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A four-gene signature predicts survival and
anti-CTLA4 immunotherapeutic responses based
on immune classification of melanoma
Ying Mei1, Mei-Ju May Chen 2, Han Liang 2,3,4 & Li Ma 1,4✉

Cutaneous melanoma is the most malignant skin cancer. Biomarkers for stratifying patients at

initial diagnosis and informing clinical decisions are highly sought after. Here we classified

melanoma patients into three immune subtypes by single-sample gene-set enrichment

analysis. We further identified a four-gene tumor immune-relevant (TIR) signature that was

significantly associated with the overall survival of melanoma patients in The Cancer Genome

Atlas cohort and in an independent validation cohort. Moreover, when applied to melanoma

patients treated with the CTLA4 antibody, ipilimumab, the TIR signature could predict the

response to ipilimumab and the survival. Notably, the predictive power of the TIR signature

was higher than that of other biomarkers. The genes in this signature, SEL1L3, HAPLN3, BST2,

and IFITM1, may be functionally involved in melanoma progression and immune response.

These findings suggest that this four-gene signature has potential use in prognosis, risk

assessment, and prediction of anti-CTLA4 response in melanoma patients.
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Cutaneous melanoma (hereafter called melanoma),
resulting from malignant transformation of melanocytes,
is the most aggressive and lethal type of skin cancer. It is

the fifth and sixth most common cancer in men and women,
respectively, and its incidence keeps increasing in recent years1.
Current treatment options for melanoma include surgical
resection, chemotherapy, radiotherapy, targeted therapy, and
immunotherapy2,3. Over the past years, immune checkpoint
inhibitors (ICIs) have transformed the treatment of melanoma.
Cancer immunotherapies with ICIs, such as agents targeting
PD-L1, PD-1, or CTLA4, help the immune system to recognize
and attack tumor cells. The use of ICIs can prolong the survival of
a subset of patients with melanoma. However, the responses to
ICIs are variable, with some melanoma patients achieving tumor
regression and others showing disease progression4. Thus, pre-
dictive biomarkers that can distinguish immunotherapeutic
responders from non-responders are urgently needed.

The tumor microenvironment (TME), consisting of complex
components including tumor cells, immune cells, and stromal
cells, is diverse across patients5. Compared with many other
cancer types, melanomas are characterized by high immuno-
genicity and are often infiltrated by immune cells6,7. High levels
of immune cell infiltration are associated with a favorable
prognosis in patients with melanoma8–10. Highly immune cell-
infiltrated tumors, or “hot” tumors, are more likely to respond to
ICI-based therapy, whereas tumors with weak immune cell
infiltration, or “cold” tumors, are less responsive to ICIs11. Hence,
an adequate assessment of the TME of melanoma patients will
inform treatment options.

Computational algorithms have been developed to quantitate
tumor-infiltrating immune cells using marker genes and RNA-
sequencing data12–15. For instance, by applying multivariate Cox
proportional hazards regression to assess gene association with
T cell dysfunction phenotype, Jiang et al.15 developed a Tumor
Immune Dysfunction and Exclusion (TIDE) signature, which
could accurately predict cancer immunotherapy response. How-
ever, the TIDE signature consists of 770 genes, making it difficult
for clinical application. Another recent study14 calculated the
immune score of melanoma samples by using the ESTIMATE
(Estimation of STromal and Immune cells in MAlignant Tumor
tissues using Expression data) algorithm, and 25 genes that best
correlated with the immune score were identified. However, there
are several limitations. First, prognosis-related genes were not
taken into consideration. Second, no statistical models were used
to avoid overfitting. Third, this 25-gene signature showed no
significant association with the response to immune checkpoint
blockade therapies14.

In the present study, we established a method based on the
immune subtype classification of melanoma to identify a tumor
immune-relevant (TIR) signature, which could predict the
survival outcome as well as the response to anti-CTLA4 treatment
in patients with melanoma. Compared with complex gene
signatures, this four-gene signature is much more amenable to
clinical practice.

