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Prioritization of candidate causal genes for asthma
in susceptibility loci derived from UK Biobank
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Jennifer Lamothe1, Nathalie Gaudreault 1, Philippe Joubert1, Ma’en Obeidat2, Maarten van den Berge3,

Wim Timens4, Don D. Sin2, David C. Nickle 5, Ke Hao6, Catherine Labbé1, Krystelle Godbout1,

Andréanne Côté1, Michel Laviolette1, Louis-Philippe Boulet1, Patrick Mathieu 1, Sébastien Thériault 1,7 &

Yohan Bossé 1,8✉

To identify candidate causal genes of asthma, we performed a genome-wide association

study (GWAS) in UK Biobank on a broad asthma definition (n= 56,167 asthma cases and

352,255 controls). We then carried out functional mapping through transcriptome-wide

association studies (TWAS) and Mendelian randomization in lung (n= 1,038) and blood

(n= 31,684) tissues. The GWAS reveals 72 asthma-associated loci from 116 independent

significant variants (PGWAS < 5.0E-8). The most significant lung TWAS gene on 17q12-q21 is

GSDMB (PTWAS= 1.42E-54). Other TWAS genes include TSLP on 5q22, RERE on 1p36,

CLEC16A on 16p13, and IL4R on 16p12, which all replicated in GTEx lung (n= 515). We

demonstrate that the largest fold enrichment of regulatory and functional annotations among

asthma-associated variants is in the blood. We map 485 blood eQTL-regulated genes

associated with asthma and 50 of them are causal by Mendelian randomization. Prioritization

of druggable genes reveals known (IL4R, TSLP, IL6, TNFSF4) and potentially new therapeutic

targets for asthma.
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Asthma is still causing 420,000 deaths per year and afflicts
300 million individuals worldwide1. Our understanding of
the genetics of asthma has progressed following the

completion of large GWAS by international consortia, namely
GABRIEL2, EVE3, Trans-National Asthma Genetic Consortium4,
and Consortium on Asthma among African Ancestry
Populations5. More recently, two groups of investigators tapped
into the UK Biobank resource to delineate the genetics of
childhood-onset vs. adult-onset asthma6,7. Together, approxi-
mately 200 genetic loci have been associated with asthma through
GWAS. One remaining challenge arising from these GWAS
results is to find the underlying causal genes.

In parallel to GWAS, large expression quantitative trait loci
(eQTL) datasets have been generated in asthma-relevant tissues,
such as the lung and blood8–10. By leveraging these eQTL data-
sets, previous studies have identified genes whose expression
levels were associated with asthma genetic variants11–13. With
evolving bioinformatics approaches, GWAS and eQTL results can
be integrated at the genome-wide scale to (1) find shared asso-
ciation signals using colocalization14, (2) identify genes whose
genetically-predicted gene expression levels are associated with
asthma using a transcriptome-wide association study (TWAS)15,
and (3) infer causal association between genetically-determined
gene expression and asthma using Mendelian randomization.
Here, we hypothesized that existing omics datasets coupled with
new bioinformatics tools will prioritize candidate causal genes
underlying asthma susceptibility loci revealed by GWAS.

The objective of this study was to identify candidate causal genes
of asthma in lung and blood tissues. This was achieved in two steps.
First, performing a case–control GWAS on a broad asthma defini-
tion in UK Biobank in order to physically define chromosome
regions associated with asthma. UK Biobank was selected as it is the
largest case–control series of asthma available. Second, prioritizing
candidate genes by mapping the effects of asthma-associated var-
iants on protein-coding genes, gene expression, and chromatin
interaction sites using multiple approaches such as TWAS, coloca-
lization, and Mendelian randomization. Briefly, we describe 72
physically-defined asthma susceptibility loci in UK Biobank, identify
55 significant lung TWAS genes as well as 50 blood genes causally
associated with asthma by Mendelian randomization, and finally
prioritize 40 druggable genes as therapeutic targets for asthma.

Results
Asthma GWAS in UK Biobank. In total, 56,167 asthma cases and
352,255 controls of White British ancestry were selected from UK

Biobank (see “Methods” section). Demographics and clinical
characteristics of cases and controls are in Table 1. The number of
cases corresponds to an asthma population prevalence of 13.8%,
which is consistent with the UK lifetime prevalence of patient-
reported clinician-diagnosed asthma of 15.6%16. The granularity of
asthma cases defined based on self-reported questionnaires, hos-
pital records (ICD-9 and ICD-10), and primary care records is
provided in Supplementary Fig. 1. For GWAS analysis,
35,270,583 single nucleotide polymorphisms (SNPs) (filtered by
minor allele frequency >0.0001 and imputation info score >0.3)
were available for genetic association testing following standard
quality controls and imputation. We observed no evidence of
inflation in the test statistics with λ= 1.029 (Supplementary Fig. 2).
The SNP-heritability on the liability scale was estimated at 11.3%.
In total, 14,742 SNPs reached genome-wide significance (PGWAS <
5.0E−8) at 73 physically defined loci. Figure 1 shows the Man-
hattan plot and individual loci are listed in Supplementary Data 1.
Seven of these loci are novel, with no genetic variant associated
with asthma in the literature published before January 1st, 2020.
The locus 7p14 is characterized by only one rare SNP that passed
the significance threshold (rs576468798, PGWAS= 2.00E−8,
imputation info= 0.61, Supplementary Fig. 3). Allele frequencies
in asthma cases (0.00033) and controls (0.00013) range within
those observed in reference populations (TOPMed = 0.00015,
1000G European = 0.0006). Nevertheless, we discarded this locus
as more validation is needed to robustly establish its association
with asthma. Regional plots for the 6 remaining loci are provided
in Fig. 2. We checked for potential replication for the novel loci in
summary statistics from the Trans-National Asthma Genetic
Consortium comparing 19,954 European ancestry cases and
107,715 European ancestry controls4. The sentinel variants or the
next most significant variants overlapping with the Trans-National
Asthma Genetic Consortium were not associated with asthma
(PGWAS > 0.05). We also evaluated the number of independent
association signals within the 72 loci by conditional analysis. Six-
teen loci had more than one independent association signals ran-
ging from 2 to 9 independent signals by locus, except for the MHC
locus, where we observed 12 independent signals. In total, 116
independent associations with asthma risk at a PGWAS < 5.0E−8
were observed (Supplementary Data 2). We report four novel
signals, two independent signals at the MHC locus (rs2517761 and
rs2523430) and two at the 1q21-FLG locus (rs185433896 and
rs558312428), that were independent (r2 < 0.1) from asthma-
associated variants reported in the literature (Supplementary
Data 3). Genetic association results for previous asthma GWAS

Table 1 Demographics and clinical characteristics of asthma cases and controls in the UK Biobank.

Case n= 56,167 Control n= 352,255

Sex (% male) 42.5 46.4
Age (mean and range) 56.5 (40–71) 57.0 (39–73)
BMI (kg/m2) (mean and range) 28.2 (13.1–69.0) [212] 27.3 (12.1–74.7) [1079]
Smoking status (%) [247] [247]
Never smokers 53.2 54.6
Former smokers 36.3 35.0
Current smokers 10.1 10.1
Lung function (mean and range)
FEV1 (L) 2.71 (2.08–5.89) [8705] 3.08 (2.63–5.99) [32,443]
FVC (L) 3.75 (3.04–7.95) [8688] 3.96 (3.23–7.99) [32,383]
FEV1 (L)/FVC (L) 0.72 (0.24–1) 0.78 (0.17–1)
PEF (L/min) 431 (380–995) [8068] 440 (361–999) [28,123]
Atopy (%) 45 [59] 21 [387]
Eosinophil count (g/L) (mean and range) 0.22 (0–5.4) [1780] 0.17 (0–9.6) [11,039]

Number of missing values is shown in square brackets when applicable.
BMI body mass index, FEV1 forced expiratory volume in 1 s, FVC forced vital capacity, PEF peak expiratory flow.
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signals that are not significant in this study are provided in Sup-
plementary Data 4.

