier-
archies for sound and auditory objects in the AC18,23. So far,
research predominantly assumes that voice processing should
happen at a prior stage to speech processing, but recent studies
provide contrary evidence. Previous work looked at how different
subareas are responding to speech compared to other voice
information19,51, but none of these studies specifically contrasted
voice (i.e., as a general auditory object) against speech processing
(i.e., as a specific voice feature). Additionally, their observations
rather pointed towards more complex interactions of specialized
neural components, rather than a strict hierarchy of processing
stages. From our observations, there seems to be partly a neural
co-dependence between voice and speech processing in the left
AC, such that each function can support the other by shifting
important information between corresponding neural regions.

Compared to the left AC, we found a different local neural
architecture and neural dynamics in the right AC with relatively
disintegrated voice and speech processing pathways (Fig. 3b). The
mST seemed to work as a specific node for speech processing,
while aST and pST seemed to be some independent nodes for
voice processing. Furthermore, voice and speech processing
appeared rather separated in the right AC network in terms of
modulated connections28 (Fig. 3b), and both are primarily pro-
cessed by the ST nodes as part of the higher-order AC35. We only
found a pST-to-mST connection that seemed to be positively
modulated by voice processing in general, such that speech pro-
cessing in mST is potentially facilitated by voice information
provided by the pST. Thus, although the right AC appears to have
specific nodes for processing different kinds of voice signals, there
seems to be less co-dependence of these nodes in terms of rele-
vant information exchange in support of their functional pro-
cessing. Especially, speech processing nodes seem to not share
neural information with more general voice processing nodes in
the right AC.

Our data overall point to some commonalities in the local AC
micro-network for voice and speech processing, but they also
point to considerable differences. One commonality might con-
cern the functional contribution of the aST to the neural network
architecture. The aST seems like a largely disintegrated node for
voice processing bilaterally (Fig. 3b), such that voice processing in
right and left AC is primarily based on an initial object classifi-
cation (aST) that is then confirmed by further acoustic analysis
(HG), which is rather reverse to classical hierarchical processing
in AC20. In terms of the network differences, we found the pSTS
as a relevant neural network node only in the left hemisphere.
Regarding the role of the pSTS in the left hemisphere, it is likely
that the modulation of connections between mST–pST–pSTS are
more consistent than in the right hemisphere potentially due to
this additional pSTS node. However, the differences between the
two hemispheres for pST and mST are also noteworthy. The left
pST showed neural integration according to a positive reciprocal
modulation of connection with the HG (Fig. 3b), while the right
pST was only negatively modulated by the HG. The left mST also
seems more integrated in the micro-network in the left compared
to the right hemisphere. The left mST was positively modulated
by HG (while negative in the right hemisphere), and positively
modulated the pST in turn (Fig. 3b). The left mST is differentially
connected to HG in an effective manner when comparing the two
hemispheres (Fig. 3a). Hence, besides the assumed influence of an
additional node in the left hemisphere—contributing to a certain
extent to a local cohesion—the bilateral micro-networks seem
different when we consider their individual neural nodes and
connections.

These data altogether point to local and rather asymmetric AC
micro-networks that support both voice processing in general and
speech processing in specific. There have been many hypotheses

Table 3 Results of the PEB analysis for the right AC network.

HG aST mST pST

A matrix (intrinsic and extrinsic fixed connectivity)
HG 0.00 (0.00) 0.29 (1.00) 0.33 (1.00) 0.14 (1.00)
aST 0.08 (1.00) −0.29 (1.00) 0.25 (1.00) –
mST 0.00 (0.00) −0.40 (1.00) −0.30 (1.00) 0.55 (1.00)
pST 0.08 (1.00) – 0.46 (1.00) 0.17 (1.00)
B matrix (all trials)
HG 0.00 (0.00) – – –
B matrix (voice trials)
HG −0.46 (0.97) −0.89 (1.00) – 0.00 (0.00)
aST −0.27 (0.81) −0.43 (0.63) – –
mST – −0.67 (0.99) −0.45 (0.64) 1.21 (1.00)
pST −0.78 (1.00) – – −1.93 (1.00)
B matrix (speech trials)
HG 0.00 (0.00) – 0.00 (0.00) –
aST – 0.00 (0.00) 0.00 (0.00) –
mST −0.52 (1.00) – −1.60 (1.00) –
pST – – 0.00 (0.00) 0.00 (0.00)

