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Boom-bust population dynamics increase diversity
in evolving competitive communities
Michael Doebeli 1✉, Eduardo Cancino Jaque 2 & Yaroslav Ispolatov2

The processes and mechanisms underlying the origin and maintenance of biological diversity

have long been of central importance in ecology and evolution. The competitive exclusion

principle states that the number of coexisting species is limited by the number of resources,

or by the species’ similarity in resource use. Natural systems such as the extreme diversity of

unicellular life in the oceans provide counter examples. It is known that mathematical models

incorporating population fluctuations can lead to violations of the exclusion principle. Here

we use simple eco-evolutionary models to show that a certain type of population dynamics,

boom-bust dynamics, can allow for the evolution of much larger amounts of diversity than

would be expected with stable equilibrium dynamics. Boom-bust dynamics are characterized

by long periods of almost exponential growth (boom) and a subsequent population crash due

to competition (bust). When such ecological dynamics are incorporated into an evolutionary

model that allows for adaptive diversification in continuous phenotype spaces, desynchro-

nization of the boom-bust cycles of coexisting species can lead to the maintenance of high

levels of diversity.
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The amazing diversity of life has sustained the debate about
the origins and limits of biodiversity. While random,
selectively neutral processes are thought by some to play an

important role, e.g., in ecosystem dynamics1 and in molecular
evolution, it seems that a majority of researchers would agree that
non-neutral ecological interactions—competition, predation,
mutualism—are central to understanding diversity, with compe-
tition having received the most attention. Coexistence between
competing species requires that intraspecific competition is
strong enough relative to interspecific competition. This is cap-
tured by the concept of limiting similarity: to coexist, populations
must be sufficiently different in their resource use. If populations
use the same resource in the same way, they cannot coexist, a
phenomenon known as the competitive exclusion principle2.

The exclusion principle has faced challenges from many
empirical counter examples, in which the number of coexisting
and ecologically interacting species was significantly higher than
the number of limiting resources. The best known such example
is the Paradox of the Plankton3, which is based on a comparison
between the relatively small number of biochemical resources
essential for plankton growth, and the number of known coex-
isting plankton species, which is orders of magnitude larger.
Different theoretical explanations for conditions that circumvent
the exclusion principle have been proposed, and it is known that
fluctuating population sizes can lead to violations2,4–6. With
fluctuating population sizes, the storage effect7,8, as well as rela-
tive non-linearities2 can lead to coexistence of more competitor
species than essential resource species, e.g., because of cyclical
dominance between competitors9. Most of these examples involve
models with a finite number of distinct resources, but coexistence
due to fluctuating population dynamics has also been shown in
models with continuous niches. With continuous, externally
imposed (seasonal) periodic cycles in population sizes, time
essentially becomes an additional niche dimension along which
populations can segregate and coexist10. In an evolutionary
context, it has been shown that limiting similarity in a continuous
niche space used by an evolving community whose member
species are undergoing externally forced population fluctuations,
larger amplitude fluctuations lead to more diversity, and hence
effectively to smaller limiting similarity11.

Most previous models used in his context have assumed that
the population fluctuations are externally imposed, and that there
is a finite number of distinct resources. Here we investigate the
questions of evolving diversity and limiting similarity in a setting
where population fluctuations are not externally imposed, but are
instead due to competitive interactions within and between the
evolving species. In addition, we address the question of diversity
in continuous phenotypes spaces, corresponding to continuously
varying resource use. Rather than the 1-dimensional phenotype
spaces that are usually assumed with continuous resource
distributions11–13, our phenotype spaces are potentially high-
dimensional.

We use the models of14–18, which are extensions of classical
competition models to high-dimensional continuous phenotype
spaces. In previous work, we assumed that the underlying eco-
logical dynamics have a stable equilibrium (the carrying capacity).
However, by using difference equations rather than differential
equations to describe ecological dynamics, it is straightforward to
extend these models to allow for complicated ecological dynam-
ics, which are by definition endogenously generated (i.e., the
population fluctuations are a result of the competitive interac-
tions). We show that for certain types of endogenously generated
fluctuations, which we term “boom-bust” dynamics, the amount
of diversity that evolves and is maintained at evolutionary steady
state can be much larger than the diversity maintained without
ecological fluctuations.

Boom-bust dynamics consist of long periods of (near-) expo-
nential growth followed by a deep crash, in such a way that the
boom-bust cycles of different species become spontaneously
desynchronized. The amount of excess diversity enabled by
boom-bust dynamics increases with the dimension of phenotype
space, so that species can be much more tightly packed in high-
dimensional spaces, corresponding to a much smaller limiting
similarity necessary for coexistence in high-dimensional niche
spaces.

Apart from asynchronous boom-bust dynamics, essentially all
other types of complex fluctuations, including asynchronous chaotic
dynamics not exhibiting the boom-bust fluctuations, do not
increase the diversity at evolutionary steady. Our models thus
provide a specific and robust mechanism for the evolutionary origin
and maintenance of highly diverse competitive communities.

