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Volatile organic compound patterns predict fungal
trophic mode and lifestyle
Yuan Guo1, Werner Jud1, Fabian Weikl2, Andrea Ghirardo 1, Robert R. Junker3,4, Andrea Polle 5,6,

J. Philipp Benz7, Karin Pritsch2, Jörg-Peter Schnitzler 1 & Maaria Rosenkranz 1✉

Fungi produce a wide variety of volatile organic compounds (VOCs), which play central roles

in the initiation and regulation of fungal interactions. Here we introduce a global overview of

fungal VOC patterns and chemical diversity across phylogenetic clades and trophic modes.

The analysis is based on measurements of comprehensive VOC profiles of forty-three fungal

species. Our data show that the VOC patterns can describe the phyla and the trophic mode of

fungi. We show different levels of phenotypic integration (PI) for different chemical classes of

VOCs within distinct functional guilds. Further computational analyses reveal that distinct

VOC patterns can predict trophic modes, (non)symbiotic lifestyle, substrate-use and host-

type of fungi. Thus, depending on trophic mode, either individual VOCs or more complex

VOC patterns (i.e., chemical communication displays) may be ecologically important. Present

results stress the ecological importance of VOCs and serve as prerequisite for more com-

prehensive VOCs-involving ecological studies.
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Fungi are key components in various ecosystems1–3. They
have evolved diverse relationships with plants and other
organisms and can be grouped into functional guilds such as

mycorrhiza4,5, pathogens6,7, mycoparasites8, or saprotrophs9–11.
These fungal functional guilds have been characterized by various
traits encompassing genetic, enzymatic, morphological, and
physiological metrics12. For example, free-living filamentous
fungi are more likely to possess traits related to decomposition. In
contrast, such traits might lack in symbiotic fungi, such as
mycorrhizae, that generally obtain their carbon from the host13.
Though trait-based approaches have provided diverse perspec-
tives to describe the multifold ecological functions of fungi, these
approaches are far from covering all fungal functions in
ecosystems12,14. It is, e.g., difficult to define the transition of
individual species among different guilds and lifestyles. Many
fungal species are opportunistic and change their lifestyle
depending on environmental conditions12,13. Fungal taxa are,
moreover, not functionally equivalent in their contributions to
different traits13. The development of new function-related fungal
metrics can improve our understanding of fungal functions in
nature, and in combination with novel approaches, they may help
to define different functional guilds.

Fungi and other micro-organisms emit a wealth of highly diverse
volatile organic compounds (microbial VOCs; mVOCs)15–19.
Compared to the more common morphological, physiological, and
biochemical traits, understanding the causes why and when fungi
release specific VOCs is in its infancy. The limited knowledge is, on
the one hand, due to restrictions in the methods enabling the
detection of only parts of the fungal VOC (fVOC) spectra18, but also
due to the limited knowledge about the biological and ecological
functions of individual VOCs and their mixtures19,20. An increasing
number of studies suggest crucial direct and indirect functions for
fVOCs in fungal interactions20–23. Direct antimicrobial properties
were revealed for VOC patterns of several fungi, such as myco-
parasitic Trichoderma spp.24, endophytic Muscodor albus25, or non-
pathogenic Fusarium oxysporum26. Also, plant performance can
directly be impaired as shown for fVOC blends emitted by the
phytopathogens Cochliobolus sativus and Fusarium culmorum27.
Most research on individual fVOCs has so far focused on small
molecules such as short-chain alcohols, ketones and aldehydes28–30.
The small fVOC, 1-decene, e.g., can alone induce the growth of
Arabidopsis plants and alter the expression of several defense and
stress-related genes28. In contrast, other small VOCs such as 2-
methylpropanol and 3-methyl-butanol released by Phoma spp.,
enhance the performance of tobacco plants only in mixtures but not
individually31. Though such small compounds may be by-products
of the primary fungal metabolism32,33 and do not exhibit high
species or fungal guild specificity, they may still—alone or in mix-
tures—have important functions in fungal interactions34. Con-
sidering larger, semi-volatile compounds, the sesquiterpene,
(-)-thujopsene released by the mycorrhizal fungus Laccaria bicolor
induced lateral root growth of the host plant in the pre-colonization
phase, thus facilitating the formation of symbiosis35. Also, other
individual fVOCs, such as 6-pentyl-α-pyrone from Trichoderma
spp. were shown to alter plant performance36.

Although some knowledge exists about the potential functions
of individual compounds or compound mixtures37, no attempt
has been made to link comprehensive VOC profiles—the volati-
lomes—to the ecological functions and lifestyles of individual
fungal species. Previously, we demonstrated that trophic modes of
forest fungi—pathogens and saprotrophs and ectomycorrhizal
fungi—can be distinguished by their volatile patterns38. However,
due to the limited number of species (eight) it remained at that
time unrevealed whether and to what extent the chemical
diversity of fVOCs can be associated with different ecological
functions on a broader scale.

The use of fVOCs in chemotaxonomy has been
widespread39–41. Traditionally, mushroom fruitbodies’ typical
flavors are used in species identification during mushroom
picking42. Species-specific volatile biomarkers have also been
used as indicators of harmful fungi in industry or different
indoor environments39,43,44. Moreover, based on the fVOC
patterns, fungi can be classified taxonomically at the level of
genera39,40,45,46 and families47. VOC-based chemotaxonomy
can potentially complement traditional fungal identification
schemes48. However, before broader, fVOC-based taxonomic or
functional guild-based characterizations are possible, more
comprehensive and systematic VOC measurements across sev-
eral phyla and fungal guilds are required.

