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Accessory proteins of the RAS-MAPK pathway:
moving from the side line to the front line
Silke Pudewell1, Christoph Wittich1, Neda S. Kazemein Jasemi1, Farhad Bazgir1 &

Mohammad R. Ahmadian 1✉

Health and disease are directly related to the RTK-RAS-MAPK signalling cascade. After more

than three decades of intensive research, understanding its spatiotemporal features is

afflicted with major conceptual shortcomings. Here we consider how the compilation of a

vast array of accessory proteins may resolve some parts of the puzzles in this field, as they

safeguard the strength, efficiency and specificity of signal transduction. Targeting such

modulators, rather than the constituent components of the RTK-RAS-MAPK signalling

cascade may attenuate rather than inhibit disease-relevant signalling pathways.

Nature has evolved sophisticated, cell type-specific mechanisms to sense, amplify and
integrate diverse external signals, and ultimately generate the appropriate cellular
response. Signals are processed by evolutionarily conserved signalling cassettes that

comprise specific constituent components acting as receptors, mediators, effectors and regulatory
proteins. Activated receptor tyrosine kinases (RTKs), for instance, link the RAS activator SOS1 to
RAS paralogs, e.g., the proto-oncogene KRAS4B, which in turn regulate various signalling
pathways, including the mitogen-activated protein kinase (MAPK) pathway1. This pathway
contains a three-tiered kinase cascade comprising the serine/threonine kinases ARAF/BRAF/
CRAF, the dual specificity kinase MEK1/2 and the serine/threonine kinases ERK1/21,2. The
RTK-RAS-MAPK axis is a highly conserved, intracellular signalling pathway that has an essential
role throughout mammalian development, from embryogenesis to tissue-specific cellular
homoeostasis in the adult3. Dysregulation of components or regulators of this cascade is
frequently associated with tumour growth and a distinct subset of developmental disorders called
the RAS-MAPK syndromes or RASopathies4–6. This signalling cascade has rapidly taken centre
stage in cancer and RASopathy therapies (see below).

However, the strength, efficiency, specificity and accuracy of signal transduction are controlled
by mechanisms that increase the connectivity of the signalling molecules and thus increase their
local concentration and reduce their dimensionality. This state can be achieved by liquid–liquid
phase separation (LLPS), a mechanism in which two separate liquid phases with different protein
compositions emerge from one mixed solution7. A large number of proteins, hereafter, collec-
tively designated as the ‘accessory proteins’, fulfil the requirements to drive LLPS and have been
reported to act as adaptor, anchoring, docking or scaffold proteins. Accessory proteins link
constituent components of individual signal transduction pathways by forming physical com-
plexes. What the functions of the accessory proteins are, why are they crucial for signal trans-
duction, and whether they represent better therapeutic targets for different human diseases are
questions that will be addressed in this article in the context of the RTK-RAS-MAPK signalling
pathway.

Structural and functional variety of accessory proteins. Rapidly emerging reports on signalling
networks support the idea that various signalling molecules operate together in functional
protein complexes. For example, activated protein nanoclusters in specialised membrane
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microdomains selectively connect with and subsequently activate
cytosolic signalling components or complexes8,9. RAS nanoclus-
ters form and locally increase the concentration of RAS paralogs
in membrane microdomains10.

Membrane-resident signalling proteins, such as transmembrane
(TM) and membrane-associated proteins, are predominantly
trafficked to the plasma membrane via the secretory pathways11.
But how are the cytosolic proteins trafficked to their cognate
membrane nanoclusters? Mounting evidence has emerged recently
that a large number of membraneless compartments (also called
non-membrane-bound organelles or biomacromolecular conden-
sates) are assembled via LLPS12. The formation of cytosolic
signalling condensates is based on two processes. First multivalent
molecules undergo phase separation, whereas in a second step
other proteins are able to diffuse into the phase without
considerably contributing to the stability of the phase. This process
can increase local concentrations of molecules by several folds. One
example is the enrichment of kinases in membrane-associated
liquid droplets around T-cell receptors while phosphatases are
excluded13.