Results
To accommodate various types of ecological dynamics, we con-
sider ecological models given by difference equations, and hence
set in discrete time. The basic ecological model we use is a dif-
ference equation19–21 that links population densities N of two
consecutive generations t and t+ 1,

Nðt þ 1Þ ¼ FðNðtÞÞ ¼ NðtÞ λ

1þ aNðtÞβ : ð1Þ

where λ > 0 is the per capita number of offspring, and a > 0 and
β > 0 are parameters describing the effect of competition. For λ <
1, N(t) converges to 0 for any initial condition N(0) > 0, and
hence extinction is the only possible outcome. We therefore
assume λ > 1 in what follows. In that case, model (1) has a non-
zero equilibrium at K= ((λ−1)/a)1/β, which is the carrying
capacity of the population. It is then convenient to write (1) as:

Nðt þ 1Þ ¼ NðtÞ λ

1þ ðλ� 1ÞðNðtÞ=KÞβ
; ð2Þ

as this makes it easy to formulate the model in terms of con-
tinuous phenotypes (see below). Model (2) was shown to fit well a
wide range of data20, and for β= 1 can be derived from the
logistic differential equation by integration over a finite time
interval22. The model given by (1) and (2) is phenomenological in
nature. Its basic dynamic properties are briefly described in the
first section of Methods. While other simple discrete-time models
can be derived from first principles, this does not appear to be the
case for model (1) if β > 123. Rather, this model should be viewed
as a heuristic model that can exhibit a wide array of dynamic
regimes, including the boom-bust regime that will be of para-
mount importance in this paper (see below).

Because the difference Eq. (2) has three rather than two
parameters, it can exhibit certain dynamical properties that better
known difference equations, such as the Ricker equation20,24, do
not have. For example, for small values of λ, model (2) can exhibit
highly chaotic dynamics (as e.g., measured by the Lyapunov
exponent) despite the fluctuations in population size being
(arbitrarily) small (Fig. 1). Importantly, for small values of λ, and
for large enough β, model (2) exhibits “boom-bust” dynamics
(Fig. 1), in which long periods of near-exponential growth (due to
small λ) are followed by deep crashes (due to high β) once the
population size is above K for the first time after the exponential
phase. This cycle repeats itself qualitatively, but the dynamics is in
fact chaotic and exhibits sensitive dependence on initial condi-
tions, because the population size after the crash, and hence the
length of the subsequent exponential phase, is different in each
cycle. We note that such boom-bust dynamics cannot be observed
in the Ricker model. Some of the possible dynamic regimes of
model (2) and transitions between them are shown in Fig. 1.
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We note that there are in principle many different models that
can exhibit boom-bust dynamics (including models set in con-
tinuous time, see Discussion section). We chose model (2) as a
generic model with boom-bust dynamics for certain parameter
regions, viz. for λ-values close to 1 and large enough β. Rather
than being interested in the likelihood of a particular model
exhibiting boom-bust dynamics, we are interested in the con-
sequences of such dynamics for the evolution of diversity.
Therefore, while pointing out the contrast to the consequences of
other types of ecological dynamics, such as cyclic or “regular”
chaotic dynamics, delineating the different regions in parameter
space generating the different types of dynamics is not relevant
for our purposes.

We now consider a generalization of Eq. (2) that includes
competition between S phenotypically monomorphic popula-
tions. Each population is characterized by its phenotype
xs ¼ ðx1s ; :::; xds Þ 2 Rd , s= 1, . . . , S, where d is the dimension of
phenotype space (which is assumed to be Euclidean d-space). The
population size of phenotype xs is denoted by Ns. The ecological
dynamics of all S clusters are determined by the competition
kernel α(xs, xr), which measures the competitive impact of phe-
notype xr on phenotype xs, and the carrying capacity K(xs), which
is the equilibrium population size of phenotype xs in the absence
of any other phenotypes. (The competition kernel and the car-
rying capacity are functions α : Rd ´Rd ! R and K : Rd ! R,
respectively.)

The discrete time dynamics of each phenotype in the compe-
titive community is then given by

Nsðt þ 1Þ ¼ NsðtÞ

´
λ

1þ ðλ� 1Þ ∑S
p¼1 NpðtÞαðxs; xpÞ=KðxsÞ

h iβ ; ð3Þ

s= 1, . . . , S. The sum in the denominator on the right hand side
of (3) is the effective population size experienced by phenotype xs.
Equation (3) is a discrete time analog of the continuous-time
many-species logistic competition model in multidimensional
phenotype space that was used in several previous articles16–18. In
contrast to the continuous time models used previously, in the
discrete time model populations can undergo ecological fluctua-
tions and sudden collapses not only after a population itself
exceeds the carrying capacity, but also when the cumulative
competition from other phenotypes is strong enough (i.e., when
the effective population size is above K).

For simplicity, and following15–17, we used the following
functions for the competition kernel and the carrying capacity,

αðx; yÞ ¼ exp � ∑
d

i¼1

ðxi � yiÞ2
2σ2α

" #
;

KðxÞ ¼ K0 exp �∑d
i¼1 ðxiÞ4
4σ4K

" #
:

ð4Þ

Thus, competition is symmetric and strongest between pheno-
types that are similar, and the carrying capacity has a unique
maximum K0 at 0. We note that in general, using Gaussian forms
for both the competition kernel and the carrying capacity can
result in structural instabilities25.