In this study, we characterized the volatilomes from mycelia of
43 fungal species cultivated under standardized conditions. To be
able to make broad and valid statements, we selected repre-
sentative species from the three phyla Ascomycota, Basidiomy-
cota, and Zygomycota (sensu Spatafora et al.)49 and included
different ecological guilds (such as trophic mode, lifestyle, sub-
strate-use, and host species). The fungal volatilomes were deter-
mined employing a novel platform18 that combines an automated
cuvette system and two mass spectrometric methods, the proton
transfer reaction mass spectrometry (PTR–MS) and gas
chromatography–mass spectrometry (GC–MS). This approach
enabled the characterization of species-specific fungal volati-
lomes, and their classification in phylogenetic and functional
relationships. Following Junker et al.50, we analyzed the pheno-
typic integration (PI) of fVOCs in the different fungal guilds and
chemical structural classes. PI was previously used to reveal the
integration level within chemical communication displays
(CCDs), i.e., complex VOC patterns used for intra- and inter-
specific communications50. Covariation between quantitative
traits, which are fVOCs in this study, leads to high PI and indi-
cates that fixed proportional compositions of VOC bouquets may
be required to achieve optimal interactions. Finally, using a
custom-built machine learning strategy we uncovered the volatile
biomarkers underlying functional groups and thus provide
essential fundamentals for further ecological validation. Alto-
gether, our analyses revealed fundamental links between volatile
profiles and the ecological functions of fungi.

Results
Fungal VOC profiles—species-specific fingerprints. We detec-
ted a total of 256 volatile compounds from 43 fungal species
(Fig. 1, for the fungal species please refer to Supplementary Table
S151, for the individual VOCs please see Supplementary Tables S2
and S351). In hierarchical dendrograms, clusters comprising
VOCs emitted by several species (e.g., cluster A, D, F, H, J, P) but
also species-specific fingerprints (e.g., cluster B, C, E, G, I, K, L,
M, N, O, Q) were identified. Cluster H comprises the largest
group of compounds consisting of rather common VOCs, such as
various alcohols, emitted by most fungal species. In addition to
this more common volatiles, we found characteristic clusters for
individual species. The largest species-specific clusters were
cluster G, specific for the mycoparasitic Trichoderma reesei,
cluster Q specific for the phytopathogen Bipolaris sorokiniana
and cluster M specific for the phytopathogen, Heterobasidion
annosum. Other smaller species-specific clusters were found: I for
Amanita porphyria, K for Alternaria brassicicola, and E for
Trametes hirsuta (Fig. 1).

In general, a higher number of compounds were detected by
PTR–MS than by GC–MS from individual species (Fig. 2), but the
fVOC patterns detected by GC–MS showed higher variability
than the patterns detected by PTR–MS. With PTR–MS especially
short-chained alkenes and other carbonyl compounds, that were
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not possible to measure by the GC–MS set-up, were detected. In
contrast, with the Twister/GC–MS-combination mainly sesqui-
terpenes and other structurally more complex volatile compounds
were measured (Fig. 2c and Supplementary Tables S2, S251).

To evaluate the chemical diversity of compounds, we applied
Pilou evenness (J) to measure the distribution of compounds in
individual species (J is constrained between 0 and 1.0, where J = 1
means all the compounds were emitted in equal abundance). In
general, the GC–MS detected compounds show higher J
compared to compounds detected by PTR–MS in each species
(Fig. 2a, e). Some species have relatively low J such as L. bicolor,
Cladosporium herbarum, Postia placenta and Penicillium oxali-
cum, suggesting their emission profiles are dominated by
individual or few compounds (Fig. 2a, e). The emission intensities
showed high variation across all the species (Fig. 2b, d and
Supplementary Fig. S1). Particularly high intensities were
detected by PTR–MS from the mycorrhizal fungi A. porphyria
and L. bicolor as well as from the phytopathogen Ustilago hordei.
Emissions from these species were characterized by high levels of
low molecular weight VOCs including some carbonyl compounds

(e.g., m/z 87.081, pentanal or pentenol) (Fig. 2c and Supplemen-
tary Fig. S1, Supplementary Table S451). GC–MS revealed high
emission intensity, especially from the two mycorrhizal fungi
Piloderma croceum and A. porphyria. The high emission
intensities were not especially associated to low or high evenness
(Fig. 2a, b, d, e).

VOC profiles allow characterization of fungal guilds in the
level of phyla. Discriminant analysis of the main components
(DAPC) of the complete emission profiles showed a clear
separation between the different phyla, i.e., Ascomycota, Basi-
diomycota, and Zygomycota (Fig. 3a). In respect to the taxonomic
class level, the volatile emissions of Ustilaginomycetes and
Zygomycetes strongly differed from the other classes (Fig. 3b). On
the level of orders, Atheliales, Ustilaginales, and Pleosporales had
the most distinct VOC profiles (Fig. 3c). When the fungi were
grouped by the taxonomic level family, the volatiles emitted by
Amanitaceae and Atheliaceae showed a pronounced diversity
compared to those from others (Fig. 3d).