An essential group of proteins that are themselves not
constituent components of signal transduction but allow assembly
and spatiotemporal organisation of a signalling cascade are
accessory proteins. These proteins have the features to interact
with and assemble other biomolecules, ranging from lipids, over
proteins to nucleic acids. They mostly lack enzymatic activity but
are equipped with different types of protein–protein interaction
domains, motifs and intrinsically disordered regions (IDRs). Thus,
accessory proteins dictate the local formation of macromolecular
protein complexes through modular multivalent interactions, and
thereby organise and facilitate signal transduction.

Accessory proteins bind and connect at least two constituent
components to orchestrate their spatiotemporal localisation and
enhance their assembly by reducing the dimensionality of
interactions and/or increasing local concentrations of interacting
proteins14–16. They can be categorised in four distinct groups
based on their structure and mode of action: (1) scaffold proteins
are cytosolic multidomain proteins that bind two or more distinct
components to organise them in a functional unit and modulate
their function. (2) Adaptor proteins link two partners usually via
SH2 and/or SH3 domains and may also regulate their specific
downstream signalling pathways. (3) Anchoring proteins bind to
the membrane and other proteins, which are usually protein
kinases, and therefore, bring them to their site of action. (4)
Docking proteins assemble signalling complexes by binding to
effectors and RTKs or G-proteins at the membrane.

Accessory proteins of the RTK-RAS-MAPK pathway. New
discoveries and concepts regarding the receptor-driven RAS-
MAPK signal transduction have emerged during the last three
decades: novel pathway components, structure elucidation, bio-
physical principles, biomimetic strategies and clinical drug can-
didates. By focusing particularly on the signalling process itself,
the emphasis of this article is on the implementation of the
accessory proteins, which bind molecular components and
orchestrate their assembly and eventually activity in a context-
dependent manner. We believe that the spatial arrangements of
such biophysical features over time determine specificity, effi-
ciency, fidelity of signal transduction and safeguard against any
deleterious effects.

A multitude of accessory proteins, which largely vary in size
and domain architecture (Fig. 1), are involved in orchestrating
RTK-RAS-MAPK signal transduction. The high variability of
scaffold proteins is—due to their high interaction specificity—
comprehensible. Certain domains or repeats frequently exist in

individual proteins, for example, LDs (repeated leucine-rich
sequence) in Paxillin, WDs (WD-repeat) in MORG1, RRMs
(RNA recognition motif) in nucleolin and LIMs in FHL1/2.
Furthermore, IDRs are found in several proteins, which may fold
upon interaction with their binding partner. IDRs are also
involved in oligomerization for example in galectin-317. Anchor-
ing proteins contain membrane-binding domains, such as the PH
domain in CNK1 and GAB1/2, and TM segment, e.g., in LAT,
NTAL and SEF1. PAQR10/11 contain 7 TM segments and anchor
RAS to the Golgi apparatus via their N-terminal cytoplasmic
tail18. The PHB domain of FLOT1 has been reported to be a
membrane association domain as it is post-translationally
modified by palmitoylation19. This leads to FLOT1 association
with lipid rafts of phagosomes and the plasma membrane.
Docking proteins frequently possess both PH domains, which
increase their residence time at the membrane, and PTB domains,
which enable them to interact specifically with activated RTKs.
Adaptor proteins are specialised in linking activated RTKs via
SH2 domains with their downstream signalling molecules, in
most cases, via SH3 domains.

Linking TM receptors to RAS. GRB2 links activated RTKs or
anchoring proteins, such as LAT, with SOS1/2 to activate RAS
paralogs (Fig. 2a)20. The adaptor protein function of GRB2 is
accomplished by a central SH2 domain that binds to the tyrosine-
phosphorylated RTK and two flanking SH3 domains, which bind
to the C-terminal proline-rich domain of SOS1 and translocate it
to the plasma membrane21,22. Activated SOS1, in turn, stimulates,
as a RASGEF, the GDP/GTP exchange of RAS paralogs and
thereby activates amongst others the MAPK cascade23.

