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mmsig: a fitting approach to accurately identify
somatic mutational signatures in hematological
malignancies
Even H. Rustad1,2, Ferran Nadeu 3,4, Nicos Angelopoulos5, Bachisio Ziccheddu6,7, Niccolò Bolli8,9,

Xose S. Puente 10, Elias Campo 3,4,11, Ola Landgren 1,7✉ & Francesco Maura 1,7✉

Mutational signatures have emerged as powerful biomarkers in cancer patients, with prog-

nostic and therapeutic implications. Wider clinical utility requires access to reproducible

algorithms, which allow characterization of mutational signatures in a given tumor sample.

Here, we show how mutational signature fitting can be applied to hematological cancer

genomes to identify biologically and clinically important mutational processes, highlighting

the importance of careful interpretation in light of biological knowledge. Our newly released R

package mmsig comes with a dynamic error-suppression procedure that improves specificity

in important clinical and biological settings. In particular, mmsig allows accurate detection of

mutational signatures with low abundance, such as those introduced by APOBEC cytidine

deaminases. This is particularly important in the most recent mutational signature reference

(COSMIC v3.1) where each signature is more clearly defined. Our mutational signature fitting

algorithm mmsig is a robust tool that can be implemented immediately in the clinic.
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The mutational profile of a tumor represents an archive of
all mutational processes that have been active throughout
tumor phylogeny, dating back to the fertilized egg1,2.

Analyzing the mutational signatures associated with distinct
mutagenic processes has revealed key insights into cancer
pathogenesis, evolution, and potential therapeutic strategies1,3–6.
To make up a mutational profile, single nucleotide variants
(SNVs) are commonly divided in 96 classes based on their tri-
nucleotide context, defined by the mutated base and the most
proximal bases in the 5′ and 3′ direction1,3. Recent whole-genome
sequencing (WGS) studies have revealed more than 40 signatures
of single base substitutions (SBS), representing processes active in
all tissues (e.g., ageing related clock-like processes), as well as cell-
type-specific intrinsic processes (e.g., APOBEC-family cytidine
deaminases, such as activation-induced cytidine deaminase, AID),
processes related to exogenous agents (e.g., smoking and che-
motherapeutic agents), and deficiencies of specific DNA repair
mechanisms (e.g., homologous repair deficiency, HRD)1–3,7–12.
Several tools for mutational signature analysis have been pro-
posed, without a single accepted standard having emerged.
Resulting from the lack of methodological consensus, different
studies have often reported conflicting and biologically implau-
sible results10,11,13,14.

As a first step toward standardization of mutational signature
analysis in hematological malignancies, we recently proposed a
three-step workflow of (1) de novo signature extraction (e.g., by
non-negative matrix factorization, NMF); (2) assignment to a set
of reference signatures (e.g., COSMIC v3.1; https://cancer.sanger.
ac.uk/cosmic/signatures/); and (3) applying a fitting algorithm to
determine which of the signatures defined in steps 1–2 are present
in each tumor10. We previously focused on the challenges and
pitfalls of the first two steps, which may result in falsely identi-
fying signatures that are not active in a given disease, such as
HRD-SBS3 in multiple myeloma (MM)10,14. Successfully apply-
ing the most recent de novo extraction tools and assignment of
mutational signatures to a large set of samples with a specific
cancer will reveal the main mutational processes active in that
disease2. However, as previously reported, this approach may be
affected by several issues leading to incorrect quantification of
signature contribution10. One such problem is inter-bleeding of
signatures, where a mutational signature present in only a subset
of cases are incorrectly called in the others as well. Furthermore,
de novo extraction requires large cohorts of patients, limiting
their applicability in the clinic. In cancers with well-characterized
mutational signature landscapes, fitting algorithms are highly
suited for clinical application, as they can be applied to individual
samples with short run-times5,12,15,16. Although technically
straightforward to perform, mutational signature fitting requires
rigorous interpretation to ensure the accuracy and validity of
results.

Here, we show how mutational signature fitting can be used to
identify clinically relevant mutational processes in hematological
malignancies. We highlight the differences between commonly
used algorithms and introduce the novel algorithm mmsig,
developed specifically to solve difficult cases where it is unclear
whether a given signature is present or absent.

Results
Mutational signature fitting and mmsig. In principle, muta-
tional signature fitting is a mathematical procedure aimed to
determine the combination of known signatures that best
explains the observed mutational profile (Fig. 1A, B)3. This is
often measured by the cosine similarity of the original mutational
profile with the profile that is reconstructed based on the fitted
signatures (reconstruction accuracy; Fig. 1C, D)3,16. However,

from a practical perspective, it is most important to identify those
signatures that have a clear biological correlate and may serve as
clinical biomarkers. When algorithms are developed with optimal
reconstruction accuracy as the principal goal, this often comes at
the cost of overfitting, resulting in false positive signature calls10.
We developed the novel algorithm mmsig with this in mind to
optimize specificity at a minimal loss of reconstruction accuracy
(“Methods”).