GWAS sensitivity analysis. Three alternative study designs (2, 3,
and 4) were evaluated to investigate the potential confounding
effects of other lung diseases, smoking and allergy. The aforemen-
tioned results are considered study design 1 and the main analysis.
This design was selected to maximize sample size and statistical
power. Study design 2 excluded cases and controls with chronic
obstructive pulmonary disease, emphysema, chronic bronchitis,
interstitial lung disease, or alpha-1 antitrypsin deficiency (n=
47,391 cases and 340,033 controls), because similarities in their
clinical presentation can result in misclassification of cases and
controls. Study design 3 excluded cases and controls with a positive
smoking history (n= 21,097 cases and 136,586 controls). This
analysis was done to further evaluate the potential confounding
effects of smoking-related lung disease, most particularly chronic
obstructive pulmonary disease, on the asthma case–control status.
Study design 4 excluded controls with atopy including hay fever,
allergic rhinitis, and eczema/atopic dermatitis (n= 56,167 cases and
268,142 controls). This study design explored the impact of
excluding from the control group individuals who suffer from other
genetically correlated allergic diseases, which may help to delineate
unique vs. shared genetic etiology of asthma and allergy.
Case–control genetic association analyses were thus performed on
these three alternative study designs. Supplementary Fig. 4 com-
pared the effect size estimates of the 72 sentinel asthma-associated
variants discovered in study design 1 with the other study designs.
Overall, the effect size estimates were highly similar. The single and
most extreme discrepancy was observed for SNP rs558269137
(causing a frameshift in the filaggrin gene p.Ser761CysfsX36) at
1q21.3 with odds ratios (ORs) of 1.33 (95% CI, 1.26–1.41) in study
design 1, 1.25 (1.14–1.37) in study design 2, 1.18 (1.02–1.36) in
study design 3, and 1.27 (1.16–1.39) in study design 4. The results
for the sentinel variant at each asthma locus and for the four study
designs are provided in Supplementary Data 5.

Functional annotation of coding SNPs. Our first strategy to
prioritize target genes within GWAS-nominated asthma loci was

to identify deleterious coding variants. This step was performed
in FUMA17. FUMA takes GWAS summary statistics and derives
its own list of independent significant variants (PGWAS < 5.0E−8
and r2 < 0.6 based on 1000G EUR). All known proxies that have
r2 ≥ 0.6 with one of the independent significant variants,
regardless of being available in the GWAS input file, are then
considered candidate variants and included for further annota-
tion. Supplementary Data 6 shows 354 exonic candidate variants
identified by this method. These variants are located in 27 loci
and two-thirds (236 out of 354) of these variants were located in
the MHC locus. The most significant deleterious variants at this
locus were rs9269958 in HLA-DRB1 and rs2855430 in COL11A2
with CADD scores of 57 and 33, respectively. However, asso-
ciation signals for these variants (PGWAS= 6.43E−5 and 6.83E
−7) were much smaller compared to the sentinel variant
(rs9273386, PGWAS= 2.11E−48). The extent of LD at this locus
precluded firm conclusion. Outside of the MHC locus, we iden-
tified eight nonsynonymous variants and 1 stop-gain variant with
CADD score >20 located at 7 loci (Table 2). Genes of known
biological relevance were identified including filaggrin (FLG) on
1q21 and toll like receptor 10 (TLR10) on 4p14. On 17q12-q21,
three potential target genes were identified, namely, ERBB2,
STARD3, and GSDMA. In terms of effect sizes, the absolute beta
values for the nine variants listed in Table 2 range from 0.03 to
0.22 (corresponding to ORs from 1.03 to 1.25). The largest effect
size was observed for variant rs61816761 causing a G to A sub-
stitution (c.16819G>A) that occurs in exon 3 of the FLG gene,
resulting in a stop instead of an arginine in codon 501 (p.
Arg501Ter). However, the effect sizes of these coding variants
were within the range observed for the 72 sentinel asthma-
associated variants with ORs from 1.03 to 1.33. Noticeably, the
largest effect size among sentinel variant was also observed for an
independent deleterious coding variant in the FLG gene
(rs558269137, p.Ser761CysfsX36). All genes in Table 2 have been
reported in previous asthma GWAS. Overall, the yield of candi-
date genes by mapping of deleterious coding variants was rela-
tively low. This is consistent with previous GWAS results on
asthma that showed more genetic associations in noncoding
regions of the genome, and suggests that most of the risk loci are
likely to act through gene regulation.

Fig. 1 Manhattan plot of the GWAS on asthma in UK Biobank. The GWAS was performed in 56,167 asthma cases and 352,255 controls. The y axis
represents P value in −log10 scale. The horizontal blue and magenta lines indicate P value of 1 × 10−5 and 5 × 10−8, respectively. Novel asthma loci are in
red. Genetic variants with P value > 0.05 were removed to limit the digital information of the Figure.
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Asthma TWAS in lung tissue. Summary statistics from the UK
Biobank GWAS were integrated with our lung eQTL dataset8

(n= 1038) to perform a TWAS on asthma. The full summary
statistics for the asthma TWAS in lung tissue are available in the
Supplementary Data 21. A total of 55 gene-asthma associations
(corresponding to 69 probe sets) reached genome-wide sig-
nificance (PTWAS < 2.51E−6) (Fig. 3 and Supplementary Data 7).

Among the 55 lung TWAS genes, nine are novel for asthma. This
includes CSF2 and HSPA4 on 5q31, TRIM10 on 6p22-p21,
C9orf38 on 9p24, TSPAN14 on 10q23, FAM62A on 12q13,
MAP2K5 on 15q22-q23, CRKRS and PERLD1 on 17q12-q21.2.
The lung TWAS genes associated with asthma were enriched in
the Kyoto Encyclopedia of Genes and Genomes (KEGG) for
asthma (Padjusted = 0.003), antigen processing and presentation

Fig. 2 Regional plots showing the six new asthma-associated loci. The y axis shows the P value in −log10 scale for SNPs upstream and downstream of the
sentinel SNP (purple diamond). The extent of linkage disequilibrium (LD; r2 values) for all SNPs with the sentinel SNP is indicated by colors. The location of
genes is shown at the bottom. SNPs are plotted based on their chromosomal position on build 37.
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(Padjusted = 0.003) and Th17 cell differentiation (Padjusted = 0.004)
(Supplementary Data 8). Fifty-three of these genes are located in
21 distinct asthma-associated loci identified in the UK Biobank
GWAS (Table 3). Supplementary Fig. 5 shows the most sig-
nificant lung TWAS genes per asthma-associated loci. The most
significant TWAS signal is at the well-known asthma-associated
locus on chromosome 17q12-q21. The lead TWAS target gene at
this locus is GSDMB (PTWAS= 1.42E−54). However, nine addi-
tional statistically significant TWAS genes are identified including
ORMDL3 (PTWAS= 2.12E−44), GSDMA (PTWAS= 5.52E−23),
and PNMT (PTWAS= 7.87E−23). LocusCompare plots showing
the colocalization events for these TWAS genes on 17q12-q21 are
provided in Supplementary Fig. 6, and show that the P value
distribution of eQTL for GSDMB colocalized better with that of
the GWAS. The direction of effects, i.e., whether lower or higher
predicted expression of these genes increased asthma risk are
presented in Table 3, along with other TWAS genes found at
asthma-associated loci. TWAS genes of known biological interest
in asthma include IL1RL1 on 2q12, TLR1 on 4p14, TSLP on 5q22,
SMAD3 on 15q22-q23, and IL4R on 16p12.

TWAS can also reveal novel risk loci owing to the resulting
power of combining GWAS and eQTL. In this study, two TWAS
genes are located in genomic loci that did not reach statistical
significance in the GWAS. This includes the gene encoding the
gamma chain of the high-affinity IgE receptor (FCER1G, z= 4.74,
PTWAS= 2.13E−6) on chromosome 1q23.3 playing a key role in

allergic reactions and DM1 protein kinase (DMPK, z= 4.83,
PTWAS= 1.37E−6) on chromosome 19q13.32 with cellular
antioxidant and pro-survival properties18.

GTEx lung was used to validate the TWAS results. For the two
novel asthma risk loci, FCER1G was replicated on 1q23.3 (z=
5.08, PTWAS= 3.71E−7), but not DMPK on 19q13.32 (z= 1.78,
PTWAS= 0.075). Table 3 shows replication of TWAS results in
GTEx lung for the 21 asthma-associated loci. For asthma loci with
a single TWAS gene, consistency was observed for RERE on 1p36,
CLEC16A on 16p13, and IL4R on 16p12. On 5q22, TSLP was the
most significant TWAS gene in both our lung eQTL set and
GTEx lung. On 17q12-q21, GSDMB and ORMDL3 were switched
as the most significant TWAS gene. In general, for asthma loci
with multiple TWAS genes in our lung eQTL dataset (the MHC
locus for example), some of the genes were replicated in GTEx
lung, but the ranking of genes based on level of significance
changed, and sometimes different TWAS genes were observed in
GTEx lung. Four TWAS genes were replicated, but with a
different direction of effect, SMAD3 on 15q22-q23 is an example.
Finally, replication was not feasible for 24 TWAS genes observed
in our lung eQTL dataset as they did not yield significant gene
expression prediction models in GTEx lung (Table 3).

To further filter lung TWAS genes, we used Bayesian
colocalization tests for GWAS and lung eQTL signals in asthma
risk loci. A high probability of shared GWAS and lung eQTL
signals was observed for GSDMB on 17q12-q21 (PP4= 0.84),

Table 2 Deleterious coding SNPs associated with asthma or in LD with asthma-associated SNPs outside of the MHC locus.