Furthermore, direct GRB2 association with activated RTKs
leads to the recruitment of GAB1 and CBL. GAB1 provides a
docking platform for several signalling molecules, e.g., SHP2,
PLCγ and PI3K, thereby cross-linking different signalling
pathways24. CBL was originally described to act as an adaptor
protein as it contains several domains and motifs for
protein–protein interactions (Fig. 1). Later, it was identified as a
RING-dependent E3-ubiquitin-protein-ligase that transfers the
ubiquitin to RTKs for endocytic internalisation, and recycling or
degradation25. It also regulates signalling processes of the non-
RTKs SYK, ZAP70 and SRC26. CBL constitutively interacts with
GRB2, mediating hematopoietic cell proliferation27, and T-cell
and B-cell receptor and cytokine receptor signalling via interac-
tion with CRKL SH2 domain28. As CBL and SOS1 bind to the
same region of GRB2, the overexpression of CBL inhibits
complex formation between SOS1 and GRB2 underlining the
fine-tuning mechanism of accessory proteins by binding other
pathway modulators29.

Engagement of GRB2 is versatile and leads to different
outcomes depending on the cellular context. GRB2 can bind
indirectly to RTKs via interaction with the tyrosine-
phosphorylated adaptor proteins SHC and FRS2. SHC links
activated TRKA receptors to GRB2 in PC12nnr5 cells21,22,30,
which can recruit SOS to the PM and control the extent of RAS
activation23. Upon activation of the B-cell antigen receptor (BCR)
in B-lymphocytes, the tyrosine kinase SYK phosphorylates SHC
which leads to translocation of GRB2-SOS1 and activation of
membrane-associated RAS signalling31. The SHC–GRB2 com-
plex, downstream of cytokine receptors, also activates the PI3K
pathway to control cell survival and/or proliferation32. A similar
mechanism of GRB2-SOS-RAS activation is operated via FRS2,
which acts downstream of TRKA in neurons21, and FGFR in
embryonic stem cells33,34. FRS2 has multiple tyrosine phosphor-
ylation sites to activate, in response to a wide range of agonists,
PI3K and RAS-MAPK pathways in various cell types via binding
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to GRB2 and SHP2, respectively35–39. The binding of the
ubiquitous protein tyrosine phosphatase SHP2 to GRB2, induces
recruitment by the FRS2-SHP2 complex, which controls retinal
precursor proliferation and lens development40.

Modulating the RAS cycle. The RAS cycle between an inactive,
GDP-bound state and an active, GTP-bound state is strictly
controlled by multidomain regulatory proteins41–44. Unlike the
well-understood cellular process of RAS activation by RASGEFs,
such as SOS1 little is known about the recruitment and activation
of RASGAPs. The first evidence has emerged that the RASGAPs
neurofibromin and p120 are recruited to the plasma membrane
and RAS•GTP by two distinct scaffold proteins, SPRED1 and
merlin (Fig. 2b). The EVH domain of SPRED1, a member of the
sprouty family, binds the GAP domain of neurofibromin without
interfering with its GAP function45,46. SPRED1 appears to
directly contact BRAF and thus to interfere with KRAS
signalling47. Merlin, a member of the ERM family, directly binds
to, on the one hand, p120 and RAS (probably KRAS4B), a
mechanism that potentiates RAS inactivation in Schwann cells,
and on the other hand, CRAF and blocks its interaction with
RAS48,49. p120 modulates many regulators and signalling

proteins via its N-terminal protein interaction domains, appar-
ently independent of its GAP function50,51.

RAS-RAF connection. Lipidation and clustering of the RAS para-
logs are critical steps for a tight control of signal transduction through
the MAPK pathway. This process connects two distinct macro-
molecular clusters, plasma membrane-associated RAS-containing
clusters9 and cytosolic RAF/MEK/ERK-containing clusters52.