To illustrate the challenges of mutational signature fitting and
the unique features of mmsig, we analyzed a thoroughly
characterized WGS dataset with 82 MM samples11,17–19. We
included the 8 mutational signatures previously identified in MM:
SBS1 and SBS5, mutations related to the cell aging (i.e., clock-
like); SBS2 and SBS13, resulting from APOBEC cytidine
deaminase activity; SBS9, attributed to the non-canonical
genome-wide action of AID (nc-AID); SBS8 of unknown etiology;
SBS18, which may be related to DNA damage from reactive
oxygen species; and SBS-MM1, the mutational footprint of
melphalan therapy (Fig. 1B)11. A subset of patients with MM
show mutational profiles dominated by APOBEC mutagenesis,
with high proportion of mutations in TCT and TCA context that
are well-explained by SBS2 (C>T) and SBS13 (C>G) (e.g., patient
PD26419a in Fig. 1A). Patients with lower APOBEC were
dominated by SBS5, with distinctive peaks in T>G attributable to
SBS9 (e.g., patient V0D58T in Fig. 1A).

Using the latest COSMIC reference (i.e., COSMIC v3.1; https://
cancer.sanger.ac.uk/cosmic/signatures/SBS/index.tt) and applying
three different fitting algorithms (deconstructSigs, mutationalPat-
terns, and mmsig) to each of the 82 MM samples without the use
of error-correction showed similar results (Fig. 2A). Accordingly,
pairwise comparisons of the reconstructed mutational profile for
each sample by the different algorithms showed median cosine
similarity of >0.998. Moreover, the median cosine similarity
between the reconstructed and original mutational profiles was
0.97 for all three algorithms. However, when the fitted mutational
signatures were compared with actual exposure of patients to
melphalan, it became clear that SBS-MM1 was falsely identified in
>90% of samples from untreated patients. This problem of
overfitting is well known, and a common approach to avoid false
positives is to remove all signatures with estimated contribution
below a given percentage15,16. A threshold of 6% is the standard
setting for deconstructSigs, and we applied the same threshold to
mutationalPatterns as well. Although removing false positive
SBS-MM1 in most cases, this approach introduced problems of
its own, because the COSMIC v3.1 versions of APOBEC and
SBS1 often fell below the 6% threshold despite being clearly
present (Fig. 2B). SBS1 has been identified in all cancers and
normal individuals, and APOBEC is known to be active in the
vast majority of patients with MM7,11,20–23. Moreover, the
APOBEC signatures have highly distinct profiles, making it
possible to identify them at low contributions even by visual
inspection of the mutational profile (see Fig. S1). The error-
correction approach built into mmsig takes advantage of the
distinctiveness of each mutational signature, by keeping in the
final output only those signatures that lead to considerably lower
reconstruction accuracy when removed (>1% reduction in cosine
similarity is the standard setting). Because SBS1 and SBS5 are
known to always be present, we kept them in the final profile no
matter what their contribution was to the overall reconstruction
accuracy. The results of all three algorithms after error-correction
can be seen in Fig. 2B, along with their reconstruction accuracy
before and after error-correction (Fig. 2C, D). In contrast to the
other algorithms, mmsig with error-correction was able to
correctly identify APOBEC in the majority of samples while
avoiding false positive SBS-MM1, at the cost of a 0.005 reduction
in median reconstruction accuracy.
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Importance of the reference signatures. Since the concept of
mutational signatures was first introduced in 2012, the most
commonly used signature reference has been updated from
the initial 30 COSMIC signatures (https://cancer.sanger.ac.uk/
cosmic/signatures_v2.tt) (i.e., COSMIC v2)1,4 to a new catalog of
49 reference signatures (i.e., COSMIC v3.1)2, with additional
signatures having been reported as the consequence of exogenous
agents9,11,24. Importantly, the updated COSMIC reference led to
sharper signature definitions, removing background noise and
contamination from other signatures. For example, the muta-
tional signature first reported as SBS1 included a flat background
similar to SBS5 that has been removed in the new version, leaving
only the characteristic and biologically accurate C>T in CpG
mutations (see Fig. S2A)2,25. Moreover, the APOBEC mutational
signature (i.e., SBS2 and SBS13) profiles showed a degree of
overlap in the previous reference and have since been clearly
separated into one C>T signature (SBS2) and one C>G signature
(SBS13) (see Fig. S2B)2,26. To illustrate the effects of these
changes on mutational signature fitting, we repeated the above
analysis of 82 MM samples using the original COSMIC v2
reference with the addition of SBS-MM1. The estimated con-
tribution of each signature was significantly different depending
on which reference was used (Fig. 3A). As expected, the estimated
SBS1 contribution was higher using the old reference (Fig. 3B), as