Fig. 1 Heatmap of fungal volatile organic compounds (fVOC) emission profiles from the examined 43 fungal species. The dendrogram shows the
hierarchical clustering based on Spearman correlations (ρ < 0.05). Compounds are grouped to 17 clusters (letters A-to-Q). The letters refer to the
groupings in the Supplementary Tables S2 and S351. The emission rates (ncps cm−2 s−1 and pmol cm−2 h−1) based on PTR–MS and GC–MS data,
respectively, are color-coded: red indicates high and blue indicates low emission.
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Fig. 2 Chemical diversity of fungal volatile organic compounds (fVOCs) detected from the examined 43 fungal species. a, e The Pilou evenness of
species-specific fVOC profiles based on PTR-ToF-MS and GC–MS data, respectively. b, d The total emission rates (ncps cm−2 s−1 and pmol cm−2 h−1)
based on PTR-ToF-MS and GC–MS data, respectively and c show the number of compounds detected by PTR-ToF-MS and GC–MS. Colors indicate the
grouping of fVOCs to structural classes. Thz T. harzianum. Data are shown as means ± SE (n = 3 biologically independent samples).
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Trophic modes, substrate-use, and fungal lifestyle are asso-
ciated with certain scents. We investigated whether the trophic
mode, substrate-use and symbiotic or non-symbiotic lifestyle of
the different fungi can be related to the emission patterns and
scents. When the species were grouped in most common guilds
based on literature (Supplementary Table S151), phytopathogens
and mycorrhizal fungi showed distinct VOC profiles (for all
emission intensities in ncps and in pmol (cm−2 h −1), see Sup-
plementary Table S451) compared to saprotrophic and myco-
parasitic fungi and were therefore clearly separated in the DAPC
analysis (Fig. 4).

Saprotrophic and mycoparasitic species exhibited largely
overlapping chemical profiles (Fig. 4a). Similar VOC profiles
might reflect the ability of some of the species to easily move
among trophic modes. It might be that the fungi that easily
changes its trophical mode, might show a flexible, environmen-
tally adjustable VOC profile that fits to more than one guild. This
is supported by the second DAPC analysis (Supplementary
Fig. S2) in which we used an alternative grouping of the fungi that
possess an obvious alternative trophical mode (i.e., Trichoderma
spp. was moved from mycoparasites to saprophytes; Alternaria
alternata and Aspergillus niger from saprophytes to phytopatho-
gens and Fusarium oxysporum from phytopathogens to sapro-
phytes; for details of the alternative guild and related references
please see Supplementary Table S151). The results on this
alternative grouping still reveal a clear separation of phytopatho-
gens, saprotrophes, and mycorrhizal fungi by their volatile
profiles (Supplementary Fig. S2).

Though ecological functions explained only part of the volatile
profiles, the fungal lifestyles could generally be described by
different chemotypes: Non-symbiotic fungi showed a significantly
different volatile chemotype under the chosen growth conditions
compared to fungi with symbiotic lifestyle (Fig. 4b). Root-

associated fungi (in this study mycorrhizal and root pathogenic
fungi) could also be clearly separated from fungi that live on litter
or from fungi associated with shoots (Fig. 4c). An evident
separation was also found between the VOC chemotypes of herb-
and tree-associated fungi (Fig. 4d).

The calculation of PI revealed high values within specific
structural classes of compounds (Fig. 5). The highest PI-values
were revealed for alkanes released by phytopathogens and
saprotrophs, carboxylic acids released by saprotrophs and
mycorrhizal fungi and fatty alcohols released by mycorrhizal
fungi. Other significant PI-values were found for monoterpenoids
released by saprotrophs (Fig. 5 and Supplementary Table S551).
Across all detected compounds, the mycoparasites showed higher
PI than the other studied trophic modes, however, the integration
within the CCDs was not significant. Especially low PIs were
revealed for different esters and other carbonyl compounds (i.e.,
aldehydes and ketones) within all the eco-functional groups.

Volatile biomarkers of phylogenetic groups and functional
guilds. We identified discriminatory VOC biomarkers and che-
mical profiles that are characteristic for individual taxonomic
guilds, trophic modes, and lifestyles of fungi. To do that we have
applied a strict, unbiased machine learning strategy. It aimed at
identifying a minimal set of VOCs which can be used to describe
taxonomic assignments and the classification into trophic modes
and life forms, without a pronounced loss of predictive accuracy.
At the end, we were able to use the 15 best predictors to describe
each fungal group with an accuracy of more than 80%. The
detailed model of each class is presented in Table 1. Among
the three phyla present in our study, Zygomycota were described
by strong emission of multicomponent volatile profiles (com-
prising H30 (m/z 73.065), H27 (m/z 71.049), H12 (m/z 81.034),