The scaffold proteins galectin 1 and 3 are carbohydrate-binding
proteins that are involved in many physiological functions. While
galectin 1 homodimer binds to HRAS-RAF complex and
stabilises HRAS•GTP at the plasma membrane10,53, galec-
tin 3 selectively binds and clusters KRAS4B•GTP (Fig. 2c)54.
The nucleolar phosphoproteins nucleophosmin and nucleolin
shuttle between nucleus and PM and are different types of RAS
scaffold proteins, which have been reported to stabilise KRAS4B
levels in a nucleotide-independent manner at the plasma
membrane. Nucleophosmin also increases the KRAS4B•GTP
clusters and enhances MAPK signal transduction55.

Another type of clustering is performed by the scaffold protein
SHOC2 (also known as SUR8), which connects activated RAS
with the RAF kinases (Fig. 2d). SHOC2 is an integral element of a
heterotrimeric holoenzyme complex with PP1 and MRAS, which
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Fig. 1 Domain organisation and crucial interactions of RTK-RAS-MAPK accessory proteins. Schematic representation of relevant domains in scaffold,
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dephosphorylates and releases RAF from its inhibited state56,57,
and subsequently activates the MAPK pathway58. The scaffold
protein Erbin interferes with this process59. It binds and
sequesters SHOC2 from its RAS/RAF complex, and inhibits
ERK activation60. Erbin is a large scaffold protein (Fig. 1). As
such, it links different pathways by binding, besides SHOC2, also
various other accessory proteins, including GRB261, CBL62,
Merlin63 and KSR12,64.

RAF/MEK/ERK cascade. RAF kinase translocation to the plasma
membrane and activation by direct interaction with RAS•GTP is
well described2,65–67. Activated BRAF/CRAF heterodimer phos-
phorylates MEK1/2, which in turn phosphorylates ERK1/2 at the
TEY motif in the activation loop68,69. Activated ERK1/2 are
ultimately recruited to their substrates in various subcellular
compartments70,71. The assembly of macromolecular complexes
of the MAPK components and their connection with RAS
nanoclusters at the membrane, which constitutes the RAS–ERK
axis, is arranged by homo- and heterodimerization of the mem-
bers of this pathway68. To achieve signal diversity, specificity and
fine-tuning, the spatiotemporal flux through the pathway is
organised by various distinct accessory proteins, which bind
either ERK, MEK/ERK, or RAF/MEK/ERK1,70,72.

PEA15 modulates ERK activity towards its cytosolic substrates,
including RSK2. It enhances ERK-dependent phosphorylation of
RSK2 by binding both of them independently (Fig. 2e)73. PEA15
phosphorylation by PKC, AKT, or CaMKII inhibits this process.
In addition, PEA15 steers subcellular localisation of ERK by
facilitating its nucleocytoplasmic export74.

The MEK/ERK accessory proteins are illustrated in Fig. 2f.
GIT1 binds MEK1 and ERK1 in response to integrin, RTK and
GPCR activation. Its activity is directly regulated by different
downstream effectors, such as PIX/PAK complex75. MP1 binds
and translocates MEK1 and ERK1 to late endosomes by
associating with p14 and p1876,77. The anchoring protein SEF
binds activated MEK on the Golgi apparatus, and subsequently
binds ERK, leading to activation of ERK and finally its cytosolic
substrates such as RSK278. The latter phosphorylates SEF and
induces its translocation to the plasma membrane, where it
directly inhibits FGFRs, and enhances EGFR signalling instead79.
RKIP acts as a competitive inhibitor of MEK phosphorylation. It
binds ERK and mutually exclusively RAF or MEK, and thus,
dissociates active RAF/MEK complexes80. The phosphorylation
of RKIP by PKC results in the release of RAF1 and enables the
activation of the MAPK pathway81.

The scaffolding of RAF/MEK/ERK is dependent on several
factors, including the tissue specificity, cellular localisation of the
signalling complexes and the type of upstream signals (Fig. 2g).
KSR1 is one of the best-studied scaffolds that binds to all three
members of the RAF/MEK/ERK cascade72. KSR1 translocates,
upon RTK-RAS activation, in a complex with MEK to CAV1-rich
microdomains in the plasma membrane to bind activated RAF
and modulate MEK and ERK activation. Feedback phosphoryla-
tion of KSR1 and BRAF by ERK promotes their dissociation and
results in the release of KSR1/MEK from the plasma membrane82.
In this way, MEK is sequestered from upstream signals and
cannot itself regulate ERK activation.