were the estimates for SBS2, SBS8, and SBS9. A decrease in SBS5
was seen with the old reference, most likely reciprocal to the
presence of a flat “background” in several other muta-
tional signatures (Fig. 3C). Conversely, SBS18 was considerably
higher with the new reference, as was SBS-MM1. This latter point
is important because the SBS-MM1 reference was the same in
both analyses, but the assignment of mutations to SBS-MM1 was
affected by the changes to other signature references. As expected,
updating to a reference set where each mutational signature is
more clearly defined resulted in a clear overall increase in
reconstruction accuracy for all three fitting algorithms (Fig. 3D).
Applying the same filters as described above resulted in lower
reconstruction accuracy, with similar performance for all three
algorithms (Fig. 3E). This is in contrast to results from the new
reference, where mmsig performed considerably better (Fig. 2D).
We note that deconstructSigs and mutationalPatterns were first
released before the latest mutational signature reference was
released and thus optimized for the less specific COSMIC v2
reference. The iterative filtering approach of mmsig, based on
cosine similarity rather than a hard cut-off, may be particularly
advantageous in identifying mutational signatures that are highly
distinctive but account for a low proportion of the mutational
profile (e.g. APOBEC and SBS1). Moreover, irrespective of which
mutational signature reference was used, only mmsig could avoid

Fig. 1 Mutational fitting in multiple myeloma. A Mutational profiles from two example patients with MM. B Mutational signature fitting reveals the main
APOBEC signature (SBS2) along with the clock-like signatures SBS1 and SBS5 in both samples. Sample PD26419a (left) also had evidence of SBS13, which
is most often detected in patients with high APOBEC mutational burden, as well as SBS8, a common mutational signature in MM that is of unknown
etiology. Sample V0D58T (right) showed contributions from non-canonical activation-induced cytidine deaminase (nc-AID; SBS9), melphalan-induced
mutagenesis (SBS-MM1), and damage by reactive oxygen species (ROS; SBS18). C To measure how well the fitted signatures account for the actual
mutational profile in each sample, the first step is to reconstruct a mutational profile by multiplying the weight assigned to each signature with the
reference profile of that signature. D Subtracting the reconstructed profile from the original profile illustrates which parts of the mutational spectrum are
well-explained and may point to the presence of additional signatures that were not included in the analysis. In these cases, the mutational profiles were
well-explained by the fitted signatures (high reconstruction accuracy), indicated by cosine similarity of >0.97 between observed and reconstructed profiles.
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false positive SBS-MM1 in patients without prior melphalan
exposure (see Fig. S3).

Resolving uncertainty in mutational signature fitting. When it
is particularly important to determine if a mutational process is
active, two additional steps can be taken to increase specificity
(“Methods”). First, 95% confidence intervals (CI) for each
mutational signature estimate can be constructed by resampling
with replacement from the original mutational profile of a sam-
ple. Second, transcriptional strand bias can be considered for
signatures associated with transcription-coupled repair2,24. If the
lower bound of the 95% CI for a mutational signature is above
zero, and the typical transcriptional strand bias is present, it is

highly likely that the signature is actually present. Below, we
illustrate this approach in settings where we have prior knowledge
of which signatures are present in each sample: chemotherapy-
related signatures in MM and acute myeloid leukemia (AML),
and nc-AID activity in chronic lymphocytic leukemia (CLL).
Having established above that mutationalPatterns and decon-
structSigs provide near-identical results, we moved forward
comparing mmsig with deconstructSigs alone.

First, we confirmed the presence of SBS-MM1 in melphalan-
exposed patients with MM (Fig. 4A and Fig. S4). In all cases with
>10% estimated signature contribution, the presence of SBS-MM1
was stable in the face of random resampling of mutations (i.e., the
CI clearly did not include zero). In all but one of these samples,
there was also evidence of transcriptional strand bias in C>T

Fig. 2 Mutational signature fitting with mmsig shows high sensitivity, specificity, and reconstruction accuracy. A Without any filtering procedures, the
results from deconstructSigs, mutationalPatterns, and our novel algorithm mmsig are highly similar. Of note, all of the algorithms falsely identify the
mutational signature of melphalan-induced mutagenesis (i.e., SBS-MM1) in >90% of patients who were not exposed to melphalan, representing false
positives. B After applying the recommended filtering procedures, mmsig shows 100% specificity for SBS-MM1 while retaining the contributions from SBS1
and SBS2. Filtering of output from deconstructSigs and mutationalPattern is less flexible, relying on a relative contribution threshold, which results in false
negative SBS1 and SBS2 while retaining some cases of false positive SBS-MM1. C The reconstruction accuracy of deconstructSigs, mutationalPatterns, and
mmsig are virtually identical when no filtering is applied. D When filtering procedures are applied, mmsig shows superior reconstruction accuracy >0.95 for
all samples. Filtered output from deconstructSigs and mutationalPatterns was scaled for the sum of mutational processes to equal 1.
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mutations across the trinucleotide contexts typically associated
with SBS-MM1: CCA, GCA, GCC, GCG, and GCT. Not all
patients previously exposed to melphalan had detectable SBS-
MM1, because this requires a single melphalan-exposed cell to be
positively selected and expand beyond the limit of detection of
WGS, which does not always occur11,24,27. An alternative
explanation is the engraftment model, where myeloma cells are
infused during autologous stem cell transplantation, thus avoiding
melphalan exposure27. There will also be a range of exposures (e.g.,
<10%) where there is insufficient evidence to ascertain whether
SBS-MM1 is really present (i.e., transcriptional strand bias and
CIs). In such ambiguous cases, SBS-MM1 may not be essential
to explain the overall mutational profile, leading to SBS-MM1
being removed from the final profile by the error-suppression