Fig. 3 Chemotaxonomic characterization of different fungal clades. The chemotaxonomic characterization comprises phylum (a), class (b), order (c), and
family (d) by discriminant analysis of principal components (DAPC) using combined PTR-ToF-MS and GC–MS data. Detailed parametric configurations of
DAPC models are provided in the “Methods” section.
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A5 (m/z 105.092), H34 (m/z 63.045), A1 (m/z 43.055), H40 (m/z
53.039), A6 (m/z 91.076), A4 (m/z 41.038), F15 (γ-collidine), H10
(dodecyl acrylate), F14 (4-ethylresorcinol), F10 (phenol), I16
(putative diethyl phthalate), F11 (cis-hexahydrophthalide) and L3
(hexadecane)). Basidiomycota were described by ten different
compounds (F9 (m/z 85.065), F8 (m/z 85.102), P9 (m/z 67.055),
P8 (oxime-methoxy-phenyl-), H16 (1-octen-3-ol), H38 (3-hep-
tanone,6-methyl-), E1 (ylangene), I20 ((1R)-(+)-trans-iso-
limonene), H19 (3-octanone) and I21 (methyl furoate)), and
Ascomycota by a relatively strong emission of only two com-
pounds (A10, m/z 93.092 and F14, 4-ethylresorcinol). Interest-
ingly, biomarkers characteristic for symbiotic fungi were emitted
in high amount (D1, m/z 123.117; H39, m/z 57.070; D6, m/z
109.101; D5, m/z 135.116; H32, m/z 47.049; A10, m/z 93.092;
H33, m/z 45.034; D10, m/z 33.034; H18, m/z 129.128; P8, oxime-
methoxy-phenyl-; H16, 1-octen-3-ol; C3, dihydrocurcumene;
H38, 3-heptanone,6-methyl-; H4, β-bisabolene; F14, 4-ethylre-
sorcinol; H1, acrodinene; P7, Furan,2-pentyl-; J2, α-bergamotene;
N18, unknown #1), while non-symbiotic fungi could be described
by a low emission of these compounds (Fig. 6). Only four
oxygenated compounds, i.e., 4-ethylresorcinol, 3-heptanon,6-
methyl-, oxime-methoxy-phenyl- and 1-octen-3-ol, were present
uniformly in all groups (Fig. 6 and Supplementary Fig. S2).

We were able to identify 13 unique biomarkers (A6, H12, P9,
L3, I21, H27, F10, A1, I16, H10, F11, F15, E1), which allow the
phylogenetic differentiation of the fungi, at least at the phylum
level. Six VOCs allowed us to assign the fungi to their trophic

modes (N16, H3, P1, A2, J3, and H29). Five compounds (D1, D6,
D9, N18, and H4) could be associated with lifestyle. A further
four compounds (J1, H22, P12, and M22) and finally two
compounds (H34 and H21) allowed the identification of host type
and substrate-use, respectively (Supplementary Fig. S3 and
Supplementary Table S651).

Discussion
Volatile organic compounds are increasingly recognized as bio-
logically active molecules with a wide range of ecological
functions17,21,23. Previous literature indicates that fVOC emis-
sions may be species- or genus-specific38,39,43,46,52. However, the
lack of comprehensive studies that present the full emission
spectra and the large structural chemical diversity of these com-
pounds have hampered more complex statistical analyses and
phylogenetic comparisons. Difficulties arise from restrictions in
analytical techniques, a limited number of studied species, and
varying experimental conditions such as physiological stage of the
organisms, sampling period, nutrient availability, and other
environmental factors such as pH or temperature, that all can
influence the fungal performance and the fVOC patterns53–56.
These constraints make comparisons between different publica-
tions difficult and, moreover, it is rather impossible to draw an
integral picture of the chemical diversity based on the existing
fVOC data. Here we aim to systematically close this gap and
establish a link between chemotypic variability of fungal volatiles,

Fig. 4 Functional characterization of fungi using the complete fungal volatile organic compound (fVOC) profiles. The discriminant analysis of principal
components (DAPC) models comprise trophic mode (a), (non)symbiotic lifestyle (b), substrate-use (c), and host-type (d) models. a, c Scatter plots with
dots denoting individual fungus; b, d Density plots, with ticks denoting individual fungus. The numbers in a indicate the fungal species easily moving among
trophic modes (Alternaria alternata (#1) and Aspergillus niger (#2)) were grouped to saprotrophs, Fusarium oxysporum (#3) to phytopathogens (for details
refer to Supplementary Table S151). Detailed parametric configurations of DAPC models are provided in the “Methods” section.
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large-scale fungal taxonomy, and their trophic modes. As a basis
for that served the present, comprehensive volatilome analyses
from 43 fungal species cultivated under identical, controlled
conditions. The statistical analyses revealed a clear link between
complex volatile patterns and specific trophic modes and life-
styles. This was independent of the taxonomic classification of
species in the phylogenetic fungal tree of life, and thus in line with
the fact that trophic modes of fungi are not monophyletic13.

Central outcome of our study is the connection between fungal
emission patterns and trophic modes. The results suggest that
fungal guilds and lifestyles can be grouped according to the fVOC
profiles. Knowing that some fungi are able to change their trophic
modes, care should, however, be taken when developing, for
example, VOC-based non-invasive identification means for dif-
ferent guilds. Some fungi, such as A. alternata and Trichoderma
spp. are known for their multiple trophic modes (please see
Supplementary Table S151 for details and references). When these
species were grouped in their alternative mode, the result from
DAPC analysis did not drastically change. This reflects the fact
that the secondary metabolism of the species especially known for
their multiple trophic modes is not fixed to any specific mode. It
is possible that fVOC profiles can change at different environ-
mental conditions18,41,56. Thus, it is tempting to suggest that a
fungus might also adjust its VOC emission pattern accordingly
when adjusting its trophic mode. To better understand the
robustness of lifestyle- and trophic mode-related fVOC patterns
shown here, we encourage analyzing fVOC profiles of the same
species in different environments in the future. The patterns
described here can serve as a basis for such further analyses.