Chr Chr band rsID PositionGRCh37 PGWAS Beta CADD Gene symbol Gene name

1 1p36 rs2230624 12,175,658 1.99E−9 −0.16 22.1 TNFRSF8 TNF receptor superfamily member 8
1 1q21 rs61816761 152,285,861 3.95E−22 0.22 36 FLG-AS1/ FLG Filaggrin
4 4p14 rs11096957 38,776,491 2.49E−10 −0.05 21.9 TLR10 Toll like receptor 10
5 5p15 rs16903574 14,610,309 5.3E−12 0.09 22.6 FAM105A/

OTULINL
OTU deubiquitinase with linear linkage
specificity like

11 11q13 rs12146493 65,547,333 7.69E−6 −0.03 22.2 AP5B1 Adapter related protein complex
5 subunit beta 1

12 12q21 rs3763978 71,533,534 2.6E−10 −0.04 24.5 TSPAN8 Tetraspanin 8
17 17q12 rs1058808 37,884,037 1.94E−26 −0.07 23.5 ERBB2 erb-b2 receptor tyrosine kinase 2
17 17q12 rs1877031 37,814,080 4.71E−22 −0.07 23.1 STARD3 StAR related lipid transfer domain containing 3
17 17q21 rs3894194 38,121,993 7.95E−33 0.08 21.9 GSDMA Gasdermin A

All variants are nonsynonymous except rs61816761 in the filaggrin gene that is a stop-gain.

Fig. 3 Manhattan plot of the TWAS on asthma integrating the UK Biobank GWAS and the lung eQTL dataset. Each dot represents the association
between predicted gene expression and asthma for a specific probe/transcript. P values for gene expression-asthma associations are on the y axis in
−log10 scale. The blue, green, and magenta horizontal lines represent PTWAS of 0.05, 0.0001, and 2.51E−6 (Bonferroni), respectively. Annotations for
genome-wide significant probes/transcripts that passed Bonferroni correction are indicated. Genes in blue have not been reported in previous
asthma GWAS.
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TLR1 on 4p14 (PP4= 0.75), TSPAN14 on 10q23 (PP4= 0.72),
RERE on 1p36 (PP4= 0.71), and UBAC2 on 13q32 (PP4= 0.65)
as well as two genes on 22q13: PHF5A (PP4= 0.87) and MEI1
(PP4= 0.63). Supplementary Data 9 shows the colocalization
results for all TWAS genes identified in the lung eQTL dataset.

Asthma TWAS in other asthma-relevant tissues in GTEx.
Asthma TWAS genes were also explored in five additional tissues
in GTEx, namely blood, skin (exposed or not to sun), small
intestine and spleen. Genome-wide TWAS results for all tissues
are illustrated in Fig. 4. The numbers of TWAS genes reaching
significance were 63 in blood (Fig. 4a), 65 for skin not sun
exposed (Fig. 4b), 66 for skin sun exposed (Fig. 4c), 27 for small
intestine (Fig. 4d), and 34 for spleen (Fig. 4e). Interestingly, many
of these genes overlapped with those identified using lung data

(Table 3 and Fig. 4). We have also evaluated overlapping TWAS
genes across GTEx tissues (Supplementary Fig. 7). Genes iden-
tified in at least four out of five tissues include those on 2q37.3
(D2HGDH), 5q31.1 (SLC22A5, KIF3A), 6p22-p21-MHC (HLA-
DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB1-AS1, and HLA-
DRB1), 6q23.3 (AHI1), 12q13.2 (RPS26, SUOX), and 17q12-q21.2
(ORMDL3, GSDMA, GSDMB, PGAP3, MED24). Among them,
SLC22A5, KIF3A, HLA-DQB1, ORMDL3, GSDMA, and GSDMB
were also identified in lung. The full summary statistics for the
asthma TWAS using blood, skin (sun exposed or not), small
intestine and spleen are available in the Supplementary Data 22,
23, 24, 25, 26.

Cell and tissue functional enrichment of asthma-associated
SNPs. We used GARFIELD19 to evaluate the enrichment of

Table 3 Lung TWAS genes identified in asthma-associated loci.

Lung eQTL Replication in GTEx lung*

Chr band GWAS sentinel Genes (direction, PTWAS) Genes (direction, PTWAS)

1p36 rs4480384 RERE (+, 4.43E−9) RERE (+, 1.69E−9)
1q21 rs558269137 LINGO4 (+, 6.45E−8) LINGO4 (+, 1.67E−6) → FLG (−, 3.16E−6)
2q12 rs72823641 IL1RL1 (−, 4.01E−8) → SLC9A2 (+, 1.41E−7) SLC9A2 (+, 1.72E−8) repl.: IL1RL1 (−, 0.163)
2q37 rs34290285 ING5 (−, 7.92E−8) RTP5 (−, 4.68E−15) → D2HGDH (+, 1.15E−14) → PDCD1

(−, 9.96E−12) → ING5 (−, 6.67E-9)→ BOK (−, 2.52E−7)
3q27-q28 rs13099273 LPP (+, 1.33E−6) LINC01063 (−, 8.06E−15) repl.: LPP (−, 0.006)
4p14 rs5743618 TLR1 (+, 5.15−17) repl.: no model for TLR1
5q22 rs1837253 TSLP (+, 9.43E−14) → CAMK4 (+, 2.94E−9) → WDR36

(−, 2.21E−6)
TSLP (+, 3.54E−14) → WDR36 (−, 1.19E−10) repl.: no
model for CAMK4

5q31 rs848 SEPT8 (−, 3.11E−23) → PDLIM4 (+, 5.54E−19) →
SLC22A5 (+, 1.03E−18) → P4HA2 (−, 6.29E−18) →
SLC22A4 (+, 1.50E−17) → KIF3A (+, 9.92E−10) →
HSPA4 (+, 1.98E−9) → RAD50 (+, 5.60E−8) → CSF2
(−, 1.43E−6)

SLC22A5 (+, 2.91E−20) → AFF4 (+, 3.16E−08) → KIF3A
(−, 3.22E−07) repl.: HSPA4 (+, 0.182), RAD50 (+, 2.63E
−4), no model for SEPT8, PDLIM4, P4HA2, SLC22A4, CSF2

6p22-p21 rs9273386 HLA-DRB6 (+, 1.06E−20) → HLA-DQB1 (−, 2.03E−14)
→ HLA-DQB2 (−, 6.30E−14)→ HLA-DPB1 (−, 2.80E−10)
→ TAP2 (−, 4.01E−8) → PSMB9 (−, 2.18E−7) → TRIM10
(+, 9.57E−7)

HLA-DQA1 (−, 2.78E−51)→ HLA-DQB2 (+, 2.64E−40)→
HLA-DQB1 (−, 1.26E−39) → HLA-DQA2 (+, 1.70E−34) →
HLA-DQB1-AS1 (−, 1.51E−27) → C6orf47 (−, 8.88E−17) →
HLA-DRB1 (−, 1.77E−12) → ZNRD1 (−, 1.21E−8) →
COL11A2 (+, 1.00E−7) → LEMD2 (+, 1.02E−6) → CFB (+,
1.37E−6) → DXO (−, 2.98E−6) repl.: HLA-DPB1 (+,
0.001), TAP2 (−, 0.042), PSMB9 (+, 0.574), no model for
HLA-DRB6, TRIM10

6q22 rs802731 PTPRK (+, 1.86E−10) repl.: no model for PTPRK
9p24 rs992969 C9orf38 (+, 1.19E−12) → KIAA1432 (+, 1.90E−6) repl.: no model for C9orf38, KIAA1432
10p15 rs12722502 RBM17 (−, 2.34E−8) repl.: no model for RBM17
10q23 rs1870140 TSPAN14 (−, 1.20E−6) repl.: no model for TSPAN14
12q13 rs3024971 CDK2 (+, 2.54E−10) → FAM62A (+, 6.03E−8) → RDH16

(+, 1.81E−6)
RPS26 (+, 1.29E−13) → SUOX (−, 1.21E−8) → HSD17B6
(+, 3.99E−6) repl.: RDH16 (+, 5.36E−4), no model for
CDK2, FAM62A

13q32 rs34259893 UBAC2 (−, 1.10E−12) repl.: no model for UBAC2
15q22-q23 rs56375023 SMAD3 (+, 5.41E−10) → MAP2K5 (+, 2.74E−7) IQCH (+, 6.75E−10) → AAGAB (−, 3.37E−6) repl.:

SMAD3 (−, 0.010), MAP2K5 (+, 0.043)
16p13 rs35441874 CLEC16A (+, 4.71E−9) CLEC16A (+, 8.47E−07)
16p12 rs3785356 IL4R (−, 5.94E−9) IL4R (−, 1.00E−11)
17q12-q21.2 rs4795401 GSDMB (+, 1.42E−54) → ORMDL3 (+, 2.12E−44) →