procedure of mmsig. We prefer to be conservative in these cases
and tolerate false negatives to a geater degree than false positives. In
patients without prior melphalan exposure, SBS-MM1 with its
characteristic transcriptional strand bias was consistently absent
(Fig. 4A).

Platinum-based chemotherapy is the underlying cause of
mutational signature SBS352,24. Here, we applied deconstructSigs
and mmsig with standard cutoffs to two patients with therapy-
related AML previously exposed to platinum-based chemother-
apy as well as 47 patients with de novo AML (platinum naive)
(Fig. 4B). Point estimates of the SBS35 contribution (i.e., standard
mutational signature fitting) identified SBS35 in both patients
with prior platinum exposure. Strikingly, the false positive rate for
SBS35 among de novo AML cases was 21% for mmsig and 70%

Fig. 3 The choice of mutational signature reference version significantly impacts the performance of fitting algorithms. Unfiltered mutational signature
contributions for each sample were determined as the mean of estimates from deconstructSigs, mutationalPatterns, and mmsig (the three algorithms
produced almost identical results). A The mutational signature contributions were significantly different depending on whether the original COSMIC v2
reference or the latest updated COSMIC v3.1 from Alexandrov et al. was used for fitting1,2. Boxplots show the relative contribution of each signature in each
sample, displaying the median and interquartile range with outlier samples drawn as dots. P-values were estimated by paired Wilcoxon tests. Dashed black
lines mark the 6% relative contribution threshold used for filtering of results from deconstructSigs and mutationalPatterns. B, C Showing individual sample
data from A for SBS1 and SBS5. B Estimates for SBS1 were generally higher using the old reference, where SBS1 contains “contamination” of a flat
background that may be better explained by SBS5. Notably, this resulted in SBS1 ending up above the 6% filtering threshold (dashed black line) in a higher
fraction of samples using the old reference. C Estimates of SBS5 were generally higher using the new reference. D The overall cleaner mutational signatures
in the new reference resulted in higher reconstruction accuracy compared with when the old reference was used. EWhen using the COSMIC v.2 reference,
the reconstruction accuracy was similar irrespective of which fitting algorithm was used: deconstructSigs, mutationalPatterns or mmsig. This is in contrast to
the new reference, where mmsig was superior.
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for deconstructSigs. This highlights the importance of additional
measures to improve specificity. Presence of SBS35 was confirmed
with high confidence in both of the platinum-exposed patients
(i.e., non-zero 95% CI and strong transcriptional strand bias in C
[C>A]C and C[C>T]C); but in none of the de novo AML cases
(Fig. 4C). In one de novo AML sample (TCGAAB3001) the 95%
CI was above zero (estimated SBS35 contribution 14.1%; 95% CI
7.8–20.5%), but the characteristic transcriptional strand bias was
always absent. In ambiguous cases like this, it can be helpful to
visually review the 96-class mutational profile for presence of the
key features of the mutational signature in question. As illustrated
in Fig. 4D, sample TCGAAB3001 lacked the characteristic peaks
of SBS35 in both C>A and C>T (the tall peak in A[C>T]G is most
likely attributable to the age-related deamination of 5-
methylcytosine to thymine, i.e., SBS1). This is in contrast to the
two samples with known platinum exposure, showing the
classical profile with dominant peaks in C>T with mutations
strongly favoring the transcribed strand.

CLL can be classified based on the presence or absence of somatic
hypermutation of the immunoglobulin heavy chain variable region
(IGHV) (threshold at >2% mutated bases), where unmutated IGHV
is strongly associated with poor outcomes2,10,28–30. We have
previously shown, using mutational signature extraction algorithms,
that mutated IGHV status is associated with the genome-wide
footprint of nc-AID activity (i.e., SBS9), whereas the unmutated
subgroup lacks this mutational process10,31. Here, we analyzed

whole-genome sequencing data from 142 patients with CLL with
mutated (n= 68) or unmutated (n= 74) IGHV gene. Using mmsig
with standard filters, three patients with unmutated CLL had
evidence of SBS9 (Fig. 5A); one of which also had a non-zero CI
(CLL1078; Fig. 5B). This sample had an estimated SBS9 contribu-
tion of 30% (95% CI 27–34%) and 1.7% of the bases in IGHV were
mutated by Sanger sequencing. Unmutated IGHV status was
confirmed by the novel algorithm IgCaller applied to WGS data32.
This patient had been classified as memory-CLL based on
the epigenetic profile, consistent with having passed through the
germinal center30. Visual inspection of the mutational signature
profile did indeed show the characteristic profile of SBS9, indicating
that considerable genome-wide nc-AID activity can be observed
despite relatively few coding mutations in the IGHV region (Fig. 5C
and Fig. S5)10. It remains to be seen whether the degree of genome-
wide nc-AID activity may further refine the prognostic classification
of CLL.