At the species level, our results show a high compositional and
quantitative variation in fVOCs, which supports the results of the

Fig. 5 Phenotypic integration (PI) of the chemical communication displays (CCDs) of fungi. The PIs are shown for different structural compound classes
in different fungal functional guilds. High integration values indicate a strong covariation between compounds within the structural classes. The horizontal
gray dashed line indicates the NULL-model expectation (two-sided null-hypothesis). Asterisks indicate a significant difference (p < 0.05) compared to the
NULL-hypothesis. The varying sample sizes (number of fungal species within trophic modes) were corrected as shown in the “Methods” section.

Table 1 Model performance of fungal volatile organic
compounds (fVOCs) emission-based models predicting
fungal phyla, trophic mode, lifestyle, substrate-use, or
host type.

Accuracy (%) Sensitivity (%) Accuracy
p-value
of model

Phylum
Ascomycota 94 95 2.57E−03
Basidiomycota 93 90
Zygomycota 100 100

Trophic mode
Mycoparasitic 95 92 2.19E−08
Mycorrhizal 94 88
Phytopathogenic 92 84
Saprotrophic 94 99

Lifestyle
Symbiotic 91 95 1.21E−03
Non-symbiotic

Substrate-use
Litter 92 96 7.07E−07
Root 93 86
Shoot 93 90

Host-type
Tree 96 92 8.307E−03
Herbaceous

Accuracy, sensitivity and model p-value are given as the mean of the three predictive models on
PTR-ToF-MS and GC–MS data.
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previous studies43,57,58. The identified species-specific volatile
fingerprints, such as cluster “E” for T. hirsuta, cluster “G” for T.
reesei, or cluster “M” for H. annosum, etc., indicate that fVOCs
may have potential as non-invasive identification markers. With
cluster analyses, we aimed to further disentangle the chemical
structure and diversity of fVOCs at different taxonomic levels.
We observed characteristic VOC patterns at the phylum level,
while at lower taxonomic levels, class, order, and family, only a
few groups allowed an assignment via distinct volatile chemo-
types. The data thus suggest that the biochemical diversity of
synthesized and emitted fVOCs may not explicitly reflect phy-
logenetic relationships of fungi. Nevertheless, the data reliably
allowed to mathematically uncover general taxonomic char-
acteristics in the fungal volatile profiles and are a sound basis for
further hypotheses on the chemical taxonomy of fungi.

Regarding potential biological functions of guild- and taxa-
related fVOCs, sesquiterpenes are a prominent group of molecules
with very high structural diversity59. We found 68 and 41 sesqui-
terpenes emitted by Ascomycota and Basidiomycota species,
respectively. In our study, we additionally report a low sesqui-
terpene emission for Rhizopus oryzae, belonging to Zygomycota.
Sesquiterpenes may have several functions in fungal interactions

including, e.g., the attraction of pollinators60, modulation of fungal
development61, mediation of fungal–insect–plant interactions62,63,
and regulation of plant and microbial growth35,64. Assigning
biological functions to individual compounds in nature is more
complicated, as many of the sesquiterpenes released by fungi can
also be synthesized by plants or bacteria65–67. Many of the other
individual VOCs studied to date have, moreover, been shown to
exhibit multiple functions17,23. For example, 1-octen-3-ol, acti-
vates plant defense genes30 (at low concentrations, while at high
concentrations plants get damaged68), attracts insects69, and can
inhibit fungal development70. 1-Octen-3-ol is a typical fungal
VOC emitted by many species from different functional guilds17.
In the present study, 1-octen-3-ol was detected from nineteen of
the studied species.

PI is often used as a tool to infer functional adaptations and
physiological limitations from covariation patterns between traits
in complex phenotypes71. In the present work, distinct PIs were
found for different structural classes of compounds within dif-
ferent fungal guilds. For example, saprophytes were characterized
by relatively high PI within carboxylic acids and monoterpenoids,
whereas mycorrhizal fungi showed high PI within carboxylic
acids and fatty alcohols. The VOCs from these specific structural

Fig. 6 Volatile biomarkers identified for phylum, trophic mode, (non)symbiotic lifestyle, substrate-use, and host type. The dashed line dividing the
heatmap separates compounds detected by PTR-ToF-MS (upper part) and GC–MS (lower part) (a–e). The compounds are shown in descending order
according to its importance from top for PTR-ToF-MS (upper part) and GC–MS (lower part), respectively. The color code refers to the emission intensity
(data show z-scores). The letters refer to the compounds listed in Supplementary Tables S2 and S351. The schematic tree and soil scenario illustrate the
natural plant–fungi interaction contexts; photo: J-P Schnitzler.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02198-8

8 COMMUNICATIONS BIOLOGY |           (2021) 4:673 | https://doi.org/10.1038/s42003-021-02198-8 | www.nature.com/commsbio

www.nature.com/commsbio


classes might simply be linked to the substrate availability for the
specific biosynthetic routes. Alternatively, these results may
indicate that within these groups defined compound classes
(chemical communication displays; CCDs), rather than indivi-
dual VOCs are biologically active. Such CCDs were revealed for
example by Naznin and colleagues31 for small fVOCs that were
biologically active only in specific mixtures. The relatively high PI
value detected for mycoparasites across all compounds and
within specific structural classes might, however, also be partly
caused by the fact that this group included only Trichoderma spp.
In contrast to mycoparasites, the saprotrophic and phytopatho-
genic fungi had especially low PI. Low PI may indicate that VOCs
or/and CCDs do not play important ecological roles for these
groups, or individual VOCs are sufficient signaling cues.