PERLD1 (+, 2.64E−26) → GSDMA (−, 5.52E−23) →
PNMT (+, 7.87E−23) → CASC3 (+, 1.53E−9) → PSMD3
(−, 4.37E−9) → SMARCE1 (+, 6.39E−9) → CRKRS (+,
2.76E−8) → MED1 (+, 4.89E−7) → IKZF3 (−, 6.24E−7)

ORMDL3 (+, 1.05E−54) → GSDMB (+, 1.82E−47) →
GSDMA (−, 8.97E−21) → PNMT (+, 7.03E−20) →
PGAP3 (+, 3.15E−19) repl.: CASC3 (+, 0.005), SMARCE1
(−, 0.003), no model for PERLD1, PSMD3, CRKRS, MED1,
IKZF3

17q21.32 rs72833417 KPNB1 (+, 4.88E−7) repl.: no model for KPNB1
22q13 rs34290865 PHF5A (+, 2.17E−8) → MEI1 (+, 1.91E−7) MEI1 (+, 4.33E−8) → ACO2 (+, 1.04E−7) repl.: no model

for PHF5A

(+) and (−) indicate predicted gene expression positively or negatively associated with asthma risk. For loci with more than one TWAS genes, the genes are ordered by their level of significance and
separated by arrows.
In bold are lung TWAS genes that replicated in GTEx lung.
Underlined are lung TWAS genes not reported in previous asthma GWAS.
*All Bonferroni-corrected TWAS genes per loci found in GTEx lung are indicated as well as the results of TWAS genes identified in the lung eQTL dataset in order to seek for replication (PTWAS < 0.05) in
GTEx lung.
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Fig. 4 Manhattan plots of the TWAS on asthma integrating the UK Biobank GWAS and the eQTL from five tissues in GTEx. TWAS results for a in
blood, b in skin not sun exposed, c in skin sun exposed, d in small intestine and e in spleen are illustrated. Each dot represents the association between
predicted gene expression and asthma for a specific gene/transcript. P values for gene expression-asthma associations are on the y axis in −log10 scale.
The green and magenta horizontal lines represent PTWAS of 0.0001 and Bonferroni, respectively. Annotations for genome-wide significant genes/
transcripts that passed Bonferroni correction are indicated. Genes in blue have also been identified in lung tissue.
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asthma-associated loci in regulatory and functional annotations
derived from ENCODE and the Roadmap Epigenomics Project.
Figure 5 shows functional enrichment within DNase I hyper-
sensitivity site hotspots at two GWAS P value cut-offs. The largest
fold enrichment values were in the blood. All results are sum-
marized in Supplementary Data 10, along with other annotation
types.

Functional mapping and annotation in blood. Considering the
strong enrichment of genetic association data for asthma in blood
cells including B and T cells, we leveraged blood cis-eQTL from
31,684 samples9 to identify genetically expressed genes (eGenes)
associated with asthma. In total, we identified 128,752 significant
SNP-gene pairs (PFDR < 0.05), which mapped 485 blood eGenes
(Supplementary Data 11 and 12). The blood eGenes associated
with asthma were enriched in KEGG for antigen processing and
presentation (Padjusted = 1.74E−23) and Th17 cell differentiation
(Padjusted = 6.60E−22) (Supplementary Data 13). As GARFIELD
showed a strong enrichment of gene variants associated with

asthma in blood and GM12878 cell line (lymphoblastoid B cell
line) (Fig. 5 and Supplementary Data 10), we mapped individual
significant SNPs (PGWAS < 5.0E−8, r2 < 0.6) (see “Methods” sec-
tion) to genes by using Hi-C data obtained in this cell line.
Chromatin contact mapping in GM12878 identified 563 genes
(Supplementary Data 14), which included 251 blood eGenes.
Although interesting, prioritizing candidate genes for asthma was
still challenging at many loci. For example, Fig. 6 shows a zoom in
of a circos plot for genetic association data integrating eQTL and
chromatin contact mappings in GM12878 at the 17q12-q21 locus.
Many eQTL genes (in green), Hi-C genes (in orange) or genes
significant in both eQTL and Hi-C data (in red) were identified.
We have thus decided to perform additional filtering using
Mendelian Randomization.

Mendelian randomization in blood with asthma. We next
implemented two-sample Mendelian Randomization to infer
causal associations between blood eGenes and asthma (see
“Methods” section). We were able to perform 431 Mendelian

Fig. 5 GARFIELD functional enrichment analyses. The wheel plot shows functional enrichment for asthma variants within DNase I hypersensitivity site
hotspot regions in ENCODE and Roadmap Epigenomics data. The radial axis represents the enrichment (OR) for each of 424 cell types that are sorted by
tissue along the outside edge of the plot. Tissues are labeled with font size proportional to the number of cell types. Boxes forming the edge are colored by
tissue. Enrichment is calculated for two GWAS significance thresholds: 1.0E−5 and 1.0E−8, which are plotted in blue and black, respectively, inside the
plot. Dots along the inside edge of the plot are colored with respect to tissue and represent significant enrichment for a specific cell type (one dot = P < 1E
−5 and two dots = P < 1E−6).
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Randomizations with at least three instrumental variables per
gene (mean of 19 instrumental variables per gene) (Supplemen-
tary Data 15) and we identified 50 blood eGenes at a Bonferroni
threshold (PIVW= 0.05/431= 1.16E−4) that were causally asso-
ciated with asthma (Supplementary Data 16). Supplementary
Fig. 8 shows the most significant causally associated blood eGene
identified per asthma-associated loci. Among the 50 blood
eGenes, 26 did not show heterogeneity on the Cochrane’s Q-test
(P > 0.05), whereas 24 eGenes had heterogeneity (PQ-test < 0.05).
These 24 eGenes were corrected by applying the MR-PRESSO
approach (methods) and all remain significant (Supplementary
Data 16). At 17q12-q21, the expression of GSDMB (per SD OR:
1.11, 95% CI: 1.09–1.14, PMR_Corr= 2.14E−13) was positively
associated with the risk of asthma (Supplementary Data 16).
Among the causally associated eGenes, 17 showed colocalization
signals (PP4 > 0.6) between blood eQTLs and genetic association
data (RERE, EFEMP2, TGFBR1, UBAC2, SIK2, UNC13D, TLR10,
LGSN, MEI1, AHI1, CXCR5, FADS1, FADS2, TEF, CSDC2,
GSDMB, and IKZF3) (Supplementary Data 16).

Drug targets. Target genes of the asthma-associated variants
identified in previous sections were then integrated to prioritize
druggable genes. In total, we identified 55 lung TWAS genes
(Supplementary Data 7), 485 blood eGenes (Supplementary
Data 12), and 563 chromatin contacts mapped genes (Supple-
mentary Data 14). Together, 806 unique target genes were

identified with overlap across methods shown in Supplementary
Fig. 9. Notably, 101 of them overlapped with the recent list of 161
possible asthma drug targets summarized by El-Husseini et al.20,
which were derived from eQTL and non-synonymous analysis of
independent variants associated with asthma in previous GWAS
(Supplementary Data 17). According to the Open Targets
Platform21, 13 out of 806 are the targets of investigational or
approved asthma drugs (Supplementary Table 1). All target genes
were also interrogated using the Open Targets Platform21 for
their overall association score with asthma. Results for all target
genes are in Supplementary Data 17. The 806 target genes were
also overlaid with the known druggable genes derived from the
drug–gene interaction database (DGIdb)22 and the druggable
genome23. Drug–gene interactions were identified for 182 target
genes in DGIdb and 201 target genes were part of the druggable
genome (Supplementary Data 17), which offer numerous
opportunities for drug repurposing. We further focused on 29
target genes that were consistently identified by TWAS, eQTL,
and chromatin interactions (Supplementary Fig. 9). Ten of them
have known drug targets. Supplementary Table 2 shows these ten
druggable target genes for asthma and their direction of effect on
asthma risk in lung tissue as well as the candidate drugs, inter-
action types and clinical indications. Target-asthma associations
of 1, which is the highest possible score in Open Targets, were
observed for two genes including IL4R that is the therapeutic
target of dupilumab used to treat uncontrolled persistent
asthma24 and SMAD3 involved in airway remodeling25 and that
may mediate some actions of corticosteroids, which are the cor-
nerstone of asthma treatment. Finally, we filtered the 806 target
genes based on two cumulative criteria: 1) those with asthma
score of at least 0.5 in Open Targets, and 2) those that are
druggable in either the DGIdb or the druggable genome. By
excluding the HLA molecules, this strategy revealed 40 prioritized
therapeutic targets for asthma (Table 4). In addition to IL4R and
SMAD3, these prioritized genes are known targets of existing
asthma drugs including IL6 (clazakizumab, sirukumab), TNFSF4
(oxelumab), TSLP (tezepelumab), CCR4 (mogamulizumab), IL13
(anrukinzumab, lebrikizumab, dectrekumab, and tralokinumab),
IL5 (mepolizumab, reslizumab), and IL2RA (daclizumab).