The multidomain protein IQGAP1 scaffolds and activates the
RAF/MEK/ERK kinases by directly associating with the EGF
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receptor83,84. With over 100 binding partners, the localisation and
effect of IQGAP1 interaction reach from actin cytoskeleton
reorganisation in the context of neurite outgrowth, migration or
vascular barrier integrity to insulin secretion via exocytosis or cell
proliferation and differentiation via ERK signalling. The extensive
interactions of IQGAP1 vary according to cell types and environ-
mental conditions85. In contrast, MORG1, FHL1, paxillin and β-
arrestin act EGF-independent (Fig. 2g). MORG1 exists in a complex
with MP1 and facilitates ERK1/2 activation in response to LPA and
PMA, and GPCR activation86. The focal adhesion protein paxillin
modulates the activation of the RAF/MEK/ERK complex through the
binding of other proteins, controlling the remodelling of the actin
cytoskeleton87. FHL1 scaffolds RAF/MEK/ERK on the N2B domain
of the giant protein titin at the sarcomere of the mammalian muscle
cells88. β-arrestin stimulates ERK signalling in response to activation
of GPCR or other receptors on the plasma membrane but also on
endosomes. FLOT1/2 are membrane raft-associated proteins that
form heterodimers. They are not only involved in the EGF receptor
clustering and activation, but also directly bind CRAF, MEK and
ERK enhancing their activity upon stimulation89. CNK1 physically
interacts with RAF facilitating its activation by assisting RAF
membrane localisation and oligomerization upon RAS activation90,
whereas being able to interact with RAS as well via the N-terminal
regions91.

Accessory proteins as in human disease. Even if dysregulated
constituent components of the RTK-RAS-MAPK pathway are
among the most intensively studied target structures for disease
treatment, new emphasis should be laid on accessory proteins
(Fig. 3). Their loss-of-function or gain-of-function mutations are
mostly and frequently associated with the initiation and pro-
gression of human diseases and disorders. The hyperactivation
of the RTK-RAS-MAPK pathway is a known cause of many
diseases, like cancer and developmental disorders, including
RASopathies.

Cancer. The upregulation of activating proteins or the down-
regulation of inhibiting proteins leads to gain-of-function of the
RTK-RAS-MAPK pathway in almost all types of cancer (Fig. 3a).
The expression of accessory proteins is tightly controlled and
often dysregulated in tumours. Paxillin is a scaffold protein,
which is involved in focal adhesion. A gain-of-function mutation
in Paxillin has been found in 9% of all non-small cell lung cancers
(NSCLC) (1)92. Furthermore, genomic amplification of Paxillin in
lung cancer promotes tumour growth, invasion and migration93.
SPRED1/2, negative modulators of RAS signalling, are down-
regulated in 84% of patients with hepatocellular carcinoma (2)94.
The scaffold protein IQGAP1 promotes tumour formation,