In general, whether it is individual compounds, complex VOC
patterns, or even silence, fungal VOCs may contribute con-
siderably to the survival of fungi in different ecosystems, and to
their adaptation to different environmental conditions17,72,73.
The adaptability of CCDs,—the universal language of volatile
communication—is a prerequisite for the function of VOCs as
infochemicals in the interaction between various organisms. This
should, however, be also considered when drawing more general
pictures from fVOC profiles. Certain genes that regulate and
control the biosynthesis of VOCs may be switched off in
monoculture, while the same fungus in mixed culture74 or under
natural conditions (e.g., in soil) in interaction with other organ-
isms may have completely different emission patterns. Such
interactions include also fungal endobacteria, which are
ubiquitous75 and have been shown to affect the detected fVOC
patterns76. An additional layer of complexity is set by the dose-
dependency of effective VOC signaling cues77. Similar to
plants78–80, there is growing evidence that CCDs beside indivi-
dual compounds may play important roles in the formation and
regulation of symbiotic associations and the distribution of
saprophytic, mycorrhizal, and phytopathogenic fungi17,68,81.
Though a lot is still to be done, our analysis represents an
important step in fungal ecology. By presenting the distinct,
fungal functional guild-related VOC patterns, the present study
provides a solid basis for the future use of more natural and
realistic VOC bouquets in various ecological studies, be it in the
laboratory or in more natural environments.

Using a ML approach, we were able to identify group-specific
patterns as well as function- and taxa-related fingerprints. A small
number of VOCs of different biochemical origin were sufficient to
predict each category. For example, a total of 22 compounds were
needed to predict a phylum. In addition, we took advantage of
ML to identify the most important functional volatile fingerprints
of each functional guild and for the fungal lifestyle. Although
there is still a long way to go from the findings of our laboratory
study with pure cultures to causal relationships in nature, the
characteristic fingerprints described herein provide the basis to
form novel hypotheses for future field studies. The current ana-
lyses make it very clear that complex volatile patterns of sub-
stances from different metabolic pathways can be assigned to
distinct trophic modes and lifestyles. The existence of innate
VOC patterns or CCDs that characterize ecological functions
across taxonomic boundaries is supported by the observation that
symbiotic and non-symbiotic fungi can also be categorized by
different volatile profiles. Thus, even across different phyla, fungi
that share a similar ecological function show intrinsic similarities
in their VOC patterns. Different VOC chemotypes can, moreover,
be found within the group of symbiotic fungi living on different
plant organs. These data underline the need to further investigate
the ecological functions of complex, more natural VOC patterns
rather than those of single compounds. The individual com-
pounds may have different functions on their own, but these

could be dramatically adjusted in a correct VOC bouquet. In
future synthetic CCDs could be used to test whether, for example,
plants can distinguish between the scent of a phytopathogenic,
saprophytic, or mycorrhizal fungus. The focus of future investi-
gations should lie on the analysis of the robustness of the emis-
sion patterns described here, especially for those fungal species
that potentially move between different trophic modes. Fungi are
highly adaptable and even if the trophic mode is not changed, the
VOC profiles can still be adapted to the abiotic and biotic
environment41,56. Taken the inhomogeneous soil environment
and all the factors that can influence fungal activity and fVOC
profiles53–56, it is possible that a laboratory setup in which the
effectiveness of pure compounds, or one-to-one interaction, is
studied in closed compartments35 does not reflect a real inter-
action scenario in nature. Micro-organisms may, moreover, take
volatiles up eventually using them as substrates in their own
metabolisms82. Such VOC-uptake may quench signaling cues and
interfere with various interspecific or interkingdom interactions
that are essential to initiate and maintain various interorganismic
relationships20–24. In future, the importance of fVOCs in fungal
ecology should be elucidated under diverse abiotic and biotic
environments, and in more natural experimental set-ups. More
knowledge about the plasticity of guild- or lifestyle-related fVOC
patterns in different environments could be a breakthrough for
the chemical ecology of fungi and their economic or agricultural
applications. With the present work, we have made the first
attempt to understand general fungal volatile chemotaxonomy,
and also to provide a computational insight into the character-
ization of fungal functions based on their VOC profiles. Our data
are another cornerstone on which we can build to uncover the
functions of fungal VOCs in different ecosystems.