Finally, we performed a cross-phenotype search in GeneATLAS26

to evaluate potential effects of modulating genes prioritized as
therapeutic targets for asthma. Diseases/traits from UK Biobank
participants that are significantly associated with the GWAS sentinel
variants underpinning the 40 prioritized target genes are indicated in
Supplementary Data 18. Based on this in silico approach and
available data, the safety profile of most of these targets seems
favorable with genetic associations observed mostly with asthma-
related phenotypes, white blood cells (eosinophil, neutrophil, and
lymphocyte), and other allergic conditions (hay fever/allergic rhinitis
and allergy/hypersensitivity/anaphylaxis). Targets located in the
MHC locus (NOTCH4 and ITPR3) were associated with 41 different
phenotypes, including ulcerative colitis and multiple sclerosis signals
in the opposite direction from asthma. Similarly, the lead variant at
the IL5/IL13 locus linked with a decreased risk of asthma was
associated with an increased risk of psoriasis.

Discussion
An important genetic susceptibility to develop asthma has long
been demonstrated by genetic epidemiology studies27. However,
the predisposing genetic variants have been difficult to identify
until the realization of recent large-scale GWAS. Now, a large
number of genetic loci are robustly associated with asthma. The
new challenge is to identify the candidate causal genes and best
therapeutic targets underpinning GWAS-nominated loci. Here,
we leveraged lung and blood transcriptome as well as epigenetic

Fig. 6 Blood eQTLs and chromatin interactions in GM12878 at the 17q12-
q21 asthma risk locus. The most significant asthma GWAS SNP is
indicated at the most outer border of the circos plot. The subsequent layers
show 1) genetic association results from the asthma GWAS in UK Biobank
for SNPs with P value < 0.05 with the color of dots reflecting the level of LD
with the sentinel variant (red: r2 > 0.8, orange: r2 > 0.6), 2) the
chromosome coordinate and the asthma GWAS loci highlighted in dark
blue, 3) blood eQTL genes, genes mapped by Hi-C, and genes mapped by
both eQTL and Hi-C labeled in green, orange, and red, respectively, 4)
green and orange lines link the position of eQTLs and chromatin
interactions, respectively.
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marks to identify the most likely causal genes within asthma
susceptibility loci derived from UK Biobank. Using a broad
asthma definition, we identified 72 physically-defined asthma loci
containing 116 independent genetic variants with PGWAS < 5.0E
−8. The effect size estimates were robust to more strict asthma
definitions excluding other lung diseases, smoking history or
allergy within controls. As expected, the yield of deleterious
coding variants was low (eight nonsynonymous variants and one
stop-gain variant with CADD score >20), and we thus focused
most analyses on regulatory elements. The UK Biobank asthma
GWAS was integrated with the largest lung eQTL study available.
Fifty-five significant TWAS genes located in 21 previously
reported asthma loci and two novel asthma risk loci (1q23.3-
FCER1G and 19q13.32-DMPK) were found and 23 of them (in 14
loci) replicated in GTEx lung. As previously reported28, we
demonstrated a strong enrichment of asthma-associated variants
in regions of regulatory and functional annotations in blood. We
mapped 485 blood eGenes and demonstrated that 50 of them are
causally associated with asthma by Mendelian randomization.

Chromatin contact mapping in the blood cell line showing the
most significant enrichment of DNase I hypersensitive sites
(GM12878) revealed 563 Hi-C genes. Prioritization of the 806
candidate causal genes identified in this study based on con-
sistency across methods, druggability, and prior asthma associa-
tion led to 40 genes prioritized as therapeutic targets for asthma.
We performed a quick PheWAS lookup on prioritized genes to
provide a first appreciation of any potential side effects of tar-
geting these genes. Although a more in-depth investigation will be
needed on each gene, the direction of effect on asthma compared
to other health conditions and most particularly allergic pheno-
types seem to be concordant. Exceptions included genes located
at the MHC locus showing a potential increase in risk of
ulcerative colitis and multiple sclerosis, and at the IL5/IL13 locus
showing a potential increase in risk of psoriasis.

Nine of the 40 prioritized genes are the targets of existing
asthma drugs including IL4R (dupilumab), SMAD3 (corticoster-
oids), IL6 (clazakizumab, sirukumab), TNFSF4 (oxelumab), TSLP
(tezepelumab), CCR4 (mogamulizumab), IL13 (anrukinzumab,

Table 4 Genes prioritized as therapeutic targets for asthma in alphabetic order.

Genes Lung TWAS gene Blood eGene Hi-C gene Asthma scorea DGIdb 3.0b Druggable genomec Asthma drug targetsd

CCR4 No Yes No 0.62 Yes Yes No
CCR7 No Yes Yes 0.55 No Yes Yes
CD247 No Yes Yes 1 Yes Yes Yes
ERBB2 No Yes Yes 0.51 Yes Yes No
ERBB3 No Yes Yes 0.62 Yes Yes Yes
FADS2 No Yes No 0.63 Yes No Yes
FASLG No No Yes 0.84 No Yes No
FCER1G Yes No No 0.64 Yes No Yes
GLB1 No Yes Yes 0.71 No Yes No
GPR18 No Yes Yes 0.50 Yes Yes No
GPR183 No Yes Yes 0.54 Yes Yes Yes
IL13 No No Yes 1 Yes Yes No
IL18R1 No Yes No 1 No Yes No
IL18RAP No Yes No 0.57 No Yes Yes
IL1RL1 Yes Yes No 1 No Yes Yes
IL2RA No Yes No 1 Yes Yes Yes
IL33 No No Yes 1 No Yes No
IL4R Yes Yes Yes 1 Yes Yes Yes
IL5 No No Yes 1 Yes Yes No
IL6 No Yes Yes 1 Yes Yes No
IL7R No Yes Yes 1 Yes Yes Yes
ITGB8 No No Yes 1 No Yes Yes
ITPR3 No Yes No 0.73 Yes Yes Yes
MYC No Yes No 1 Yes No No
NDFIP1 No Yes No 0.80 No Yes Yes
NOTCH4 No Yes Yes 0.65 Yes Yes No
PLXNC1 No Yes Yes 1 No Yes No
PRKCQ No Yes No 1 Yes Yes Yes
PTPRC No Yes Yes 1 Yes Yes No
RORA No Yes No 1 Yes Yes No
RORC No Yes Yes 0.67 Yes Yes No
RUNX1 No Yes No 0.80 Yes No No
SMAD3 Yes Yes Yes 1 Yes Yes No
STAT6 No Yes No 1 Yes Yes Yes
TLR1 Yes Yes Yes 1 No Yes Yes
TLR10 No Yes Yes 0.94 No Yes No
TLR6 No Yes Yes 0.77 No Yes Yes
TNFRSF8 No No Yes 1 Yes Yes No
TNFSF4 No Yes Yes 1 Yes Yes Yes
TSLP Yes No Yes 1 No Yes Yes

Targets of existing asthma drugs are in bold.
aOverall association score for asthma from the Open Targets Platform21.
bDGIdb, Drug-gene interaction database22.
cDruggable genome23.
dAsthma drug targets derived from El-Husseini et al.20
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lebrikizumab, dectrekumab, tralokinumab), IL5 (mepolizumab,
reslizumab), and IL2RA (daclizumab). This supports the possi-
bility that other genes in that list (Table 4) are credible ther-
apeutic targets for asthma. Among them, there are three members
of the toll-like receptor family: TLR1, TLR6, and TLR10. These
three TLRs are located at the same 4p14 locus, are phylogeneti-
cally related, and require the formation of heterodimers with
TLR2 for recognition of invading microbes29. We found a strong
colocalization signal between the blood eQTL for TLR10 and the
GWAS for asthma (PP4= 0.84). In Mendelian randomization,
the blood expression of TLR10 was positively associated with the
risk of asthma (PIVW= 4.34E−6). We also identified two mis-
sense mutations in TLR10, C-rs4129009 (p.Ile775Val) (PGWAS=
1.49E−10) and G-rs11096957 (p.Asn241His) (PGWAS= 2.49E
−10), which are in moderate LD (r2= 0.42 in CEU) and asso-
ciated with the risk of asthma. The CADD score for G-
rs11096957 is 21.9 and is predicted to be “possibly damaging”
and “deleterious” by PolyPhen and SIFT, respectively. The alleles
C-rs4129009 (p.Ile775Val) and G-rs11096957 (p.Asn241His),
which decrease the risk of asthma, have been associated with
elevated blood cytokine responses to a TLR1/2 agonist, most
specifically Pam3CSK4-induced interleukin 6 (IL6)30. We recently
demonstrated that genetically predicted levels of circulating IL6R,
a negative regulator of IL6 signaling, are positively associated with
the risk of asthma and atopic disorders31. These data suggest a
complex interaction between TLR10 and IL6 on the risk of
asthma and warrant further investigation. One line of inquiry
could examine the possibility that TLR10 dampens
TLR2 signaling and IL6 production, thereby increasing the risk of
asthma. In support of the latter hypothesis, in an ovalbumin-
induced asthma mouse model, IL6 lowered Th2 cytokines and
decreased bronchial hyperresponsiveness32.