Our observations thus far have suggested that mmsig is able to
confidently identify highly characteristic mutational signatures
such as SBS2 at low abundance, whereas the sensitivity is slightly
lower for less distinctive signatures. To quantify this effect, we
simulated a series of MM genomes based on the median
contribution of each mutational signature observed in WGS
data. Starting with such an average genome as background, we
estimated the sensitivity of each algorithm to detect signatures
at a given admixture (Fig. 6A, B). In concordance with our
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observations from real data, all three algorithms showed virtually
identical results when no filters were applied. After applying
standard filtering, the sensitivity of mutationalPatterns and
deconstructSigs centered around 6% contribution, with >95%
sensitivity achieved at 7–8% contribution. For mmsig, given the
unique features of its error-correction approach, the sensitivity
varied between mutational signatures. The sensitivity was higher
for distinctive mutational signatures such as SBS2, with 100%
sensitivity achieved at 4% contribution (Fig. 6A), and lower for
less well-defined signatures such as SBS-MM1, with >95%
sensitivity achieved at 12% contribution (Fig. 6B). Next, we
added increasing levels of noise to the simulated MM genomes
and estimated the effects on mutational signature estimates
(Fig. 6C). The results show that SBS-MM1, SBS5, SBS8, and SBS9
are accurately estimated by all algorithms in the absence of
noise, with increasing over-estimation of particularly SBS5 by all
algorithms with increasing background noise. As expected,
decreasing the number of mutations also increases variability;
this was also observed in real data. When the number of
mutations fell below 250, there was a tendency for mmsig to over-
estimate SBS5, most likely because this signature was always kept
in the final profile irrespective of random variations in the data,
which may lead to dropout of other mutational signatures. For

SBS1, given its highly distinctive profile, the estimates by mmsig
were highly accurate irrespective of added noise and the number
of mutations; this was also the case for SBS2. Finally, using
simulated genomes, we confirmed that the 95% CI estimated by
mmsig contained the pre-determined contribution of that
mutational signature ~94% of the time.

Mutational signature fitting with low mutational burden. Until
this point, we have addressed mutational signature fitting of
complete mutational catalogs derived from WGS, consisting of
thousands of mutations. However, there are many situations
where it is desirable to perform mutational signature fitting with
much smaller numbers of mutations; whether for whole-exome or
targeted sequencing data, branches in a phylogenetic tree or other
applications11,23,27,33,34.

To systematically evaluate the accuracy of mutational signature
fitting in real data as the number of mutations decreases, we
generated sets of progressively fewer mutations by random
downsampling of the WGS data presented previously and
estimated signature contributions using mmsig. Reducing the
number of mutations had the main effect of increasing variability
in the mutational signature estimates, as illustrated here in two
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Fig. 5 Identifying non-canonical AID-induced mutagenesis in chronic lymphocytic leukemia. A Mutational signature profiles of 142 patients with chronic
lymphocytic leukemia (CLL) with mutated (n= 68, left) or unmutated (n= 74, right) IGHV gene, estimated using deconstructSigs (top) and mmsig
(bottom). B Bar chart showing the estimated proportion of mutations caused by non-canonical AID (nc-AID; SBS9) with 95% CI generated by 1000
bootstrapping iterations. C 96-class mutational profiles of three patients from top to bottom: unmutated CLL without evidence of nc-AID activity;
unmutated CLL based on IGHV identity (<2% mutations), but evidence of genome-wide nc-AID activity; CLL with highly mutated IGHV as well as strong
nc-AID signature genome-wide.
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example patients (Fig. 7A). Of note, variability markedly increased
below 500 mutations, disproportionately affecting flat muta-
tional signatures such as SBS5, while the APOBEC-signatures and
SBS1 were relatively spared. The mean contribution of each
signature also changed slightly, which may be explained by the fact
that SBS5 and SBS1 are always included in the final signature
profile from mmsig, while other mutational signatures may
disappear in some mutation sets due to random variation.
Consequently, the observed means of SBS5 and SBS1 were slightly
higher and the means for other signatures slightly lower than what
was estimated from the full mutational catalog.