Expected posterior parameters (posterior probabilities in brackets) for the A matrix parameters
(intrinsic and extrinsic fixed connections) and the B matrix parameters (modulation of
connections); sample of n= 52 human participants. The matrix is organized such that the origin
of connections is represented by the columns, and the target of connections is represented by
the lines.
aST anterior superior temporal cortex, mST mid superior temporal cortex, pST posterior superior
temporal cortex, pSTS posterior superior temporal sulcus, HG Heschl’s gyrus.
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about asymmetries of the AC in processing sound, voice, and
speech. A common theory postulates a sensitivity for temporal
sound information in the left AC and for spectral information in
the right AC52,53, such that the left AC might more strongly
respond to speech and vocalizations, while the right AC has a
higher sensitivity to frequency sweeps that might be related to
prosodic elements of vocalizations53–55. While these observations
point to functional asymmetry in AC, they do not help to predict
asymmetries of neural network differences in AC56,57. A general
observation in our data was a stronger integration of voice and
speech processing in the left hemisphere, while these two types of
processing were largely disintegrated in the right AC when
looking at the connectivity patterns, suggesting therefore more
separate pathways in the right hemisphere. This might point to a
general neural network asymmetry for processing vocalizations in
the primate and especially in the human brain56.

The present findings about the left and right AC neural cir-
cuitry for voice and speech processing were based on certain
methodological parameters in our study. Regarding these meth-
odological parameters, we would like to address three potential
limitations of our study First, the voice localizer task involved
only the implicit processing of voice and speech sounds. During
the experiment, a basic attention level was maintained by the use
of a 1-back task (i.e., compare the current sound to the previous
sound and press a button if a sound repeats), it was not specifi-
cally ensured that participants recognized the different sound
categories correctly. However, we used a pre-evaluated set of
stimuli carefully selected to achieve a high level of correct per-
ceptual categorization58. Additionally, we did not aim to model
some sort of specific perceptual categorization behavior during
explicit sound classifications, but we were rather interested to
examine which parts of the AC process voice signals in a local AC
micro-network. The 1-back task was therefore only relevant to
sustain attentive listening and to ensure proper neural processing
of the presented sounds. This is according to earlier studies
exploring voice processing by using a similar voice localizer as we
used here1,34,59. Second, we decided to include only a limited
number of connections in our DCM models instead of modeling
full connectivity between all neural nodes. Connections were only
allowed between neighboring nodes in each hemisphere, and no
inter-hemispheric connections were modeled. While the former
restriction was based on connection principles in the AC, such
that AC regions predominantly communicate over short-range
connections20,23, the second restriction was based on the fact that
our main focus lay on the local intra-hemispheric networks rather
than inter-hemispheric connections. Third, DCM modeling is a
powerful approach to model directional neural network connec-
tions, especially for event-related experimental designs25, but it
also can have some limitations when using some specific mod-
eling approaches60 that however can be addressed by Bayesian
estimation strategies61, especially using recent developments for
PEB33 procedure when DCM modeling is performed to com-
prehensively search through a large model space.