Other gene targets include cytokine/chemokine receptors
(IL7R, IL1RL1, IL33, IL18R1, IL18RAP CCR7), members of the
EGFR family of receptor tyrosine kinases (ERBB2 and ERBB3),
protein kinase C theta (PRKCQ), G protein-coupled receptors
(GPR18 and GPR183), an antigen recognition molecule (CD247),
a member of the protein tyrosine phosphatase family (PTPRC),
transcription factors (STAT6, RORC, RUNX1, RORA, and MYC),
a member of the NOTCH family (NOTCH4), TNF receptor
superfamily member 8 (TNFRSF8), Fas ligand (FASLG), a
member of the plexin family (PLXNC1), integrin subunit beta 8
(ITGB8), Nedd4 family interacting protein 1 (NDFIP1), inositol
1,4,5-trisphosphate receptor type 3 (ITPR3), fatty acid desaturase
2 (FADS2), and galactosidase beta 1 (GLB1). All these targets have
drug–gene interactions in DGIdb22 and/or are present in the list
of genes encoding druggable human proteins23. They are thus
representing drug repurposing/development opportunities. Fur-
ther experimental research will be needed to screen these putative
novel therapeutic targets for asthma.

The effect sizes of all genetic variants associated with asthma
are relatively small. Although 116 independent variants reached
genome-wide significance (PGWAS < 5.0E−8) in this study, the
ORs range from 1.03 to 3.59 (median = 1.06, note that ORs lower
than 1 were converted into their reciprocal (1/OR)). As an
example to appreciate the effect size that we are detecting, the
most significant associated asthma variant on chromosome 9 near
the IL33 gene has a P value of 1.25E−56 and an OR of 1.13, which
is the result of allele frequencies of 0.73 in cases and 0.75 in
controls. One hundred out of the 116 independent variants were
common, with minor allele frequency greater than 5% in cases
and controls combined. So most risk alleles are common with
small effects that we are able to detect owing to the large sample
size. Cumulatively, all genetic variants discovered by GWAS
explained about 8–9% of the total heritability28, suggesting much
more work is needed to elucidate the full genetic architecture of

asthma. More work is also needed to move discovered genetic
factors underlying asthma down the clinical translation pipeline.
We believe that the current study represents an important step
beyond GWAS data. By combining different data sources (eQTL
and Hi-C in disease-relevant tissues) and advanced bioinfor-
matics approaches (TWAS, Mendelian Randomization, colocali-
zation), we were able to reveal relevant genes and putative
therapeutic targets for asthma.

As observed in previous asthma GWA studies, we had limited
success in mapping asthma-associated variants to deleterious
coding SNPs. One of our most interesting hit is with the filaggrin
(FLG) gene. FLG is located on chromosome 1q21.3, a locus where
we have identified five independent significant variants, which
have all been previously reported (Supplementary Data 2 and 3).
Two of the five independent variants are changing the structure of
the protein including the sentinel variant rs558269137 (p.
Ser761CysfsX36) and variant rs61816761 (p.Arg501Ter). FLG
was previously associated with atopic dermatitis33 where the risk
variants are believed to disrupt the skin barrier, allowing allergen
sensitization and then promoting the development of asthma34.
rs61816761 was also found in previous GWAS of asthma in UK
Biobank6,7,28,35,36 and with greater effect on atopic dermatitis
than asthma37, which supports skin barrier dysfunction as a cause
of asthma. Another deleterious coding variant (rs2230624,
Cys273Tyr) was identified in TNFRSF8 (also known as CD30),
which was previously reported38 and characterized as a loss of
function variant that decreased asthma risk by reducing the
trafficking of the CD30 protein on cell surface37.

As GWAS on asthma in UK Biobank accumulate6,7,28,36–39, the
next milestone will be to identify the function units, most intui-
tively genes, underlying the GWAS loci. In this study, we have
combined the UK Biobank GWAS data with the largest lung
eQTL available to perform a TWAS. Plausible causal genes in
lung tissues were revealed for 21 asthma loci. On 17q12-q21.2, the
first discovered40 and the most replicated41 GWAS asthma locus,
GSDMB was the most significant TWAS gene in our lung eQTL
dataset. Although other TWAS genes were observed in that locus,
the P value distributions of GWAS and eQTL colocalized better
with GSDMB. Using blood as eQTL source, we also identified
GSDMB as the most likely causal gene on 17q12-q21.2. These
results are consistent with eQTL analysis showing that SNPs
associated with asthma susceptibility and severity at 17q12-q21.2
are correlated with GSDMB expression in cells from human
bronchial epithelial biopsy and bronchial alveolar lavage42,43.
GSDMB is thus a gene to focus on in future functional studies.
Other lung TWAS genes prioritized by our study for further
functional characterization are RERE on 1p36, TLR1 on 4p14,
SLC22A5 or RAD50 on 5q31, RBM17 on 10p15, UBAC2 on
13q32, SMAD3 on 15q22-q23, CLEC16A on 16p13, IL4R on
16p12, KPNB1 on 17q21.32, and PHF5A on 22q13.

The lung TWAS revealed a novel asthma risk locus at 1q23.3
with the putative gene encoding the gamma chain of the high-
affinity IgE receptor (FCER1G). Note that the FCER1A gene at
1q23.2 (approximately 2Mb away from FCER1G) has been
associated with total serum IgE levels44. Concerning FCER1G,
hypomethylation at its promoter has been reported in monocytes
of patients with atopic dermatitis, resulting in the overexpression
of high affinity IgE receptors in these cells45. Here, we found that
higher expression of FCER1G in lung tissue is associated with
asthma (z= 4.74, PTWAS= 2.13E−6), a finding replicated in
GTEx lung (z= 5.08, PTWAS= 3.71E−7). This new asthma locus
may thus mediate its effect by upregulating FCER1G, which may
then lead to inflammatory cells with greater surface expression of
IgE receptors, that are more prone to allergic reaction. FCER1G
was also a significant TWAS gene in other asthma-relevant tissues
including blood, skin and spleen.
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Replication in this study is challenging as we have used the
largest asthma GWAS study and the largest lung eQTL study.
Similarly powered replication sets are currently not available. For
the lung TWAS genes, our best attempt to replicate the novel
findings was to use the lung eQTL set from GTEx. Unfortunately,
24 out of 55 genes identified using the lung eQTL study did not
yield significant gene expression prediction models and thus
could not be evaluated by TWAS. This is partly the results of a
smaller sample size in GTEx lung (n= 515 vs. 1038), but many
other factors. It should be emphasized that a head-to-head
comparison between two eQTL sets is not straightforward as two
GWAS sets and this not just because of the nature of data, i.e.,
static for SNP compared to dynamic and cell/tissue dependent for
gene expression. There are major differences between our lung
eQTL study and GTEx lung including the human lung sampling
(surgery vs. post-mortem) and the gene expression platforms
(microarray vs. RNA-Seq). Tissue processing methods for freez-
ing, storing, and thawing tissues as well as extracting RNA were
also different. Other investigators have also highlighted extensive
heterogeneity in gene expression for the lung transcriptome data
in GTEx due to sampling location in the lung and treatment
related changes such a mechanical ventilation46. Taken all toge-
ther, GTEx lung is not the most suitable replication set, but our
best option now. Despite all this, we were pleasantly surprised to
replicate 23 TWAS genes in GTEx lung.