Methods
Fungal species and cultivation. The forty-three fungal species studied herein are
listed in Supplementary Table S151. For the VOC analysis, the fungi were cultivated
in glass cuvettes (7 cm diameter and 6.6 cm depth, total volume approx. 254 mL)
on modified synthetic Melin–Norkrans medium (containing (L−1) 10 g glucose,
2.5 g NH4-Tartrat, 0.5 g KH2PO4, 0.25 g (NH4)2SO4, 0.15 g MgSO4 × 7H2O, 0.05 g
CaCl2, 0.025 g NaCl, 1 mL FeCl3 (1% (w/v)), 100 µL thiamine HCl (0.1% (w/v)),
and 1% (w/v) Gelrite, pH 5.2)18 and cultivated under controlled dark conditions at
a constant temperature of 23 °C41. For each species, the exponential growth phase
was determined (the growth curves are shown in Supplementary Fig. S4) and the
emission measurements were always started at the beginning of the exponential
hyphal growth phase18, to ensure comparability. This phase was chosen as most of
the secondary metabolites of fungi are shown to be formed during this develop-
mental stage23,83, i.e., after completion of the initial growth and immediately before
the transition to the next developmental stage (which is sporulation for most of the
fungi). At the end of each experiment, the Petri dishes were scanned and the area of
the fungal mycelia was determined using ImageJ software (Rasband, ImageJ, U. S.
National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/,
1997–2016).

Online fVOC measurements by PTR-ToF-MS. VOC emissions were measured
with the previously described platform18, consisting of 14 cuvettes and a connected
proton transfer reaction - time of flight - mass spectrometer (PTR-ToF-MS 8000,
Ionicon Analytik GmbH, Innsbruck, Austria). The cuvettes were supplied with
VOC-free air under ambient CO2 concentration employing a gas calibration unit
(GCU, Ionicon Analytik GmbH, Innsbruck, Austria)18. The fVOCs were measured
for 48 h each, switching between the cuvettes sequentially. The gas composition of
each cuvette was recorded with PTR-ToF-MS for 5 min. Within this time the
cuvette air was exchanged completely and a steady state was reached18. Between the
measurements, the measuring tubes were flushed with VOC-free air by switching
for 10 s to the completely empty background cuvette.

PTR-ToF-MS raw data were collected and analyzed following the routine
procedures84,85 in MATLAB (R2011b; MathWorks, Natick, MA, USA). The
calculated signals in counts per second (cps) were normalized to 106 reagent ion
counts to account for differences in the absolute humidity in the different
cuvettes18. The normalized counts per second (ncps) were calculated and the data
averaged. Finally, the data were normalized to the respective area of fungal
mycelium and the circa 70 min accumulation time. The compounds detected by
PTR-ToF-MS (Supplementary Table S251) were, in addition, converted from ncps
to pmol (cm−2 h−1) when the sensitivity (ncps/ppbv) of the specific compound
was known or could be estimated. PTR-ToF-MS sensitivities were derived from
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calibration curves by measuring a mix of VOC standards passing through the
whole system and an empty cuvette (Supplementary Table S251).

The signals detected by pure growth medium (background) were subtracted
from the samples with mycelium. For this purpose, cubic splines were laid through
the averaged background signals during the entire measurement. The intensities of
the interpolated signals were then subtracted from all measurements with fungi. All
m/z attributable to isotopologues (containing 13C, 18O) were also removed.

The non-targeted PTR-ToF-MS measurements poses a challenge for the
accurate identification and quantification of the detected masses. The annotations
are based on previously published data from PTR-ToF-MS-based fungal/microbial
and plant VOC analyses, soil matrix, and the mVOC database (Supplementary
Table S251,86). Following, we determined the molecular formulae based on accurate
mass measurements and detections of the corresponding naturally occurring
isotopes. Mass features that are likely originating as fragments of a (related)
compound are given in Supplementary Table S251 and were determined by
correlation analysis (R2 > 0.9) using “ToF data plotter”. Using a combination of the
above strategies, we were able to assign the mass features to 56 different molecular
formulae (Supplementary Table S251).

Offline fVOC measurements by GC–MS. After completion of PTR-ToF-MS
analysis, VOCs were collected for further 16 h on polydimethylsiloxane (PDMS)
coated stir bar “twisters” (Gerstel GmbH, Mülheim an der Ruhr, Germany). Sub-
sequently, the VOCs were analyzed by thermal desorption (TDU, Gerstel)—gas
chromatography–mass spectrometry (GC type: 7890A; MS type: 5975C, Agilent
Technologies, Palo Alto, CA, USA) using a capillary GC column ((14%-Cyano-
propyl-phenyl)-methylpolysiloxane; 70 m × 250 μm, film thickness 0.25 μm; Agilent
J&W 122-5562 G, DB-5 MS +10m DG). The samples were desorbed with a tem-
perature gradient from 40 to 300 °C, followed by a holding time of 6 min. The
compounds were refocused on Tenax at −60 °C and desorbed to 325 °C at a rate of
12 °C s−1, after which a holding time of 2 min was applied. As a carrier gas-liquid
nitrogen with a constant flow rate of 1 mL min−1 was used. The initial temperature
of GC oven was 40 °C. At first, the temperature was increased at a rate of 10 °C
min−1 to 130 °C at a rate of 10 °C min−1, holding for 5 min. After this the tem-
perature was increased in following steps: to 175 °C at a rate of 80 °C min−1, holding
for 0 min; to 200 °C at a rate of 2 °C min−1, holding for 0 min; to 220 °C at a rate of
4 °C min−1, holding for 0 min and finally to 300 °C at a rate of 100 °C min−1,
holding for 6 min.