In the second section of Methods, we describe the numerical
procedures for simulating the evolutionary process resulting from
(3). Typically, simulations start with a single ancestral phenotype,
which changes due to mutations and can undergo repeated
diversification events due to frequency-dependent competition. In
particular, for σα < σK in (4), the continuous time analog of the
model presented above undergoes adaptive diversification and
radiation into a steady state species distribution13,17,26, see
also27,28. For example, if we set σα= 0.5 and σK= 1 in (4), then
for β= 1 system (3) is equivalent to the corresponding con-
tinuous time system22, and in a 2-dimensional phenotype space
undergoes diversification into a stable community of 16 coexist-
ing phenotypic clusters (species) with approximately constant
population sizes. This is illustrated in Fig. 2A and the corre-
sponding video. As long as β= 1, the observed diversification is
independent of λ and K0. The main purpose of this paper is to
explore the effect of increasing β to values >1, which eventually
makes the local dynamics (2) unstable. As the exponent β is
increased, stationary populations lose stability and, similarly to
the single-species model shown in Fig. 1, the ecological dynamics
of populations in an evolving community become first periodic
and then chaotic (see below for specific examples of non-
equilibrium dynamics).

For low intrinsic growth rates λ this has profound effects
on the amount of diversity in the system, as illustrated in Fig. 2
(and accompanying videos of various diversification scenarios
corresponding to Fig. 2 can be found here: figshare.com/s/
f2d8ecf480fa372319e1). For such λ-values, increasing β in the
local dynamics (2) has the effect of eventually inducing pro-
nounced boom-bust population dynamics (cf. Fig. 1). In an
evolving community, increasing β induces boom-bust dynamics
in each of the phenotypes present in the community, with each

Fig. 1 The dynamic complexity of the basic model. A Examples of population dynamics generated by model (2). Shown are convergence to steady state
for β= 2, λ= 1.2 (red line), stable periodic oscillations for β= 16, λ= 1.2 (blue line), chaotic dynamics when β= 20, λ= 1.2 (magenta line) and β= 5, λ= 5
(green line), and boom-bust chaotic dynamics when β= 45, λ= 1.2 (black line with individual generations shown by circles). Note the almost exponential
multi-generation growth phases in the boom-bust regime, followed by a single-generation bust. B Bifurcation diagram for Eq. (2) for λ= 1.2. Both panels
computed with K= 1.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02021-4 ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:502 | https://doi.org/10.1038/s42003-021-02021-4 | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


phenotypic cluster (species) undergoing multiple generations of
(near-)exponential population growth punctuated by deep cra-
shes. These ecological dynamics unfold in such a way that the
dynamics of neighboring clusters of phenotypes are desynchro-
nized, i.e., such that crashes and subsequent exponential growth
phases occur at different time points. With such desynchronized
boom-bust ecological dynamics, evolution can generate a drastic
increase in diversity compared to that evolving in ecologically
stable communities (Fig. 2). Increased diversity due to boom-bust
ecological dynamics typically occurs as long as the ecological
conditions for adaptive diversification due to frequency-
dependent competition are met (i.e., as long as σα < σK in (4)).
While the amount of diversity depends on the exact values of σα
< σK, significantly more diverse communities tend to evolve with
boom-bust dynamics than with stable equilibrium ecological
dynamics.

Figure 3 shows the number of species coexisting at the evo-
lutionary saturation state as a function of the parameter β for
different values of λ. The figure illustrates that λ has to be small
enough for a substantial increase in diversity to be observed for
high β. Indeed, in the local model (2) boom-bust dynamics can
only be observed for small λ, and it is exactly these kinds of
population dynamics that allow for increased diversity. For larger
λ, increasing β results in more “traditional” forms of chaotic
dynamics with irregular, high-frequency oscillations of increasing
amplitude. Such local dynamics also lead to chaotic ecological
dynamics in populations comprising an evolving community,
but they do not generate an increase in the diversity that
can evolve and be maintained. In general, as β is increased to
very high values, the model becomes less relevant biologically:

the population crashes become very severe, which results in
extinctions that are frequent enough for diversity not to be able to
evolve anymore (see below).