This study has limitations. We used the best possible bioin-
formatics approaches to identify causality genes. However, our
study does not provide a complete package to support novel
therapeutic hypotheses47. The candidate gene targets identified in
our study will need to be experimentally validated by other pre-
clinical models (cellular, animal, and human studies) in order to
understand the biological effects of risk alleles on gene function
and the role of these genes in the pathogenesis of asthma. Further
studies are needed to demonstrate causality. For the asthma
GWAS, we have tested 35,270,583 SNPs (minor allele frequency
>0.0001) and used the conventional common-variant significance
P value threshold of 5 × 10−8. By using a more stringent threshold
of 5 × 10−9 recommended for whole-genome sequencing studies
including rare variants48, 18 out of 72 loci reported in our study
would no longer be significant. Among them, 12 of these loci have
been reported in previous asthma GWAS. All 18 loci have minor
allele frequency >0.05 including the six novel loci with minor allele
frequency ranging from 0.15 to 0.44. We did not observe repli-
cation of these novel loci in the Trans-National Asthma Genetic
Consortium4, and they should thus be interpreted with caution.
Our analyses are largely based on European-descent individuals.
Inference to other ethnic groups is thus a concern and the lack of
similarly powerful resources (e.g., UK Biobank) for other ances-
tries represent a missed opportunity to identify other relevant
asthma genes. Environmental risk factors and the specific period
of exposures during the lifespan play an important role in the
development of asthma. Our genomic datasets (GWAS and eQTL)
are retrospective in nature and mostly derived from adult popu-
lations. Environmental and age-related modifiers of genetic risk
and gene expression levels are likely to have been missed. We used
whole lung and blood tissues, which contain heterogeneous cell
populations, limiting our ability to identify genes affecting asthma
risk through gene regulation and epigenetic marks. Progress in
single-cell transcriptomic is promising for future studies. Finally,
we used regulatory and functional annotations derived from
ENCODE and Roadmap Epigenomics data to find cell type and
tissue enrichment of asthma-associated loci. Although valuable,
these publicly available datasets lack functional data on some cell
types that are relevant to asthma such as eosinophils and airway
smooth muscle cells, which limited our ability to understand the
functional impact of asthma-associated variants.

In conclusion, this study expands our understanding of the
regulatory and functional mechanisms underlying GWAS asthma
risk loci in lung and blood tissues. The candidate causal genes
identified are key to understand disease etiology, interpret GWAS
results, and prioritize follow-up functional studies. Our top
therapeutic targets represent new opportunities for drug reposi-
tioning and testing in pre-clinical models.

Methods
Genome-wide association study on asthma in UK Biobank. UK Biobank is an
open access resource of nearly 500,000 participants enrolled at the age of 40–69 and
prospectively evaluated for a range of health-related outcomes49. The definition of
asthma in this study is based on the UK Biobank Outcome Adjudication Group
and relies on hospital, death, primary care, and self-reported related codes (Phase 2
code list for asthma) (Supplementary Data 19). Asthma cases include patients with
a diagnosis from hospital record (ICD-9 or ICD-10 codes) or primary care medical
record as well as those with self-reported asthma (data-field 20002 in UK Biobank).
Genotyping data are derived from the Affymetrix UK BiLEVE or UK Biobank
Axiom Arrays. Phasing and imputation were performed centrally using the Hap-
lotype Reference Consortium and merged UK10K and 1000 Genomes phase 3
reference panels50,51. Samples with call rate <95%, outlier heterozygosity rate, sex
mismatch, non-white British ancestry, samples with excess third-degree relatives
(>10), or not used for relatedness calculation were excluded. Variants with an
imputation quality score (INFO) ≤ 0.3 or minor allele frequency <0.0001 were
removed. Using the aforementioned definition of asthma and quality control filters,
56,167 asthma cases were compared to 352,255 controls. The genetic association
analysis was performed using SAIGE (Scalable and Accurate Implementation of
GEneralized mixed model, version 0.36.3.1, https://github.com/weizhouUMICH/
SAIGE)52. SAIGE is a two-step method to perform generalized mixed model
GWAS analysis that is robust to unbalanced case-control ratios, sample relatedness
and low-frequency variants. In step 1, we fit a null logistic mixed model with 93,511
independent, high-quality genotyped variants, which were used by the UK Biobank
data group to estimate the kinship coefficients between samples51,52. The following
covariates were added: age, sex, and the first 20 ancestry-based principal compo-
nents. In step 2, we performed association tests between each genetic variant
(genotyped and imputed) and asthma. We applied the leave-one-chromosome-out
(LOCO) scheme (LOCO= TRUE). The quantile–quantile plot was generated
(Supplementary Fig. 2). The genomic inflation factor was computed by converting
P values into chi-squared values, and then dividing the median of the resulting chi-
squared statistics by the expected median of the chi-squared distribution. The
present analyses were conducted under UK Biobank data application number
25205. The study was approved by the Institut universitaire de cardiologie et de
pneumologie de Québec—Université Laval (IUCPQ-UL) ethics committee.

Heritability. LD-score regression was used to estimate SNP-heritability for
asthma53. To obtain heritability on the liability scale, we provided sample and
population prevalence of 13.8% (—samp-prev 0.138) and 15.6%16 (—pop-prev
0.156), respectively.

Number of loci associated with asthma. After the GWAS analysis, we assessed
the number of loci that were associated with asthma based on two methods. First,
we counted the number of loci based on physical distance only. All SNPs associated
with asthma (P < 5.0E−8) were ranked by chromosome order and by position on
build 37. Two subsequent SNPs on this list located on the same chromosome and
separated by more than 1Mb were considered distinct loci. The physical bound-
aries of asthma-associated loci were then defined by adding 500 Kb downstream
and upstream of the most 5′ and 3′ asthma-associated variants (PGWAS < 5.0E−8),
respectively, within each locus. One exception was the extended MHC region on
chromosome 6 that was counted as a single locus and delimited at
25,726,000–33,378,000 bp (GRCh37) based on the positions of two genes (HIS-
T1H2AA and KIFC1). Second, we identified the number of independent variants, as
some physically defined loci will contain significant SNPs that are not in LD. This
was performed using a stepwise conditional analysis (GCTA—cojo-slct)54 using
UK Biobank as the LD reference panel. The procedure consists of a first round of
analysis that is conditioned on the most significant asthma-associated variant at
each locus derived from the original GWAS. If significantly associated variants
remain, a second round of analysis is conditioned on the most significant asthma-
associated variant from the first round. Subsequent rounds are carried out until no
more variants reach PGWAS < 5.0E−8.

GWAS sensitivity analysis. GWAS-nominated loci were re-evaluated by chan-
ging exclusion criteria to define asthma cases and controls. The rationale was to
evaluate the potential confounding effect of other lung diseases, smoking, and
allergy. Genetic association analyses were thus performed in three case–control
subsets. First, asthma cases and controls with other lung diseases were excluded.
Individuals were excluded if they had self-reported or medical records consistent
with the presence of chronic obstructive pulmonary disease, emphysema, chronic
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bronchitis, interstitial lung disease, or alpha-1 antitrypsin deficiency. This results in
the exclusion of 20,998 individuals and genetic analysis performed in 47,391
asthma cases and 340,033 controls. Second, we excluded all asthma cases and
controls with a positive smoking history (i.e., former and current smokers). This
results in the exclusion of 250,739 individuals and genetic analysis performed in
21,097 asthma cases and 136,586 controls. Third, we excluded control individuals
with atopy, including hay fever, allergic rhinitis, and eczema/atopic dermatitis. This
results in the exclusion of 84,113 individuals and genetic analysis with 268,142
controls (and the same number of asthma cases as the main analysis, n= 56,167).
Note that the three lists of exclusion criteria were applied separately (not cumu-
latively) and specific UK Biobank data fields and codes used for excluding indi-
viduals in each case–control subset are provided in Supplementary Data 19.

The lung expression quantitative trait loci. The lung eQTL dataset consists of
whole-genome genotyping (Illumina Human1M-Duo BeadChip) and gene
expression (Affymetrix) in non-tumor lung tissues from patients who underwent
lung surgery at three academic sites, Laval University, University of British
Columbia, and University of Groningen, henceforth referred to as Laval, UBC, and
Groningen, respectively. All lung specimens from Laval were obtained from
patients undergoing lung cancer surgery and were harvested from a site distant
from the tumor. At UBC, the majority of samples were from patients undergoing
resection of small peripheral lung lesions. Additional samples were from autopsy
and at the time of lung transplantation. At Groningen, the lung specimens were
obtained at surgery from patients with various lung diseases, including patients
undergoing therapeutic resection for lung tumors, harvested from a site distant
from the tumor, and lung transplantation. Lung tissue processing and storage,
DNA and RNA extraction, genotyping, microarray-based gene expression, and
lung cis-eQTL analyses have been described previously8,55. Following standard
microarray and genotyping quality controls, data on 1038 patients were available.
The demographic and clinical characteristics of the subjects are described in
Supplementary Data 20. At Laval and UBC, written informed consent was obtained
from all subjects and the study was approved by their respective ethics committee.
At Groningen, lung specimens were provided by the local tissue bank of the
Department of Pathology and the study protocol was consistent with the Research
Code of the University Medical Center Groningen and Dutch national ethical and
professional guidelines (“Code of conduct; Dutch federation of biomedical scien-
tific societies”; http://www.federa.org).

Transcriptome-wide association study (TWAS). The TWAS was performed
using S-PrediXcan15. The lung eQTL dataset was used as the training set to derive
the expression weights. Gene expression normalized for age, sex, and smoking
status from Laval, UBC, and Groningen were combined with ComBat56. Gene
expression traits were then trained with elastic net linear models (alpha = 0.5,
n_k_folds = 10, window = 500 Kb). Models with false-discovery rate (FDR) < 0.05
as implemented in S-PrediXcan were obtained for 19,918 probe sets. Predicted
expression levels from the lung in the UK Biobank participants were then tested for
association with asthma15. The Bonferroni correction was used to claim
transcriptome-wide significance (S-PrediXcan PTWAS= 0.05/19,918= 2.51E−6).