The chromatograms were analyzed using the Enhanced ChemStation software
(MSD ChemStation E.02.01.1177, 1989–2010 Agilent Technologies, Santa Clara,
CA, USA). Compound identification was based on the comparison of the
representative masses using the National Institute of Standards and Technology
(NIST) Mass Specral Library (NIST 11) and Wiley 275 GC/MS Library (Wiley,
New York), and finally confirmed by comparison of the Kovats retention indices.
Kovats retention indices were calculated based on chromatography retention times
of a saturated alkane mixture (C9 – C25; Sigma-Aldrich, Taufkirchen, Germany).
The potential changes in the GC–MS sensitivity were corrected by normalizing to
the internal standard (monoterpene δ-2-carene). The compounds were quantified
using the external standards: sabinene, α-pinene, linalool, methylsalicylate, β-
caryophyllene, α-humulene, geraniol, and bornylacetate18,41.

To consider differences in mycelium biomass among the different fungal
species, emission rates were normalized to the area of fungal mycelium.

Statistical analyses
Discriminant analysis of principal components (DAPC). DAPC was applied to infer
the phylogenetical and fungal guild-based variations using the complete emission
profiles87,88. Two different, alternative groupings to fungal guilds were used for the
DAPC analysis (trophic mode and optional trophic mode as shown in Supple-
mentary Table S151). Data were centered and scaled to unit variance before per-
forming DAPC, to ensure equal weighing between PTR-ToF-MS and GC–MS data
set89,90. DAPC was implemented in the adegenet package v2.1.191 in R92. To avoid
unstable assignments of individuals to clusters, the number of retained principal
components (PCs) was determined by cross-validation using “xvalDapc” function93

in adegenet package. The number of retained PCs in the DAPC model associated
with the lowest Mean Squared Error.

Calculation of the phenotypic integration of fVOCs across trophic modes and
structural chemical classes. To calculate the PI we used a method previously applied
by Junker et al.50 to assess the level of covariation of compounds emitted by all
samples, by samples originating from each of the trophic mode, as well as of
compounds of structurally related compound classes within the trophic modes and
across all samples. In brief: For each of these data sets, we determined the Pearson’s
correlation coefficient r for all pairs of compounds and calculated eigenvalues of
the resulting correlation matrix. The variance of the eigenvalues gave the inte-
gration index, a measure of the magnitude of PI. To correct for varying numbers of
samples within each data set, the integration index was standardized by subtracting
the expected value of integration under the assumption of random covariation
(random covariation = (number of compounds emitted by the species – 1)/number
of samples94,95) and then dividing by the potential maximum value of PI in the
given data set. Finally, the results were multiplied by 100 to obtain the percentages.
To test whether PI-values deviate from a random expectation, we calculated PI of

n = 10,000 randomly drawn from the data set. PI-values larger than the 95%
quantile of the n = 10,000 random PI-values were considered significantly higher
than expected by chance.

Machine learning strategy for biomarker discovery. To identify the key volatile
compounds, (i.e., the biomarkers) that can distinguish phylogenetic and functional
guild clusters, we have developed a strategy for ensemble machine learning (ML)
algorithms that avoids the potential bias of a given data set by different ML
models96. This strategy takes advantage of both Wrappers and Embedded
Methods97, implemented by the random forest- (rf)98 and Bagged CART-based
recursive feature elimination algorithm (wrapper method, using “rfe” function in
the caret package in R) and regular random forest (embedded method, using
“train” function in the caret package99) in R92.

To avoid the possible interactive influence of scale and sparsity differences
between PTR-ToF-MS and GC–MS data sets, we trained the ML models separately
for each data set18,100. The data were randomly divided into a training set (75%)
and a test set (25%). The training set was used to train the models, and the
performance of the models was independently tested with those samples
composing the test set. To mitigate the potential problem resulting from class
imbalance, we randomly sampled (with replacements) the minority class to be the
same sample size as the majority class of the training set (using “upSample”
function in caret package), while the test set remained original. Ten-fold cross-
validation was performed to optimize the classification model at each iteration.
Hyperparameters were tuned using “tuneLength” function in the caret package to
reach a stable and optimal model accuracy. All those configurations together
enabled us to achieve a very high model performance while avoiding overfitting.

In wrapper learning, the “rfe” function returns an integer corresponding to the
optimal subset size. After determining the optimal subset size, the “selectVar”
function was used to calculate the best rankings for each variable across all the
resampling iterations. Each model ultimately yielded a list of compounds
corresponding to the optimal subset size (predictors subset).

Finally, we trained the final models using the predictor subsets (top 15
predictors) to derive the significance of the final predictor and the yield accuracy,
sensitivity, and p-value of the model accuracy for the final model. To minimize
potential model bias and false-positive biomarker candidates, the predictors
consistently selected by all three models were considered the final biomarkers. The
same predictors could have a different weight in the different models. When this
was the case, the mean values of their ranks in the different models were calculated,
resulting in the final ranks of the biomarkers. In the selection of biomarkers,
insignificant models and models with accuracy lower than 80% were excluded. For
color visualization, the data were z-score standardized to have zero means and
standard deviation of 1.

Statistics and reproducibility. Sample size was based on prior experience
assuming comparable variation in the resulting data18. The VOC measurements
are based on distinct, biologically independent samples and no data was excluded.
The number of replicates is given in respective figure legends. Different fungal
species and individual samples were randomly distributed in the available cuvettes.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data sets generated during and/or analyzed during the current study are either
available in supplementary materials (larger data sets deposited in public repository51) or
from the corresponding author upon reasonable request.

Code availability
All within this study applied R codes are available at the public repository Zenodo101.
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