Figure 4 illustrates the desynchronized boom-bust dynamics
in an artificial community of 25 species, with each species

Fig. 2 Snapshots of cluster distributions. Distributions are shown for low (left column) and high (right column) β-values after 107 generations, for
2-dimensional (top row) and 3-dimensional (bottom row) phenotype spaces. A 16 species for β= 1, λ= 1.2, σα= 0.5; B 47 species for β= 45, λ= 1.2, σα=
0.5; C 8 species for β= 1, λ= 1.2, σα= 0.75; D 20 species for β= 55, λ= 1.2, σα= 0.75. The videos of various diversification scenarios corresponding to
Fig. 2 can be found here: figshare.com/s/f2d8ecf480fa372319e1. In the top row panels and corresponding videos (2-dimensional case), all phenotypes
present in the evolving community are shown (represented as dots). In the bottom row panels and corresponding videos (3-dimensional case), species
resulting from clustering of populations of similar phenotypes using a merging distance of Δxspecies= 10−1 (see second section of Methods) are represented
by circles whose size is proportional to a species' population size.
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Fig. 3 Number of coexisting species as a function of the exponent β.
Circles are for λ= 1.2, squares for λ= 1.6, diamonds for λ= 2, and triangles
for λ= 5. Dimension of phenotype space is d= 2, and σα= 0.5. Species are
counted after 107 generation and after clustering of populations of similar
phenotypes using a merging distance of Δxspecies= 10−1 (see second
section of Methods).
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represented by a single phenotype, and such that the phenotypes
are arranged on a regular grid in phenotype space (see inset in
Fig. 4). This community corresponds to the case indicated by the
right-most square with more than 1 species in Fig. 3, in which β is
large enough for the diversity to increase to 25 coexisting species,
rather than the 16 that would evolve for lower β. Figure 4 shows
the population dynamics of a subset of 5 phenotypes arranged on
a line in the grid, resulting from simulating the ecological
dynamics (3) of the whole community of 25 phenotypes. For each
phenotype, the dynamics exhibits boom-bust cycles, and neigh-
boring cycles are desynchronized.

It is worth noting that the increased diversity seen for higher β-
values occupies approximately the same phenotypic range as the
lower diversity for lower β-values (Fig. 2). This implies that with
higher diversity, the different species are more closely packed in
phenotype space, and hence that, generally speaking, conditions
of limiting similarity are relaxed in the boom-bust dynamic
regime. Because of lower thresholds for limiting similarity, i.e.,
denser packing, the increase in diversity at evolutionary sta-
tionary state due to boom-bust ecological dynamics becomes
more pronounced with higher dimensions of phenotype space, as
illustrated in Fig. 5.

Relaxed limiting similarity conditions require a decrease in
competitive pressure that species in neighboring regions of phe-
notype space exert on each other. Such a decrease can be achieved
if neighboring populations are fluctuating in opposite phases, as
shown for an artificial example in Fig. 4. Figure 6 illustrates that
in full simulations of the evolutionary process, neighboring spe-
cies indeed generally exhibit such an anti-correlation for high β-
values. Essentially, the anti-correlation between populations of
neighboring species stems from the asynchrony of their boom-
bust cycles. In the first section of the Supplementary Material, we
show that such desynchronization is expected to emerge spon-
taneously from an arbitrary small initial difference between
populations: in a simple idealized configuration of two competing
species with boom-bust dynamics, their population sizes converge
to a state of complete anti-synchronization. For smaller values of
β or larger values of λ, for which populations do not undergo
boom-bust dynamics this anti-correlation is not seen (Fig. 6).

The explanation for higher diversity based on anti-correlated
boom-bust cycles of phenotypically close species suggests that to
make this mechanism work, these cycles should be of sufficient
length. This means that the population crashes should be suffi-
ciently severe (large β), and the intrinsic growth rate λ should be
sufficiently small. Essentially, the exponential phase should
be long enough for robust desynchronization. This effect cannot
be achieved with high intrinsic growth parameters λ (Fig. 3): the
increase in diversity is noticeably diminished for λ= 1.6, and is
absent for larger λ. In particular, the type of chaotic population
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Fig. 5 The number of species as a function of the exponent β. Data are
shown for λ= 1.2, σα= 0.5 and three different dimensions of phenotype
space, d= 1 (squares), d= 2 (circles), and d= 3 (diamonds). Species are
counted after 107 generation and after merging the populations of similar
phenotypes using a merging distance of Δxspecies= 10−1 (see description in
main text). Note that the level of diversity shown for small β-values
corresponds to the diversity evolving with stable equilibrium ecological
dynamics.
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is shown as a function of phenotypic distance ∣x− y∣ for β= 50, λ= 1.2 (black
line), β= 20, λ= 1.2 (red line) and β= 5, λ= 5 (blue line). Dimension of
phenotype space is d= 2, and σα=0.5. The correlation was calculated by
taking into account all possible pairs of phenotypes over 5 × 106 generations
after the steady state level of diversity was reached. Anti-synchronization is
only seen for boom-bust dynamics (black) allowing for increased diversity (cf.
Fig. 3), but not for higher frequency chaotic dynamics with small (red) or large
(blue) amplitudes.
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fluctuations induced by high β for λ-values that are significantly
larger than 1 do not lead to increased diversity, because for larger
λ, complex dynamics are not of the boom-bust type.