We went on to estimate how the sensitivity and specificity
of the mutational signature fitting is affected by the variability of
mutational profiles due to random sampling as the number of
mutations decreases. Three mutational signatures were selected as

illustrative examples: SBS2 and SBS-MM1 in MM and SBS9 in
CLL, each with a distinct mutational profile as well as different
abundance when present (mean contribution of 6.1%, 18.7%, and
35.6%, respectively) (“Methods”). Strikingly, all of the three
mutational signatures could be identified with high sensitivity and
specificity all the way down to sets of 100 mutations using mmsig
with standard settings, requiring a non-zero estimated contribu-
tion for a positive signature call (Fig. 7B). With sets of 500 or
more mutations, the results were similar to those obtained from
the full WGS data. Applying a more stringent criterion of non-
zero 95% CI resulted in ~100% specificity across the board, but at
a considerable loss of sensitivity, particularly with lower mutation
counts.

Finally, we compared mutational signature fitting in the full
WGS catalogs with subsets of mutations corresponding to whole-

Fig. 6 Simulated multiple myeloma genomes. Mutational signature contributions were estimated for simulated mutational catalogs corresponding to
average multiple myeloma (MM) genomes. A, B Dilution series of 1–10% SBS2 (A) and 1–20% SBS-MM1 (B) contribution in a background similar to an
average MM genome. 100 simulations of 5000 mutations were performed at each dilution. Mutational signature fitting was performed by mmsig,
mutationalPatterns, and deconstructSigs without filters and using standard filters. The lines corresponding to the sensitivity without filters are superimposed
for all three algorithms consistent with virtually identical results. Regarding the results after filtering, mutationalPatterns and deconstructSigs showed virtually
identical performance, leading to the sensitivity curves being superimposed, whereas mmsig showed either higher (A) or lower (B) sentisitivity than the
other algorithms. C 100 simulations were generated of 5000, 2000, 1000, 500, 250, and 100 mutations (rows) and mutational signature fitting performed
by mmsig, mutationalPatterns and deconstructSigs with standard filters (columns). Boxplots show median and interquartile range with outliers drawn as dots.
Each data point represents the estimated signature contribution in one simulated mutation catalog.
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exome and targeted sequencing capture kits (“Methods”; Fig. 8).
Going from WGS to WES reduced the mean number of
mutations from 5437 to 245 per sample for MM and 2391 to
108 for CLL. Targeted capture panels did not yield sufficient
mutation counts to proceed with mutational signature analysis.
The mean numbers of mutations per sample within the capture
regions were 20 for MM and 1 for CLL, with a subset of patients
lacking mutations altogether (2.4% for MM and 56% for CLL).
Exome-based analysis of SBS-MM1 showed excellent perfor-
mance compared with WGS, consistent with results from
random downsampling of WGS data (Fig. 8C). However,
exome-based analysis of SBS9 in CLL showed considerably
lower concordance with WGS than expected from our random

downsampling analysis. This observation can be explained by the
known behavior of the SBS9 (nc-AID) mutational process, which
is predominantly active in the non-coding regions of the
genome11. Indeed, exome-based estimates in our data were
consistently lower than paired WGS-based estimates (mean 12%;
paired T-test, p < 0.001). Enrichment of non-synonymous
mutations has been described for the APOBEC mutational
signatures (i.e., SBS2 and SBS13)11, but the overall APOBEC
contribution in this analysis was similar in the whole-genome
and exome. This propensity of different mutational signatures to
affect coding vs. non-coding regions may result in differences
between genome- and exome-based analysis that reflect under-
lying biology.

Fig. 7 Mutational signature fitting with low numbers of mutations. Mutational signature contributions were estimated for each patient in 100 randomly
drawn catalogs of 2000, 1000, 500, 250, and 100 mutations. Boxplots show median and interquartile range with outliers drawn as dots. A Mutational
signature profiles of two example patients (rows), showing the estimated mutational signature contributions (columns). Each data point represents the
contribution of a given signature in one randomly drawn mutation set. B Sensitivity and specificity of mmsig to identify SBS-MM1 in MM (left), SBS2 in MM
(middle) and SBS9 in CLL (right) when different criteria were applied (color legend). Each data point represents the mean estimated sensitivity or
specificity across 100 replicates for a given patient and mutation count.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01938-0 ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:424 | https://doi.org/10.1038/s42003-021-01938-0 | www.nature.com/commsbio 9

www.nature.com/commsbio
www.nature.com/commsbio


Discussion
We have shown how mutational signature fitting can be applied
to hematological cancers, highlighting the importance of careful
interpretation in light of biological knowledge10. Our newly
released R package mmsig is highly specific and provides a range
of tools to resolve the presence or absence of a mutational sig-
nature in difficult cases. When done properly, signature fitting is a
powerful tool that can be implemented immediately in the clinic.
The application of mutational signature analysis has the potential
to improve prognostic models and define individualized treat-
ment strategies5,6,23,35–38.