In summary, our data, first, seem to point towards bilateral
local AC networks with separate but related neural pathways for
the processing of different voice sounds (speech, nonverbal). A
surprising finding was that neural nodes for speech processing
were not necessarily located the most downstream in anterior or
posterior ST but interleaved with the voice-dedicated nodes.
Neural auditory stream models separating a dorsal and a ventral
stream23 usually locate speech nodes at higher levels of auditory
processing remotely from primary and secondary AC regions.
Here, specific speech nodes were rather surrounded by more
general voice nodes, which highlights the integral co-dependency
of the two micro-circuits with one another. Second, there was a
hemispheric asymmetry in this local AC network. The left and

right AC showed differential nodes for voice and speech pro-
cessing, and the right AC showed a higher disintegration of the
voice and speech nodes, while the presumably more speech-
sensitive left hemisphere showed higher neural integration for
voice and speech processing. Third, voice and speech processing
seems to be based on the systematic integration of low-level and
high-level AC regions, predominantly in a non-hierarchical
fashion. The present findings thus might challenge classical
hierarchical processing models in which information is shifted
from low to high-level AC regions in a serial manner, both for
sound analysis and especially for auditory object recognition.

Methods
Participants. The sample consisted of 52 healthy human participants (22 females,
mean age 23.95 years, SD 4.22, range 18–34 years). The inclusion criteria for the
experiment were normal or corrected-to-normal vision and no history of neuro-
logical or psychiatric disorders. All participants gave written informed consent and
were financially reimbursed for participation. The study was approved by the
cantonal ethics committee of the Swiss Cantone Geneva.

Experimental design and task. Stimuli were recordings of 70 voice sounds
(speech, nonverbal/non-speech) and 70 non-voice sounds (animal, natural, and
artificial sounds)58. Stimuli were presented in an event-related design, with 10% of
the sounds repeated randomly for a 1-back task, where participants were asked to
press a button upon a consecutive repetition of a sound. Each sound lasted 500 ms.
All sounds were presented one time in a random order, with a jittered ITI of
4.0–5.5 s, and a sound intensity level of 70 dB SPL.

fMRI data acquisition. Functional brain data were recorded with whole-brain
functional imaging data on a 3 T SIEMENS Tim Trio System (Siemens, Erlangen,
Germany), using a T2*-weighted gradient multiband echo-planar imaging (M-EPI)
pulse sequence (acceleration factor 4, 2 mm3 isotropic resolution, 28 slices in a
64 × 64 matrix, 20% distance factor, TR/TE= 650/30 ms, FA 50°). We used a
partial volume acquisition protocol with 28 slices, but with a higher spatial reso-
lution. The slices were rotated ~30° to the AC–PC plane (nose-up) and covered all
parts of the AC and the inferior frontal cortex. By using a higher spatial resolution
(2 mm3 voxels) we intended to be spatially more precise in determining and
separating AC peak activations for voice and speech processing. A structural image
was acquired for each participant and had 1-mm isotropic resolution (192 con-
tiguous 1-mm slices, TR/TE/TI= 1900/2.27/900 ms, FoV 296mm, in-plane reso-
lution of 1 × 1 mm).

Pre-processing of functional brain data. Pre-processing of fMRI data was per-
formed using the Statistical Parametric Mapping software (SPM12; version 7771;
Welcome Trust Centre for Neuroimaging, London, UK; fil.ion.ucl.ac.uk/spm/
software/spm12). Images were corrected for geometric distortions caused by
susceptibility-induced field inhomogeneity62. A combined approach was used,
which corrects for both static distortions and changes in these distortions from
head motion63,64. The static distortions were calculated for each subject from a b0
fieldmap that was processed by using the FieldMap toolbox (version 2.0, fil.ion.ucl.
ac.uk/spm/toolbox/fieldmap/) as implemented in SPM12. With these parameters,
functional images were then realigned and unwarped, a procedure that allows the
measured static distortions to be included in the estimation of distortion changes
associated with head motion. Slice time correction was performed to correct for
differences in the acquisition time of individual brain slices. The motion-corrected
images were then co-registered to the individuals’ anatomical T1 image by using a
12-parameter affine transformation. Finally, images were deformed into the stan-
dard MNI space, using normalization parameters estimated with the CAT12
toolbox (version 12.5, neuro.uni-jena.de/cat/), and smoothed with a 6-mm FWHM
isotropic Gaussian kernel to increase the signal-to-noise ratio.