To confirm that the boom-bust cycles, rather than chaoticity or
other features of the population dynamics defined by Eq. (3), are
the essential mechanism for the observed increase in diversity, we
stripped the model (3) from all other features except its ability to
run boom-bust cycles: We assumed that each phenotypic popu-
lation grows exponentially with an exponent λ until the effective
density experienced by a given phenotype, i.e., the cumulative
competitive effect of all phenotypes, given by the term
∑S

p¼1 NpðtÞαðxs; xpÞ in denominator of (3), becomes greater than
the carrying capacity of that phenotype. When that happened, the
population of that phenotype was reduced to a small fraction of
its population size, simulating a severe crash. The mutation and
merging procedures were implemented as in the original model.
This modified model shows qualitatively very similar results (not
shown) and exhibits significant increases in diversity at a level
very similar to the original model, as long as λ-values are close to
1, so that the exponential phase starting from low densities is long
and slow, and as long as the population crashes are severe
enough. This confirms that the key for the evolution of higher
diversity is the existence of pronounced boom-bust dynamics for
all phenotypic populations.

An interesting question concerns the effect of the frequency
and size of mutations on diversity. These were assumed to be μ=
0.1 and Δx= 10−2 for the results presented so far (note that it is
really only the product of these two parameters that matters). A
reduction in μ and/or Δx slows down evolution in general and
diversification in particular. This effect is illustrated in Fig. S.3A,
where we show the number of species vs. time for four different
mutation frequencies. Smaller mutation rates result in longer
times to reach the equilibrium level of diversity. There is, how-
ever, another, less direct effect of mutation rate on diversity. For
any non-zero extinction threshold and even moderate β, there is a
small but finite probability that all phenotypes of a well-
developed cluster, and hence the corresponding species, go
extinct during a particularly severe bust. The extinct cluster can
eventually get replaced by newly arising mutants, but the time it
takes mutations to undergo a sufficient number of phenotypic
steps to reach the vacated spot in phenotype space depends on μ
and Δx. For any given mutation rate and size, these processes may
equilibrate at different levels of diversity. In particular, lower
extinction thresholds (making extinction less likely) lead to
higher levels of diversity at saturation. This is illustrated in
Fig. S.3B.

In general, diversity decreases drastically for very high β-values
and eventually the system is reduced to just a single phenotypic
cluster. This occurs because with large β-values, the crashes due
to the effective density experienced being higher than the carrying
capacity become progressively more severe and can bring all
phenotypes comprising one species below the minimum popu-
lation threshold, thus rendering the species extinct. Even though
diversification is still favored by selection, the rate of species
extinction for high β-values is too high for diversity to evolve. The
very dynamic regime of this “competition” between extinction
and diversification is illustrated in Fig. S.2.

Discussion
We propose a possible explanation for the emergence and per-
sistence of large amounts of diversity based on competition
models for evolving communities with fluctuating population
dynamics. When these fluctuations are in the boom-bust regime,
in which long periods of exponential growth are followed by deep
population crashes, diversity in continuous phenotype spaces

evolves well beyond what is expected based on limiting similarity
with stationary ecological dynamics. The key mechanism that
results in higher diversity is the spontaneous desynchronization
of boom-bust cycles between phenotypically similar species,
which essentially reduces interspecific competitive impacts and
allows for much denser packing of species in niche space.

Population fluctuations have long been considered as a
potential mechanism leading to violations of the competitive
exclusion principle. For the most part, past studies have either
assumed a fixed set of resources2,9,29, or they have assumed
externally imposed fluctuations10,11. In such models, the
mechanism of ecological fluctuations causing an increase in
diversity can be viewed as a form of the temporal storage effect7,8,
which intuitively corresponds to temporal segregation in niche
space10. In fact, there have also been models showing that
population fluctuations can decrease diversity in an evolutionary
context30, but these models appear to allow for jack-of-all-trades
mutations on a finite set of resources, which can increase rather
than decrease the amount of interspecific competition in the
system.

Our models extend previous models for the emergence and
maintenance of diversity under stable equilibrium ecological
dynamics13,17,26–28. They differ from earlier models such as27,28

in key aspects: they consider evolution in high-dimensional
phenotypes that characterize continuously variable and multi-
variate niche use, and persistent ecological fluctuations are
intrinsically generated by overcompensating competition.
Desynchronized boom-bust cycles provide a robust mechanism
for a substantial increase in the diversity that can evolve and be
maintained in such models, an effect that increases with
increasing dimension of phenotype space. We note that this latter
result is not obvious, as with higher phenotypic dimensions the
number of phenotypically similar species (nearest neighbours in
phenotype space) increases linearly with the dimension, which
may be expected to make desynchronization of neighboring
boom-bust cycles more difficult due to denser phenotype packing.

This mechanism of “diversification in time” is similar to those
previously reported10,29: time acts as additional niche space, and
separation along this niche space can alleviate interspecific
competition. In the language of31, boom-bust desynchronization
effectively increases the “environmental dimension”, which is a
determinant of the amount of diversity that can be sustained.
Again, this is akin to the temporal storage effect7,8, although the
latter is mostly invoked for externally generated population
fluctuations. The longer the boom-bust cycles, the more temporal
separation between similar species is possible. If the population
crashes in the boom-bust regime become too severe, they produce
frequent extinctions, which eventually leads to a net negative
effect on diversity.