Fig. 3 Involvement of accessory proteins in diseases. The canonical RAS/MAPK pathway is tightly regulated by many proteins, attenuators and negative
feedback mechanisms. Mutations in regulators like accessory proteins can lead to a dysregulated RAS/MAPK pathway and therefore to a variety of
diseases as cancer and RASopathies (a). The genomic amplification of Paxillin is found in many NSCLC patients and activates the focal adhesion complex
downstream of integrins (1). Loss-of-function mutations of SPRED1 activate the RAS-MAPK pathway and lead to Legius syndrome (germline) and
hepatocellular carcinoma (somatic) (2). IQGAP1 mutations are often associated with tumour formation and metastasis (3), whereas KSR is a central player
in KRAS-driven cancers, inducing proliferation and survival (4). Mild gain-of-function mutations of SHOC2 lead to Noonan-like syndrome with loose
anagen hair or Mazzanti syndrome, other somatic mutations can lead to hypertrophic cardiomyopathy or tumourigenesis (5). The signalling of BCR-ABL-
positive cells in chronic myeloid leukaemia is also dependent on GAB2 activation, cross-linking AKT and RAS pathway (6). The adaptor protein SHP2 is not
only part of hyperactive RAS signalling in cancer cells, but is of major importance in the inactivation of T cells, inhibiting the TCR signal in response to
ligand binding to PD-1 (b). FHL1 is involved in the development of cardiac hypertrophy, which is caused by a gain-of-function mutation, leading to increased
ERK signalling (c).
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transformation, invasion and metastasis in various cancer types
(3)95. A study of a KSR−/− mouse model proves the resistance
against RAS-dependent tumour formation96, highlighting the
pro-oncogenic function of KSR in RAS-driven cancers (4).
SHOC2 mediates tumourigenesis and metastasis in different
cancer types via tethering RAS and CRAF proteins in close
proximity and thus promoting RAS-mediated CRAF
activation97,98. Knockout models of SHOC2 in KRAS mutated
lung adenocarcinoma in mice have revealed a significant reduc-
tion of tumour growth, as well as a prolonged survival, accent-
uating the scaffold protein as a potential therapeutic target (5)99.
GAB2 has been implicated as a central modulator for oncogenic
BCR-ABL signalling100. GAB2-deficient mice have exhibited
resistance against cancer cell transformation of myeloid pro-
genitors in the presence of BCR-ABL, which is found in 90% of
patients with chronic myeloid leukemia (6)100,101. SHP2 is not
only associated with a large number of cancers but plays a central
role in PD-L1/PD-1 singling that inhibits the TCR-activated
pathways, including RAS-MAPK, in T cells (Fig. 3b (7))102. This
leads to an inactivation of the T cells, guarding the tumour cells
against the immune system. Thus, SHP2 inhibitors have a dual
role as a possible therapeutic target by reducing RAS signalling
and inducing the body’s immune response.

RASopathies. RASopathies or RAS-MAPK syndromes are
defined as a group of developmental disorders that are caused by
mild gain-of-function germline mutations in genes related to not
only the constituent members of the RTK-RAS-MAPK
pathway103 but also various accessory proteins, including CBL,
SHP2, SPRED1 and SHOC2 (Fig. 3a)103.

Germline CBL mutations exhibit a wide phenotypic variability
related to Noonan syndrome, which is characterised by a
relatively high frequency of neurological features, predisposition
to juvenile myelomonocytic leukaemia and low prevalence of
cardiac defects, reduced growth and cryptorchidism104. The
mutations are mainly located in the central region of CBL, which
is known to abolish the ubiquitination of RTKs by impairing
CBLs E3 ligase activity104. Legius syndrome-associated
mutations in SPRED1, mostly result in loss-of-function of the
scaffold protein, and gain-of-function of the RAS-MAPK
pathway105,106. In contrast, mutations in genes encoding SHP2
and SHOC2 lead to a gain-of-function and contribute to MAPK
signalling upregulation that causes diverse developmental
phenotypes56,59,107. A recurrent activating mutation at the very
N-terminus of SHOC2 (Ser-2 to Gly) leads to N-myristoylation
of SHOC2, confers continuous membrane association and
consequently causes Mazzanti syndrome, a RASopathy char-
acterised by features resembling Noonan syndrome107,108.
Another RASopathy‐causing SHOC2 mutation (Gln-269 to His
and His-270 to Tyr) has been recently identified to be associated
with prenatal‐onset hypertrophic cardiomyopathy107. This
mutation changes the relative orientation of the two leucine‐
rich repeat domains of SHOC2 and enhances its binding to
MRAS and PPP1CB, two other RASopathy genes109, and thus,
increased signalling through the MAPK cascade107.