In its essence, a mutational signature is a set of mutation types
that show a characteristic pattern of co-occurrence across
tumors3. Mutational signatures can be defined using the 96-class
system of base substitutions in their trinucleotide context but may
be applied to any set of features that is biologically meaningful.
Although some mutational signatures have important biological
implications, they are indirect representations of underlying
processes. Distinguishing one signature from another is most
straightforward when they involve entirely different parts of the
feature-space (i.e., mutational classes), such as the two APOBEC-
associated signatures SBS2 and SBS13 in the most recent COS-
MIC v3.1 reference. Conversely, SBS5 and SBS8 have highly
overlapping “flat” profiles; and SBS-MM1 shows some degree of
overlap with both SBS5 and SBS9. Highly distinct signatures
behave differently from those who are partially overlapping and/
or “flat”, depending on which mutational signature fitting algo-
rithm and post-processing filters are applied.

Highly characteristic mutational signatures in the latest refer-
ence (i.e., COSMIC v3.1) such as SBS2 and SBS13 will stand out
over the background even if their relative contribution to the
mutational profile is low (<6%). Error-suppression using hard
cut-offs, such as the standard 6% threshold imposed by decon-
structSigs, will be inappropriately strict in these cases. Conversely,
mmsig will tend to keep these signatures in the profile because
removing them will considerably penalize the cosine similarity
between the reconstructed mutational profile and the original.
The opposite can be said for flat mutational signatures, which
may be falsely removed by mmsig because all the mutations can
be re-classified to another mutational signature with a relatively

low cosine similarity reduction. Thus, mmsig inherently requires a
larger contribution from indistinctive mutational signatures
before they are called. In practice, this dynamic threshold means
that mmsig is able to call low contribution of APOBEC with high
accuracy, while avoiding extensive false positive calls of other (less
distinctive) mutational signatures. This could be particularly
relevant considering the emerging critical role of APOBEC in
predicting myeloma precursor condition progression and MM
clinical outcome23,38–40.

Because different mutational processes occupy largely the same
feature space, mutational signature analysis is subject to a degree
of uncertainty. We have proposed two objective measures to
control uncertainty: estimating 95% CI for the contribution of
each mutational signature and checking for transcriptional strand
bias typical of signatures associated with transcription-coupled
repair. As we have shown empirically, requiring non-zero 95% CI
to call a mutational signature as present was highly effective at
improving specificity. Relying only on the error-suppression built
into mmsig resulted in excellent sensitivity and specificity, parti-
cularly when applied to catalogs of more than 500 mutations,
which is virtually always the case with WGS data. Mutational
signature analysis can also be performed on whole-exome
sequencing data, with the caveat that the expected signature
profile in coding and non-coding regions can be quite different.
Targeted capture sequencing panels covering a few megabases
often yield too low mutational burdens to allow meaningful
mutational signature fitting for individual patients.

In conclusion, we have shown how the novel mutational sig-
nature fitting algorithm mmsig can be applied to identify biolo-
gically and clinically important mutational processes acting in
hematological cancers, including chemotherapy-related muta-
tional signatures, APOBEC activity in MM and nc-AID in CLL.
The tools and principles outlined here may be applicable in other
cancers with a well-characterized mutational signature landscape,
taking into account the specific biology and exogenous exposures
of each disease. The accuracy of mutational signature fitting,
in general, is optimal when applied to catalogs of more than
500 mutations, which can be consistently obtained by WGS. With
WGS there is also the opportunity to integrate multiple data
types, such as patterns structural variation31,41,42, to better
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pinpoint the mutational machinery and therapeutic suscept-
ibilities in a given tumor5,10,35–37.

Methods
Patients and data. Publicly available SNV data from WGS of patient samples were
included in the study: 142 CLL (EGAS00000000092)28,30, 82 MM from 45 patients
(EGAD00001003309 and phs000348.v2.p1)11,17,18 (7 samples out of the original 89
were removed due to incomplete data on treatment history), 47 AML (phs000178.
v1.p1)43, and two therapy-related AML (EGAD00001005028)10.

Mutational signature fitting with mmsig. We developed mmsig as a tool for
flexible and easily interpretable mutational signature analysis11. At its core, mmsig
takes a set of reference mutational signatures and estimates their contribution in
each sample employing an expectation maximization algorithm. For each sample,
mmsig attempts to reduce the number of features (i.e., reference signatures) used to
explain the observed mutational profile. In an iterative process, we reconstructed
the 96-class mutational profile for each sample after excluding each reference
signature in turn. The least contributing mutational signature was censored for that
sample if removal resulted in a cosine similarity reduction of <0.01. This process
was subsequently repeated until no reference signatures could be removed without
incurring a cosine similarity reduction of more than 0.01. Since SBS1 and SBS5 are
known to always be present in all human tumors and normal cells alike, we forced
their inclusion in all samples.

The same set of reference mutational signatures can be used for each sample, or
a different subset of reference signatures be specified for each sample according to
prior knowledge of sample biology or de novo extraction results.