Results
Classification of cutaneous melanoma based on immunoge-
nomic profiling. We used the single-sample gene-set enrichment
analysis (ssGSEA) algorithm16 to quantitate the enrichment levels
of 28 immune-associated gene sets in each human skin cutaneous
melanoma (SKCM) sample in the TCGA database (n= 471).
These 28 gene sets represent diverse immune cell types, functions,
and signaling pathways17 (Supplementary Data 1). Based on the
enrichment score of each sample, we performed hierarchical
clustering and classified SKCM patients into three immune

subtypes: low immunity (the L subtype, n= 41), medium
immunity (the M subtype, n= 274), and high immunity (the
H subtype, n= 156) (Fig. 1a). The tumor purity, ESTIMATE
score, stromal score, and immune score of each sample were
calculated using the ESTIMATE algorithm18. The immune scores,
representing the level of immune cell infiltration, were sig-
nificantly higher in the H subtype than in the L subtype
(P < 2.22 × 10−16, Fig. 1b). Similarly, the stromal scores, repre-
senting the level of stromal content, were significantly higher in
the H subtype than in the L subtype (P < 2.22 × 10−16, Fig. 1c).
Tumor purity was calculated based on the ESTIMATE score,
which is a composite of the infiltration level of both immune cells
and stromal cells. From the L subtype to the H subtype, the
ESTIMATE score increased and tumor purity decreased
(P < 2.22 × 10−16, Fig. 1d, e). Collectively, these data suggest that
the TME of the high-immunity (H) subtype has high levels of
infiltration by immune cells and stromal cells.

Characteristics of three immune subtypes of melanoma. To
validate our finding, we compared the fractions of 15 immune cell
types in bulk tumors among the three melanoma subtypes by
using the CIBERSORT (Cell-type Identification By Estimating
Relative Subsets Of known RNA Transcripts) algorithm19, and we
found that for most immune cell types, the relative quantity of
immune cells was the highest in the H subtype and was the lowest
in the L subtype (Fig. 1f). Downregulation of the major histo-
compatibility class I antigen (MHC-I) molecules results in
immune evasion and resistance to ICI therapy20. Among the
three melanoma subtypes, the MHC-I genes showed the highest
expression levels in the H subtype and the lowest expression
levels in the L subtype (Fig. 1g). Cytotoxic CD8+ T cells recog-
nize tumor antigens presented on MHC-I molecules and have
essential roles in anti-tumor immunity. Therefore, we examined
the expression of the marker of cytotoxic CD8+ T cells and the
activity of these cells21. We found that the H subtype had the
highest expression levels of CD8A (encoding CD8), IFNG
(encoding interferon-γ), and TNF (encoding tumor necrosis
factor-α), whereas the L subtype had the lowest expression levels
of these three genes (Fig. 1h). Moreover, the H subtype showed
the highest levels, while the L subtype showed the lowest levels of
CD274 (encoding programmed cell death 1 ligand, PD-L1) and
CTLA4 (encoding cytotoxic T‐lymphocyte antigen 4) (Fig. 1i).
These data suggest that the H subtype might respond better to
anti-PD-L1 or anti-CTLA4 immunotherapy than the other two
subtypes, considering that PD-L1 and CTLA4 expression levels
tend to be positively associated with immunotherapeutic
responsiveness22. Consistent with previous findings that elevated
immune activity correlates with favorable clinical outcomes23, the
H subtype had a significantly better overall survival (OS) than the
M and L subtypes (log-rank P= 1.5 × 10−4, Fig. 1j).

Genetic mutations can generate tumor neoantigens that
stimulate the immune response and enhance the response to
ICIs. Previous studies have demonstrated that tumor mutational
burden (TMB) is associated with neoantigen load24,25, and that
patients with high TMB are more likely to benefit from ICIs and
have a better survival rate26–28. However, the analysis of
mutations of the SKCM genome in the TCGA database revealed
no significant difference in TMB among the three immune
subtypes (Supplementary Fig. 1a, b). These results were consistent
with a recent study, which also showed no significant association
between TMB and an immune-related signature in TCGA
melanoma samples14.