Other diseases. Moyamoya angiopathy is characterised by pro-
gressive stenosis of the terminal portion of the internal carotid
arteries and the development of a network of abnormal collateral
vessels. This is a rare condition that can be caused by de novo
CBL mutations even in the absence of obvious signs of
RASopathy110. Evidence linking CNK1 dysfunction to autosomal
recessive intellectual disability in patients emphasises the
importance of this anchoring protein in the orchestration of the
RTK-RAS-MAPK signalling in brain development and

cognition111. The scaffold proteins FHL1/2 link RAS-MAPK
signalling to the sarcomere and is a critical component of the
hypertrophy signalling in cardiac cells (Fig. 3c)88. FHL1/2
mutations are associated with cardiac diseases112. FLOT1 has
been implicated in the development of Alzheimer and type 2
diabetes and could be a promising proteomic biomarker113,114.

Accessory proteins as therapeutic targets. Direct targeting of
constituent members of the RTK-RAS-MAPK axis in the context
of disease treatment, such as cancer, is a big challenge. Therapies
for KRAS mutated cancers remain a major clinical need, despite
allele-specific inhibitors that trap and inactivate mutant KRAS
(G12C)115,116. Three decades of research led to significant
advances in tumour treatment117. However, the side-effects can
still be severe and more-specific treatments could ease patient
suffering. Unfortunately, many of the expectations for RAS
pathway-targeted drugs have not been fulfilled. High toxicity and
resistance acquisition have hampered many of the drugs devel-
oped to date117,118. An alternative therapeutic strategy to treat
KRAS mutant cancers aims at protein degradation via proteolysis
targeting chimeras (PROTACs)119. The ablation of CRAF in
advanced tumours driven by KRAS oncogene leads to significant
tumour regression with no detectable appearance of resistance
mechanisms and limited toxicities120. In this context, a recent
study has reported first progress to develop degrader molecules
that target KRAS oncogene in NSCLC121.

Emerging evidence suggests that constituent signalling proteins
assemble into macromolecular complexes and co-operate in
clusters at specific sites of the cell. Therefore, it is important to
note that the stoichiometric imbalance of each subunit of a
complex—either by gene overexpression on the one side, and
depletion, knockout or targeted protein degradation on the
other—perturbs the equilibrium, and interferes at some level with
the function of the protein or its complex122. With accessory
proteins being of immense relevance for the whole signalling
machinery and operating particularly from the side line, we
propose that functional interference with a defined site of
accessory proteins may attenuate rather than inhibit the signalling
of hyperactivated RTK-RAS-MAPK axis.

The knockout or knockdown of accessory proteins in cell-
based or animal models could already show the importance of
these modulators in cancer signalling. The scaffold protein
SHOC2 has an important role in embryogenesis, therefore, loss-
of-SHOC2 is embryonically lethal. In contrast, the systemic
knockout in adult mice as well as in human cell lines is quite well
tolerated and leads to growth inhibition of RAS-mutated NSCLC
cell lines99. Furthermore, the depletion of SHOC2 leads to a
sensitisation towards MEK inhibitor treatment, by interfering
with the feedback-loop of MEK inhibition via BRAF/CRAF
dimerisation, which is SHOC2 dependent99. Therefore, dual
targeting of SHOC2 and MEK appears as a promising treatment
strategy in RAS-mutated cancers. Another approach deals with
the scaffold protein GIT1. The knockdown of GIT1 in human
osteosarcoma cells has shown in vivo and in vitro reduced
tumour cell growth, invasion and angiogenesis, which could make
GIT1 a potential target in gene therapy123.