In our models, higher diversity can only be observed in the
presence of pronounced boom-bust cycles, but not with other
types of population fluctuations, such as periodic or chaotic
dynamics with high-frequency oscillations. From a modeling
perspective, it is worth noting that more standard and more
widely used discrete-time models, such as the Ricker equation or
the discrete-time logistic model, even in their chaotic regimes
cannot exhibit the type of chaotic boom-bust dynamics that
model (2) exhibits for low intrinsic growth rates λ and large
(overcompensating) β. This reiterates old cautionary notes about
the judicious use of discrete maps for modeling ecological
dynamics21.

Discrete-time models have proved to be very useful for many
different purposes in ecology and evolution at least since Ricker’s s
famous stock and recruitment paper24. However, we note that
boom-bust dynamics can also be generated using continuous-time
models. To illustrate this, consider a continuous-time analogue of
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the modified model introduced at the end of the Results section.
This continuous-time model has two phases, representing slow
exponential growth and fast exponential decline in continuous
time. In the first phase, long and slow exponential growth occurs
from low densities for each phenotypic population, while keeping
track of the effective density experienced by each phenotype, i.e.,
of the weighted sum overall phenotypic population sizes, with
weights given by the competition kernel (this corresponds to the
sum in the denominator of Eq. (3)). Once the effective density of a
given phenotype reaches the carrying capacity of that phenotype,
there is a very fast exponential decline until the phenotype reaches
a small fraction of the population size it had before the decline,
which corresponds to a severe population crash. Simulations of
this simple boom-bust model in continuous time (results not
shown) produce qualitatively identical results: the amount of
diversity that emerges and is maintained evolutionarily is much
larger than the diversity that would evolve with stable equilibrium
dynamics (as e.g., reported using a continuous-time logistic model
in17). This again underscores the generality of the effects of boom-
bust ecological dynamics on diversity.

We speculate that the mechanisms and results reported here
are not limited to competition models, but could also be manifest
in communities with other ecological interactions, e.g., in com-
munities with crowding effects32, or in communities containing
both predators and prey33. Whenever the population dynamics
exhibit patterns of rapid growth interspersed by crashes (as may
e.g., be expected in many predator-prey systems), temporal
desynchronization can occur spontaneously and thus lead to
increased diversity. Such effects were shown in33, who reported
that “kill-the-winner” mechanism, in which predation generates
crashed in the most abundant consumer species, can generate
increased levels of diversity. These mechanism differ from the
ones reported here in that they are extrinsic to the crashing
consumer species (and it is difficult to compare those system to
baseline systems with stable ecological dynamics).

There is some empirical support for the effect of boom-bust
cycles on ecosystem diversity. For example, such patterns were
observed in carefully staged long-running experiments with sev-
eral plankton species6, and the experimental data showed that
out-phase oscillations in predator-prey cycles of zooplankton and
phytoplankton were important for the maintenance of diversity in
this system34. Predation from pathogens have also been reported
to induce algal boom-bust cycles35. Generally, boom-bust cycles
appear to be common in many marine ecosystems, which are
known to be very diverse. For example, it has been suggested to
call echinoderms a “boom-bust” phylum36, and recent work
shows that in polar plankton communities, which constitute an
important ecosystem in the global ocean, phytoplankton
dynamics are often categorized by “boom-bust” cycles37.

It is interesting to put our results in the context of observations
of “neutral evolution”. For example38, report neutral taxonomic
distributions during early metazoan diversification into relatively
empty niche space. In our models, such expansions could be
classified as the boom stage, and according to our model
assumption would then indeed occur essentially unabated and in
the absence of competitive effects. The actual selection only occurs
during the bust stage with populations of less adapted species
crashing earlier and deeper. Such an application of the model (3)
would be rather speculative however, as the unrestricted expo-
nential growth phase would have to last for a very long time and
would in any case represent a simplified and unrealistic assump-
tion for such scenarios. We also note that38 consider neutrality
based on taxonomic data, not on functional data, whereas our
model only considers functional phenotypic data. It has been noted
that the distinction between taxonomic and functional data is very

important in many microbial ecosystems39, and in particular that
functional data can be decidedly non-random even when taxo-
nomic distributions look random.

Overall, we think that our results provide a useful evolutionary
perspective for thinking about diversity in natural ecosystems.
Boom-bust population fluctuations are a robust, intuitively
appealing and probably under-appreciated potential cause of
significantly increased diversity in evolving ecosystems.

Methods
Basic model properties. It is well known that that the basic quantity underlying
the dynamic behavior of model (2) is the derivative dF/dN evaluated at the equi-
librium K:

dF
dN

����
N¼K

¼ 1� λ� 1
λ

β: ð5Þ

For λ > 1, the population dynamics converges to the steady state K if and only if
j1� λ�1

λ βj<1. Thus, for a given λ, for small values of the exponent β the system
exhibits stable equilibrium dynamics, and increasing β gives way to a period-
doubling route to chaos (Fig. 1). Biologically, increasing β can be viewed as
reflecting a gradual change from contest to scramble competition23. This is
reflected by the shape of the per capita number of offspring as a function of
population size, given by the right hand side of (2) divided by N(t), and viewed as a
function of N(t): for any λ, and for high β, the per capita number of offspring is
approximately constant until the population size reaches the vicinity of K, but as N
increases above K the number of offspring falls rapidly to very low values, essen-
tially generating a population crash as soon as the population size is above K.