Functional TVA activation. After pre-processing, we estimated the BOLD
responses to voices and non-voices using a GLM that contained two regressors for
voice sounds (speech, nonverbal) and three regressors for non-voice sounds
(animal, natural, and artificial sounds), constructed by convolving a stick function
at each sound onset with a canonical hemodynamic response function. Addi-
tionally, repeated sounds were modeled in a separate regressor and disregarded in
further analyses. The resulting design matrix also contained a standard 128-s high-
pass filter and motion estimates as covariates of no interest. Planned contrasts were
then computed to create a contrast image for each of the five conditions. These
contrast images were then taken to a second-level factorial group-level analysis,
including the same five conditions contrasted against each other. Contrast images
were thresholded at p < 0.05 including a voxel-wise FWE correction.

Anatomical basis of AC connectivity for DCM. We built the DCM models by
combining anatomical and functional information about the AC connectivity as
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reported previously. For better comparability, the terms used to describe regions in
the respective papers are related to the anatomical terms used here in our study.
From a neuroanatomical perspective and given its primary role in auditory pro-
cessing, HG specifically represents the intersection area of white fibers integrating
the auditory areas to neighboring regions. One of the pathways for auditory
integration involves U-fibers connecting the HG to the middle temporal gyrus
(MTG), but a bundle of U-fibers also connects the superior temporal gyrus (STG)
with the MTG30. Detailed connectivity investigations through in vivo tractography
of the low-order auditory areas unravel a hierarchical organization in three stages,
comparable to nonhuman primates’ structure65, with a core (including the primary
auditory cortex (PAC)—here referred to as HG), belt (areas immediately adjacent
to the HG), and parabelt regions (i.e., anterior parabelt—here referred to as aST,
superior temporal area (STA)—here referred to as mST, and posterior parabelt—
here referred to as pST). Indications for a resemblance of the AC organization
across the Old World monkey species are constantly growing: mapping the human
auditory areas based on cytoarchitectonic features for instance largely support the
parallel made between macaques and humans for the conserved existence of the
different subparts of the auditory core, belt and parabelt regions35,66.

Generally, the structural connections on the medial–lateral axis would be core-
to-belt and belt-to-parabelt directions (both reciprocally). From this perspective,
structural connections exist between HG and our ST regions through an
intermediate stage, which guides the flow of auditory information in a cascade-like
fashion29. These observations largely coincide with previous work by Upadhyay
and colleagues who identified effective connectivity between the PAC (caudal and
rostral HG—here referred to as HG) and PSTG (pST and lateral planum temporale
—here referred to as pST) and between the PAC and ASTG (aST and lateral
planum polare—here referred to as aST) suggesting that those regions are parts of
the same auditory processing circuitry28. Yet, instead of the three-tier architecture
of the auditory cortical area described above and shown in the nonhuman primate
organization of auditory processing, only two of the three stages were detected in
our study in terms of functional activations. Earlier studies reported similar
observations, strongly arguing that regions tagged as the belt area might not be
sensitive to passive voice listening tasks28.

Furthermore, evidence for structural connections between the three voice-
sensitive patches across the STS (posterior, middle and anterior right STS) in
humans have already been unraveled in vivo through tractography47. Such
methodology also allowed more detailed neuroanatomical investigations revealing
the existence of structural connectivity as a bridge between annectant gyri within
the complex topology of the STS (superior and middle temporal gyri), a compelling
illustration of the high density of local connectivity, particularly through U-shaped
fibers67.

Hence, the DCM models included here (see below) were constructed in
consistency with this previous work mentioning the existence of anatomical
projections within the early stage of the human auditory area but also their
functional expression within an integrative auditory neuronal connectome.