CI were generated by drawing 1000 mutational profiles from the multinomial
distribution, where the probability that a mutation belongs to a given class (e.g., C
[C>T]G) was equal to the proportion of mutations belonging to that class in the
original mutational profile. The number of mutations in each random set of
mutations was the same as in the original profile. For each random set of mutations,
we repeated the entire mutational signature fitting procedure as described above,
finally taking the 2.5th and 97.5th percentile of the estimates for each signature.

Transcriptional strand bias was assessed using a Poisson test (p < 0.05). We
applied the test both to individual mutation classes independently as well as to the
combinations of mutational classes most characteristic of specific mutational
signatures, in order to increase power. For SBS-MM1 (melphalan signature) we
combined C[C>T]A, G[C>T]A, G[C>T]C, G[C>T]G and G[C>T]T; and for SBS35
(platinum signature) we combined C[C>A]C and C[C>T]C.

mmsig is an R package and is available on GitHub: https://github.com/evenrus/
mmsig.

Mutational signature references. We used the two versions of the COSMIC
mutational signature reference (i.e., COSMIC v2 and COSMIC v3.1), with the
addition of SBS-MM1 and SBS-HSPC as previously described by our group and
others1,2,10,11,44–46. The appropriate catalog of reference signatures to include in
the analysis for each hematological cancer type was based on de novo signature
extraction as previously reported10,11.

Comparison of mmsig and established mutational signature fitting algorithms.
To benchmark mmsig against established tools, we selected the commonly used
mutational signature fitting packages deconstructSigs15 and mutationalPatterns16 in
R. The same reference signature catalogs were applied for all three algorithms.

Both mmsig and deconstructSigs have built-in filtering options, which can be
altered or turned off entirely. mmsig supports dynamic filtering based on cosine
similarity as described above. deconstructSigs applies a hard threshold of signature
contributions in each sample, below which all signatures are removed.
mutationalPatterns does not have a built-in filtering option, leading us to
implement the same filter as applied by deconstructSigs as a post-processing step.

Simulated genomes. As a basis for simulated MM genomes, we generated an
average MM mutational signature profile where the contribution of each signature
was set to the median contribution of that signature in MM samples with SBS-
MM1. The resulting signature profile consisted of 4.8% SBS1, 5.1% SBS2, 34.1%
SBS5, 18.2% SBS8, 18.9% SBS9 and 18.8% SBS-MM1. We then calculated the
expected contribution of each of the 96 mutational classes from the weighted sum
of each mutational signature reference.

To generate simulated genomes, each simulated mutation was drawn from a
multinomial distribution of 96 mutational classes. The probability to draw a
mutation of a given class was equal to the relative contribution of that mutational
class in the average MM profile.

The sensitivity for each mutational signature was estimated by adding a
progressively larger contribution of that signature (1–20%) to a background
mutational profile consisting of an MM genome without the signature in question.
The background profile was scaled to maintain a constant proportion of each
signature relative to the others.

To generate random noise, we generated a “noise signature” independently for
each simulation, drawing the contribution of each of the 96 mutational classes from

a poisson distribution3 with lambda= 2. The weight of the noise signature relative
to other signatures was pre-determined (e.g., 5%) and the relative contributions of
each mutational signature was scaled accordingly.

Downsampling of mutational catalogs. To evaluate the effect of mutation counts
on signature fitting performance, we performed downsampling of the full mutation
catalogs. Patient samples from MM and CLL were included in this analysis since
they both had mutational signatures present in a subset of the cohort where we
could define a ground truth regarding the presence or absence of the underlying
mutational process (SBS-MM1 in MM and SBS9 (nc-AID) in IGHV mutated CLL).
We also included SBS2 in the analysis, representing a highly distinctive signature
with relatively low abundance in most cases. For each sample, we performed 100
independent draws, without replacement, of 2000 (MM only), 1000, 500, 250, 100.
We also generated mutation sets similar to those obtained by whole-exome and
targeted sequencing, using BED files of a commonly used exome capture kit
(Agilent SureSelect V6+UTR) and custom targeted capture panels specifically
developed for MM47 and CLL48,49. Mutational signature fitting with estimation of
95% CI was performed independently for each mutation set as described above. To
estimate sensitivity and specificity for signature detection, we used signature calls
from WGS as a gold standard (requiring non-zero 95% CI, and for SBS-MM1, the
presence of transcriptional strand bias). Samples with ambiguous signature calls
were removed (e.g., if the 95% CI included zero).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the raw data used in the study are already publicly available: EGAS00000000092: 142
CLL. EGAD00001003309 and phs000348.v2.p1: 82 MM from 45 patients, 7 samples out
of the original 89 were removed due to incomplete data on treatment history. phs000178.
v1.p1: 47 de novo AML. EGAD00001005028: two therapy-related AML.

Code availability
mmsig is an R package and is available on GitHub: https://github.com/evenrus/mmsig.
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