Procedures for evolutionary simulations. To simulate the evolutionary process,
we set the scaling parameters K0 and σK to K0= 1 and σK= 1, and we start with a
number S of phenotypes (typically, S= 1, and the phenotype is randomly chosen in
the vicinity of the maximum of the carrying capacity). We then simulate the
ecological dynamics in discrete time, using (3) for each of the phenotypes. In each
generation, a new phenotype is generated with a probability μ (typically μ= 0.1).
The new phenotype is a mutant of one of the existing phenotypes. Of those, a
parental phenotype is chosen with a probability proportional to its population size,
and the offspring phenotype is chosen randomly from a Gaussian distribution with
the average centered at the parental phenotype and a small standard deviation Δx
(typically Δx= 10−2).

After addition of the new phenotype, the community now comprises S+ 1
phenotypes, and the process is repeated for many generations. What one wants to
know from this process is how the distribution of phenotypes changes over time.
To keep the number of phenotypes from increasing to very large numbers that
would render the simulation computationally impossible, we periodically merge
phenotypes that are very close together. Specifically, once every tmerge generations
(typically tmerge= 1000), phenotypes that are within a distance Δx of each other are
merged (preserving their phenotypic center of mass) and their population sizes
added. In addition, every generation all clusters with populations densities below a
threshold (typically= 10−12) are declared extinct and removed from the system.
Together, these procedures preserve the phenotypic variance necessary for
evolution, but prevent undesirable computational complexity.

To define and count the number of phenotypically distinct species in the
community at any given point in time, with each species possibly consisting of a
number of similar phenotypes, the phenotypes in the community are clustered with
a larger distance Δxspecies (typically Δxspecies= 10−1). This phenotypic distance is
still significantly smaller than the typical scales of ecological interactions as long as
σα and σK in (4) are of order 1. This implies that the phenotypes within a
designated species experience very similar competitive interactions and generally
follow the same population dynamics. Note that species designation is only used to
gather statistical data from simulations, but not in the actual computational steps of
the simulations.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used in this study was generated by computer simulations. The data that support
the findings of this study are available from the authors upon reasonable request. The
movie files referred to in the context of Fig. 2 can be found at videos of various
diversification scenarios corresponding to Fig. 2 can be found here: figshare.com/s/
f2d8ecf480fa372319e1.

Code availability
The code for the computer simulations performed for this study was written in Fortran
and can be found here: https://github.com/jaros007/
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Fortran_code_Boom_bust_population_dynamics_increase_diversity_in_evolving_com-
petitive_communities, and as described in ([Code depository] The code depository is
https://doi.org/10.5072/zenodo.747095.).

Received: 24 August 2020; Accepted: 24 March 2021;

References
1. Rosindell, J., Hubbell, S. P., He, F., Harmon, L. J. & Etienne, R. S. The case for

ecological neutral theory. Trends Ecol. Evol. 27, 203–208 (2012).
2. Armstrong, R. A. & McGehee, R. Competitive exclusion. Am. Nat. 115,

151–170 (1980).
3. Hutchinson, G. E. The paradox of the plankton. Am. Nat. 95, 137–145 (1961).
4. Koch, A. L. Coexistence resulting from an alternation of density dependent

and density independent growth. J. Theor. Biol. 44, 373–386 (1974).
5. Koch, A. L. Competitive coexistence of two predators utilizing the same prey

under constant environmental conditions. J. Theor. Biol. 44, 387–395 (1974).
6. Benincà, E. et al. Chaos in a long-term experiment with a plankton

community. Nature 451, 822–825 (2008).
7. Chesson, P. Multispecies competition in variable environments. Theor. Popul.

Biol. 45, 227–276 (1994).
8. Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol.

Syst. 31, 343–366 (2000).
9. Huisman, J. & Weissing, F. J. Biodiversity of plankton by species oscillations

and chaos. Nature 402, 407–410 (1999).
10. Barabás, G., Meszéna, G. & Ostling, A. Community robustness and limiting

similarity in periodic environments. Theor. Ecol. 5, 265–282 (2012).
11. Kremer, C. T. & Klausmeier, C. A. Species packing in eco-evolutionary

models of seasonally fluctuating environments. Ecol. Lett. 20, 1158–1168
(2017).

12. Roughgarden, J. Theory of Population Genetics and Evolutionary Ecology: An
Introduction. (MacMillan, 1979).

13. Doebeli, M. Adaptive diversification (MPB-48). vol. 48 (Princeton University
Press, 2011).

14. Doebeli, M. & Ispolatov, I. Complexity and diversity. Science 328, 494–497
(2010).

15. Doebeli, M. & Ispolatov, I. Chaos and unpredictability in evolution. Evolution
68, 1365–1373 (2014).

16. Ispolatov, I., Madhok, V. & Doebeli, M. Individual-based models for adaptive
diversification in high-dimensional phenotype spaces. J. Theor. Biol. 390,
97–105 (2016).