Definition of VOIs and time-series extraction. Based on the group-level brain
activation peaks found in the three specific contrasts, we defined five peak locations
in the left hemisphere (HG, aST, mST, pST, pSTS) and four peak locations in the
right hemisphere (HG, aST, mST, pST) (Table 1). The location of each peak
location within the AC areas was determined according to the Anatomy toolbox
(version 2.2b, fz-juelich.de/SharedDocs/Downloads/INM/INM-1/DE/Toolbox/
Toolbox_22.html) as implemented in SPM12. Peaks inside areas Te1.0–1.2 were
defined as HG38,68 and for the peaks on the ST or in the STS it was determined if
they lay within the higher-order area Te335. Around each location, voxels within a
sphere of a 3 mm radius were selected. Only voxels that showed significant acti-
vation (p < 0.05, uncorrected) by the presentation of all sounds within each par-
ticipant were included, and the voxel selection thus was adapted to individual
activation profiles in each participant. This selection process was based on a
separate GLM with three regressors: One regressor defined by all sounds modeling
the onset of each sound (including voice and non-voice sounds), one regressor
defined by voice sounds including voice sounds only (speech, nonverbal), and one
regressor specifying speech sounds. The first regressor was chosen because it
represents the overall stimulation with sounds in the experiment (i.e., all sound
stimulations) which is often included as a general condition that defines overall
brain stimulation and input during the experiment25. The other two regressors
were included because they figured as the two major conditions that revealed
specific activity in left and right AC during the calculation of the original contrasts
(Fig. 1). This GLM contained the same regressors-of-no-interest as the previous
GLM to locate voice-sensitive voxels.

From each volume of interest (VOI), the first principal component was
extracted for the DCM analysis and adjusted for the F-contrast modeling the all
sound, all voice, and speech sounds regressors. Time series data from VOIs
associated with the above regressors were summarized using the SPM12
eigenvariate toolbox. Peak locations for VOI definition were ensured to be >12 mm
apart from each other based on a Euclidian distance measure to ensure non-
overlapping voxels in the VOIs and to take into account the smoothing kernel
(6 mm) for functional brain data. We used the [voice>non-voice] contrast to
define VOIs that represent voice processing (bilateral aST and pST), the
[speech>nonverbal] contrast defined VOIs for speech processing (left mST and

pSTS, right mST), and a T-contrast across all five conditions (i.e., higher activity in
all conditions compared to baseline) defined areas in the HG as a general sound
processing VOI in bilateral low-level AC.

DCM for effective functional connectivity. Based on the time-series extraction in
the VOIs, we subsequently applied DCM25,69 to model effective functional con-
nectivity between these VOIs. DCM tries to explain the observed brain responses in
terms of underlying causal interactions between different areas at the neuronal
level. DCM estimates the experimental modulation of (intrinsic) self-connections
or (extrinsic) forward and backward connections between VOIs that are active
during voice and speech processing in a directional manner. We created and
estimated DCMs with the DCM12 toolbox (version 7479) as implemented in
SPM12. The DCMs were based on five spherical VOIs in the left hemisphere and
four VOIs in the right hemisphere, each centered on a peak located in the TVA and
low-level AC (Table 1), with a radius of 3 mm to avoid possible overlap between
VOIs. Separated models were generated in the right versus left hemisphere as the
VOIs that were entered into the models were based on non-symmetrical peaks of
activations across hemispheres. We therefore refrained from artificially creating
symmetrical models for left and right auditory areas by selecting only symmetrical
activation peaks in the left and right AC, as this would serve against our aim to test
the functional hierarchy within the local micro-network of each hemisphere
independently.

For each participant and brain hemisphere, we first created a full connectivity
model (full model) with bidirectional connections between neighboring VOIs in
each hemisphere (A matrix) (Fig. 2). Driving input (C matrix) to each node was
specified by the experimental condition that elicited the original activity: The all
sounds regressor provided input to HG, the voice sound regressor provided input to
aST and pST, while the speech sound regressor provided input to mST (and
additionally to left pSTS). The driving inputs were mean-centered, causing the
parameters of the A matrix to represent the mean connection strengths across
conditions. Finally, the modulation of intrinsic and extrinsic connections by
experimental conditions (B matrix) followed the activation profile of the VOIs:
Intrinsic connections in nodes were modulated by the activation profile of the node
(e.g., intrinsic HG connectivity is modulated by all sounds trials), connections from
ST/STS regions to and from HG were set to be modulated by the ST/STS activation
profile (e.g., HG–aST connections could only be modulated by the voice sound
trials), and forward connections from ST/STS regions to other ST/STS region were
set to be modulated by the activation profile of the origin of the connections (e.g.,
connections originating from mST could only be modulated by speech sound trials).
We estimated these full DCM models for each participant using Bayesian model
inversion.