Pathway analysis. Pathway analysis was performed using the Enrichr web
server57. Lung TWAS genes and blood eGenes discovered in this study were
uploaded in Enrichr and enrichment was assessed using the combined score
method for gene sets available in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database.

TWAS replication in GTEx lung. Lung eQTL data from 515 individuals available
in the Genotype-Tissue Expression (GTEx) project (version 8)10 were used for
TWAS replication. The TWAS was performed using S-PrediXcan as described
above. In GTEx lung, models were obtained for 11,518 genes. Bonferroni-corrected
TWAS gene was thus set at PTWAS < 4.34E−6. We also sought replication of TWAS
genes identified in our lung eQTL dataset. Significant replication was considered
for genes with the same direction of effect and with PTWAS < 0.05 in GTEx lung.

Bayesian colocalization. For specific asthma-associated loci and genes, we eval-
uated whether the asthma GWAS and lung eQTL signals shared the same causal
variants using the COLOC package in R14. For the loci of interest, summary
statistics from the asthma GWAS in UK Biobank were combined with our lung
eQTL results using a window of 1 Mb upstream and downstream of the TWAS
genes. We considered colocalization events when the posterior probability of
shared eQTL and GWAS associations (PP4) was greater than 60%. The colocali-
zation analyses for the 485 blood eGenes were performed using the same method,
but using the blood eQTL results from the eQTLGen Consortium (www.eqtlgen.
org)9. LocusCompare58 was used to visualize GWAS and eQTL colocalization
events.

TWAS in GTEx blood, skin, small intestine, and spleen. S-PrediXcan was also
used to explore TWAS genes in other asthma relevant tissues. GTEx v8 datasets for
blood (n= 670), skin not sun exposed (n= 517), skin sun exposed (n= 605), small

intestine (n= 174), and spleen (n= 227) were analysed with the asthma GWAS.
Significant gene expression models (FDR < 0.05) were obtained for 10,210 genes in
blood, 12,347 genes in skin not sun exposed, 13,375 genes in skin sun exposed,
5184 genes in small intestine, and 8473 genes in spleen. Bonferroni-corrected
TWAS genes were thus set at PTWAS < 4.90E−6, PTWAS < 4.05E−6, PTWAS < 3.74E
−6, PTWAS < 9.65E−6, and PTWAS < 5.90E−6, respectively.

Cell type and tissue enrichment of asthma-associated loci. We used
GARFIELD19 to overlap our GWAS findings with regulatory and functional
annotations derived from ENCODE, GENCODE and Roadmap Epigenomics
projects. A total of 1005 annotation features were considered including chromatin
states, histone modifications, genic annotations, transcription factor binding sites,
and open chromatin data (FAIRE, DNase I hypersensitivity site hotspots, peaks,
and footprints), which were evaluated in different cell types and tissues. LD
pruning of GWAS SNPs was performed at r2 > 0.8 and fold enrichment was
evaluated at two GWAS significance thresholds: 1.0E−5 and 1.0E−8.

Functional mapping and annotation in blood. We used the FUMA platform17 to
functionally annotate our GWAS findings. The summary statistics of the asthma
GWAS in UK Biobank were uploaded in FUMA. The SNP2GENE function was
used to map GWAS SNPs to 1) deleterious coding SNPs (positional mapping), 2)
blood eQTL (eQTL mapping), and 3) chromatin contact interactions (chromatin
interaction mapping). Positional mapping was performed by selecting exonic
variants directly associated with asthma (PGWAS < 5E−8) or in LD with asthma-
associated variants using a LD r2 threshold of 0.6 based on the 1000 Genomes EUR
reference panel. Protein coding variants (excluding synonymous) with CADD
score > 20 were further prioritized. SIFT and PolyPhen-2 scores were obtained
from dbNSFP59. Blood cis-eQTL mapping was performed using a publicly available
dataset of 31,684 samples9. Significant SNP-gene pairs (PFDR < 0.05) were identified
and then mapped to genetically expressed genes associated with asthma, or eGenes.
Chromatin interaction mapping was performed using Hi-C data of a lympho-
blastoid B cell line (GM12878, GEO accession number GSE87112). Results of eQTL
and chromatin mapping were visualized using circos plots generated by FUMA.

Mendelian randomization in blood with asthma. Two-sample summary-level
Mendelian randomization analyses were performed to infer causal associations
between blood eGenes and asthma. The genetic effects on asthma risk were derived
from the current GWAS in UK Biobank and the genetic effects on gene expression
in blood were derived from a published eQTL dataset9. Mendelian Randomization
was performed using the inverse-variance weighted (IVW) and Egger methods as
implemented in the MendelianRandomization package in R. SNPs were selected
within a window of 500 Kb around the transcription start site of each blood eGene.
SNPs associated with gene expression (P < 0.001 corresponds to ~F statistics > 10)
and independent (r2 < 0.1 based on the 1000 Genomes EUR reference panel) were
selected as instrumental variables. We requested at least three instrumental vari-
ables per gene to perform Mendelian randomization. A P value below the Bon-
ferroni threshold was considered as significant (431 Mendelian Randomization
with enough instrumental variables: PBonferroni < 0.05/431 < 1.16E−4). The
Cochran’s Q-test and MR-PRESSO (Mendelian randomization pleiotropy residual
sum and outlier) global test were used to determine the presence of unmeasured
pleiotropy. Heterogeneity (PQ-test < 0.05) was corrected by applying the MR-
PRESSO approach60.

Druggable target genes. A list of druggable genes were obtained from the drug-
gene interaction database22 (DGIdb, www.dgidb.org) and the druggable genome23.
Target genes of asthma-associated variants identified by TWAS, eQTL, and
chromatin interactions were integrated and overlaid with the list of druggable
genes. Druggable target genes were then queried for candidate drugs, interaction
types and clinical indications in DGIdb22, DrugBank (www.drugbank.ca),
ChEMBL (www.ebi.ac.uk/chembl), and PubChem (pubchem.ncbi.nlm.nih.gov).
Target genes were also queried on the Open Targets Platform21 for their associa-
tion with asthma.

Phenome-wide association study (PheWAS). The potential effects of genes
prioritized as therapeutic targets for asthma were evaluated using a PheWAS
approach. The GWAS sentinel variants were queried in the GeneATLAS
database26, which contains genetic association results for 778 traits in European
individuals from the UK Biobank. For sentinel variants not available in GeneA-
TLAS, proxies were identified using LDlink61. Traits were considered significant
using the default threshold of PPheWAS < 1E−8 in GeneATLAS.

Genome build. GRCh37 (hg19) coordinates were used in this study.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The summary statistics for the asthma GWAS in UK Biobank (n= 56,167 asthma cases
and 352,255 controls) are available at The NHGRI-EBI Catalog of human genome-wide
association studies: https://www.ebi.ac.uk/gwas/, study accession GCST90014325. The
human lung tissue eQTL study is available in dbGaP under accession phs001745.v1.p1.
The full summary statistics for the lung asthma TWAS (19,918 probe sets with significant
gene expression prediction models) are available in Supplementary Data 21. Summary
statistics from the Trans-National Asthma Genetic Consortium were downloaded from
the GWAS catalog: https://www.ebi.ac.uk/gwas/downloads/summary-statistics, study
accession GCST006862.

Code availability
The following software packages were used as part of this study: SAIGE, version 0.36.3.1:
https://github.com/weizhouUMICH/SAIGE. LDSC, version 1.0.1: https://github.com/
bulik/ldsc, GCTA, version 1.93.2beta: https://cnsgenomics.com/software/gcta/#COJO, S-
PrediXcan: https://github.com/hakyimlab/MetaXcan, COLOC, version 3.2.1: https://cran.
r-project.org/web/packages/coloc/index.html, LocusCompareR: version 1.0.0, https://
github.com/boxiangliu/locuscomparer, GARFIELD: version 2, https://www.ebi.ac.uk/
birney-srv/GARFIELD/, FUMA: http://fuma.ctglab.nl, Enrichr: https://maayanlab.cloud/
Enrichr/, MendelianRandomization: https://cran.r-project.org/web/packages/
MendelianRandomization, MR-PRESSO: https://github.com/rondolab/MR-PRESSO,
LocusZoom: https://github.com/Geeketics/LocusZoms, UpSet plot: https://github.com/
hms-dbmi/UpSetR, Chromosome ideogram: http://visualization.ritchielab.org/
phenograms/document, GeneATLAS: http://geneatlas.roslin.ed.ac.uk, LDlink: https://
ldlink.nci.nih.gov, dbNSFP: http://database.liulab.science/dbNSFP.
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