17. Doebeli, M. & Ispolatov, I. Diversity and coevolutionary dynamics in high-
dimensional phenotype spaces. Am. Nat. 189, 105–120 (2017).

18. Ispolatov, I., Alekseeva, E. & Doebeli, M. Competition-driven evolution of
organismal complexity. PLoS Comput. Biol. 15, e1007388 (2019).

19. MaynardSmith, J. & Slatkin, M. The stability of predator-prey systems. Ecology
54, 384–391 (1973).

20. Bellows, T. The descriptive properties of some models for density dependence.
J. Animal Ecol. 50, 139–156 (1981).

21. Doebeli, M. Dispersal and dynamics. Theor. Popul. Biol. 47, 82–106 (1995).
22. Yodzis, P. Introduction to Theoretical Ecology. (Harper and Row, 1989).
23. Brännström, A. & Sumpter, D. J. The role of competition and clustering in

population dynamics. Proceed. Royal Soc. London B 272, 2065–2072 (2005).
24. Ricker, W. Stock and recruitment. J. Fisheries Board oCanada 11, 559–623

(1954).
25. Gyllenberg, M. & Meszéna, G. On the impossibility of coexistence of infinitely

many strategies. J. Math. Biol. 50, 133–160 (2005).
26. Dieckmann, U. & Doebeli, M. On the origin of species by sympatric

speciation. Nature 400, 354–357 (1999).
27. Hernández-García, E., López, C., Pigolotti, S. & Andersen, K. H. Species

competition: coexistence, exclusion and clustering. Phil. Trans. Roy. Soc. A
367, 3183–3195 (2009).

28. Scheffer, M. & van Nes, E. H. Self-organized similarity, the evolutionary
emergence of groups of similar species. Proc. Nat. Acad. Sci. USA 103,
6230–6235 (2006).

29. Vandermeer, J. Oscillating populations and biodiversity maintenance.
Bioscience 56, 967–975 (2006).

30. Shoresh, N., Hegreness, M. & Kishony, R. Evolution exacerbates the paradox
of the plankton. Proceed. Natl Acad. Sci. USA 105, 12365–12369 (2008).

31. Parvinen, K., Metz, J. A. & Dieckmann, U. Environmental dimensionality
determines species coexistence. J. Theor. Biol. https://doi.org/10.1016/j.
jtbi.2020.110280 (2020).

32. Gavina, M. K. et al. Multi-species coexistence in Lotka-Volterra competitive
systems with crowding effects. Scientific Rep. 8, 1–8 (2018).

33. Xue, C. & Goldenfeld, N. Coevolution maintains diversity in the Stochastic
“Kill the Winner” Model. Phys. Rev. Lett. 119, 268101 (2017).

34. Benincà, E., Jöhnk, K. D., Heerkloss, R. & Huisman, J. Coupled predator-prey
oscillations in a chaotic food web. Ecol. Lett. 12, 1367–1378 (2009).

35. Lehahn, Y. et al. Decoupling physical from biological processes to assess the
impact of viruses on a mesoscale algal bloom. Curr. Biol. 24, 2041–2046
(2014).

36. Uthicke, S., Schaffelke, B. & Byrne, M. A boom-bust phylum? Ecological and
evolutionary consequences of density variations in echinoderms. Ecol.
Monogr. 79, 3–24 (2009).

37. Behrenfeld, M. J. et al. Annual boom-bust cycles of polar phytoplankton
biomass revealed by space-based lidar. Nat. Geosci. 10, 118–122 (2017).

38. Mitchell, E. G. et al. The importance of neutral over niche processes in
structuring Ediacaran early animal communities. Ecol. Lett. 22, 2028–2038
(2019).

39. Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in
the global ocean microbiome. Science 353, 1272–1277 (2016).

Acknowledgements
M.D. was supported by NSERC Discovery Grant 219930. E.C.J. was supported funded by
the National Agency for Research and Development (ANID) Scholarship 21190785. IY.I.
acknowledges support from FONDECYT project 1200708.

Author contributions
M.D. provided the basic idea, performed simulations, and wrote the paper. E.C.J. per-
formed simulations and data analysis. IY.I. made conceptual contributions, performed
simulations and analysis, and wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-021-02021-4.

Correspondence and requests for materials should be addressed to M.D.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02021-4

8 COMMUNICATIONS BIOLOGY |           (2021) 4:502 | https://doi.org/10.1038/s42003-021-02021-4 | www.nature.com/commsbio

https://github.com/jaros007/Fortran_code_Boom_bust_population_dynamics_increase_diversity_in_evolving_competitive_communities
https://github.com/jaros007/Fortran_code_Boom_bust_population_dynamics_increase_diversity_in_evolving_competitive_communities
https://doi.org/10.5072/zenodo.747095
https://doi.org/10.1016/j.jtbi.2020.110280
https://doi.org/10.1016/j.jtbi.2020.110280
https://doi.org/10.1038/s42003-021-02021-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	Boom-bust population dynamics increase diversity in evolving competitive communities
	Results
	Discussion
	Methods
	Basic model properties
	Procedures for evolutionary simulations

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