To estimate group-level parameters in these left and right AC networks, we
conducted a second-level PEB analysis, separately for the left and right AC
networks. The PEB analysis included a hierarchical model of the connectivity
parameters, including connectivity parameters from all participants at the first-
level (i.e., DCMs are fitted to each participants data, and posterior probability
density over the parameters and the free energy taken to the group level) as well as
a GLM modeling at the second-level (i.e., with one regressor per covariate per
connection), and the estimation procedure used a variational scheme. After
estimating the parameters of the full PEB model, we subsequently pruned away
parameters using a BMR approach performed on the A matrix and B matrix
parameters. The BMR performs an automatic (greedy) search over the model space
to optimize model evidence. We here used the BMR as an exploratory approach
with only minimal constraints and performed an automatic search over reduced
PEB models. This search was accomplished with the simplifying assumption that
these models were all equally likely a priori. The model evidence takes into account
both model accuracy (how well the model fits the data) and model complexity (the
difference between model parameters and their prior values). The BMR procedure
was accomplished in an iterative process. Finally, we applied BMA across all
models searched by the BMR, and averaging was performed as a weighted
average of parameters across models according to the posterior probabilities of the
models. Significant network parameters were determined with a posterior
probability of p > 0.99.

Statistics and reproducibility. Detailed information on statistical tests is provided
in the respective subsections. We analyzed fMRI data with the Statistical Para-
metric Mapping software (SPM12; version 7771) according to current standard
procedure in fMRI data analysis by using a GLM, with separate regressors for each
sound category, based on stick functions at each sound onset convolved with a
canonical HRF. We report functional activations with a voxel threshold of p= 0.05,
corrected for multiple testing by controlling the family-wise error rate (FWE) to
avoid false-positive activations. The FWE method is especially appropriate and
efficient to control for potential false positive activations in functional neuroima-
ging data70.

The functional connectivity analysis was performed in a Bayes statistical
framework using the PEB approach and using standard priors as implemented in
the DCM12 toolbox package (version 7479) in SPM12. We used the functional
activations and previous evidence about anatomical connections to build
probable connectivity models separately for each hemisphere. However,
especially the BMR approach was setup as an exploratory approach with the
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simplifying assumption that all potential models were all equally likely a priori.
We chose to use an exploratory approach, since the exact prediction about each
connectivity parameter was rather difficult to establish given previous evidence,
and thus an a priori choice of models would have been potentially biased. The
significance of the resulting network parameters was determined with a posterior
probability of p > 0.99.

In accordance with the APA style, we report t-values with degrees of freedom
for reporting the functional activations when contrasting experimental conditions.
For the PEB analysis, we report expected posterior parameters and their posterior
probabilities resulting from the Bayes statistical approach. Sample sizes are
reported in detail in each figure legend, the main text, and the corresponding
method sessions.

We expect that all data should be reproducible if followed with the same
settings and procedures as described in the “Methods” section and reporting
summary and using the same stimulus material.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The unthresholded SPMs of all contrasts displayed in Fig. 1 were uploaded to
NeuroVault: https://identifiers.org/neurovault.collection:9707. The DCM data are
available on OSF: https://osf.io/8t3aw/. The ethical approval for this study and legal
restrictions in Switzerland do not allow us to share raw data openly. The raw data that
support the findings of this study can be made available from the corresponding author
upon a reasonable request and in consultation with the ethical committee of the Canton
Geneva (Switzerland). The sound material used in this study for auditory stimulation was
provided by Capilla and colleagues58.

Code availability
The DCM code is available on OSF: https://osf.io/8t3aw/. No other custom code or
mathematical algorithms were used in the study. All software used for statistical analyses
has been declared in the manuscript.
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