There is a number of approaches to target specific functions of
accessory proteins (Table 1). The CNK1 inhibitor PHT-7.3 binds
to its PH domain and prevents the colocalisation with prenylated
KRAS4B on the plasma membrane124. PHT-7.3 successfully
inhibits the growth of tumour cells induced by mutated but not
wild type KRAS4B. The interference of GRB2 mRNA by
liposome-incorporated nuclease-resistant antisense oligodeoxy-
nucleotides in BCR-ABL fusion protein-positive cancer cells,
leads to reduced tumour growth in Xenograft models125. It
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interferes with the RAS/MAPK pathway and the cross-talk
towards AKT pathway via GAB2. A WW-peptide of IQGAP1
binds ERK and competes with endogenous IQGAP1, which leads
to attenuation of ERK activation126. This treatment together with
the BRAF inhibitor vemurafenib (PLX-4032), was very successful
in tumour mouse models126. It has later been shown that not the
WW-domain but the IQ domain is necessary to bind ERK127.
The effects on the tumour growth suppression may stem from the
interference with another yet unknown binding partner of
IQGAP1 as an integral element of its complex scaffolding
function. Another interesting example of accessory proteins as a
therapeutic target is the small molecule APS-2-79, which binds
KSR in its inactive state and interferes with RAF binding and thus
blocks MEK phosphorylation128. The cell-based experiments with
APS-2-79 have shown not only reduced ERK activation and
growth inhibition in combination with the MEK inhibitor
trametinib, but also antagonising its resistance mechanism129.
Besides active site inhibitors, an allosteric inhibitor of SHP2
SHP099 stabilises the autoinhibited state and interferes with the
enzymatic activity as well as its adaptor protein function to bind,
for example, the GRB2-SOS complex130. A combination of
SHP099 with a MEK inhibitor has been shown to interfere with
the feedback mechanism via SHP2 and to block the resistance
initiation observed in KRAS4B-driven cancer therapy130–132. In
addition, SHP2 inhibition by SHP099 has been shown to have a
positive effect on anti-tumour immunity in colon cancer
xenograft models, especially in a co-treatment with an anti-PD-
1 antibody133.

Given that the majority of accessory proteins are now emerging
as attractive therapeutic targets, still a very small number of
accessory inhibitors have been discovered yet.

Concluding remarks and outlook
Accessory proteins tightly control signal transduction by fine-
tuning spatiotemporal organisation of signalling components and
maintaining specificity and function of the pathway on a cell type
and even subcellular level. They operate from the side line, from
which they specifically leverage their multivalent domains on the
formation of macromolecular clusters, as highlighted in this arti-
cle. Even though interest in accessory proteins has grown in the
past few years, the possibilities to practically visualise them, track
their pathway and experimentally and selectively affect their
functions in human cells are keys to address questions about their
cell type specificities, subcellular distribution and physical inter-
actions in a context-dependent manner. To investigate the impact
of an accessory protein in the context of RAS-MAPK signalling,

we suggest the following approach: (i) It is necessary to first
determine a cell line that expresses the gene related to the acces-
sory protein of interest using quantitative real-time PCR. (ii) It is
crucial to investigate the accessory protein at the endogenous
levels. The overexpression studies cause in spite of their experi-
mental advantages various difficulties122. A prominent example is
KSR overexpression that has been erroneously identified as a
suppressor of RAS signalling. (iii) The major challenges faced and
likely to be faced in near future are the difficult task of the direct
use of antibodies post-purchase without careful validation134. It is
of major importance to validate the antibody specificity by
immunoblotting purified protein or protein fragments, and cell
lysates overexpressing gene or gene fragments encoding the
accessory protein. (iv) Cell fractionation and confocal imaging
under-stimulated and non-stimulated conditions will prove if the
proteins pre-assemble in complexes with their binding partners
(as predicted for KSR-MEK) and where they are located within the
cell; as we expect the accessory proteins to orchestrate the RTK-
RAS-MAPK signalling in specific subcellular compartments (e.g.,
plasma membrane, early endosomes, lysosomes, Golgi or ER). (v)
Gene knockout cell lines, generated by CRISPR/Cas9 technology,
will allow measuring the impact of the accessory proteins as
positive or negative modulators of the RAS-MAPK pathway, by
determining the p-ERK/ERK ratio. Moreover, this approach will
give an idea about possible feedback or compensation mechanisms
of accessory proteins among each other. Thus, exploring these
concepts in greater detail will provide the framework for future
research that will fill existing gaps in our knowledge and expand
our understanding of more effective therapies.
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