GSEA of KEGG (Kyoto Encyclopedia of Genes and
Genomes)29 pathways enabled us to identify pathways enriched
in different immune subtypes of melanoma (Supplementary
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Fig. 1 Classification of human skin cutaneous melanoma (SKCM) into three immune subtypes. a Hierarchical clustering of TCGA human skin cutaneous
melanoma (SKCM) patients (n= 471) into three immune subtypes: high-immunity (H), n= 156; medium-immunity (M), n= 274; and low-immunity (L),
n= 41. The tumor purity, ESTIMATE score, immune score, and stromal score were determined by the ESTIMATE algorithm. b–e Comparison of the
immune cell infiltration levels (immune score) (b), stromal content (stromal score) (c), ESTIMATE score (d), and tumor purity (e) among three immune
subtypes of melanoma. f Relative abundances of 15 types of immune cells in three immune subtypes of melanoma. g mRNA levels of MHC-I genes in three
immune subtypes of melanoma. h mRNA levels of genes associated with CD8+ T cells in three immune subtypes of melanoma. i mRNA levels of PD-L1
and CTLA4 in three immune subtypes of melanoma. The boxplot in f–i consists of a box and a set of whiskers. The box is drawn from the first quartile (25th
percentile) to the third quartile (75th percentile) with a horizontal line drawn in the middle to denote the median. The lowest point is the minimum of the
dataset and the highest point is the maximum of the dataset. j Kaplan–Meier curves of the overall survival rates in three immune subtypes of melanoma.
Statistical significance was determined by the Kruskal–Wallis test in a–i and by the log-rank test in j.
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Fig. 2a). Consistent with elevated immune activity in the
H subtype, we found that immune-related pathways, including
the T cell receptor signaling pathway, the PD-L1 expression
and PD-L1 checkpoint pathway, the TNF signaling pathway, and
the Toll-like receptor signaling pathway, were highly active in the
H subtype (Supplementary Fig. 2a). Moreover, two cancer-
associated pathways, the NF-κB signaling pathway and the
JAK-STAT signaling pathway, were also hyperactivated in the H
subtype (Supplementary Fig. 2a), suggesting that the activities of
these two tumor signaling pathways are associated with SKCM
immunity. We also performed GSEA on gene ontology and found
that the H subtype was enriched in immunoglobulin-mediated
immune response, MHC protein complex, and T cell receptor
complex (Supplementary Fig. 2b), which could further explain
why the H subtype had high immunity and favorable clinical
outcomes.

Establishment of the TIR signature as a prognostic factor in
melanoma. To facilitate the implementation of the above
subtypes in clinical practice, we sought to build a simple gene sig-
nature that captures these immune subtypes. By comparing the
mRNA levels between the high-immunity subtype and the low-
immunity subtype, we identified a total of 450 differentially
expressed genes (DEGs) associated with immune infiltration and
immune activity (Supplementary Data 2). To explore the relation-
ships between these DEGs and the survival outcome of SKCM
patients, we performed the univariate Cox regression analysis by
using the survival R package. To avoid overfitting the prognostic
model, we used the Least Absolute Shrinkage and Selection Operator
(LASSO) Cox regression model (Supplementary Fig. 3a, b). By
performing the stepwise multiple Cox regression analysis, we iden-
tified a TIR signature consisting of four genes, SEL1L3 (encoding
SEL1L family member 3), HAPLN3 (encoding hyaluronan and
proteoglycan link protein 3), BST2 (encoding bone marrow stromal
cell antigen 2), and IFITM1 (encoding interferon-induced trans-
membrane protein 1) (Fig. 2a). The TIR risk score of each SKCM
patient was calculated based on the expression levels and the
regression coefficients of the four genes (see “Methods” section). By
using the median risk score as the threshold value, we divided the
SKCM patients in the TCGA cohort into the high-risk group and
the low-risk group. Kaplan–Meier analysis showed that patients with
high TIR risk scores had worse OS than those with low TIR risk
scores (log-rank P= 2 × 10−10, Fig. 2b). We then generated the risk
curve and scatterplot for the TIR risk score and the survival status of
individual SKCM patients in the TCGA cohort, finding that the risk
coefficient and mortality of patients with high TIR risk scores were
higher than those with low TIR risk scores (Fig. 2c, d). The heatmap
of the TIR signature in SKCM patients showed that SEL1L3,
HAPLN3, BST2, and IFITM1 were highly expressed in the low-risk
group (Fig. 2e). To further validate the prognostic value of the TIR
signature obtained from the TCGA melanoma cohort, we tested this
signature in an independent melanoma dataset (GSE65904)30

(Supplementary Data 3), finding that patients with high TIR risk
scores had worse OS, higher risk coefficient and mortality, and lower
expression levels of SEL1L3,HAPLN3, BST2, and IFITM1 than those
with low TIR risk scores (Fig. 3a–d).

Next, we performed univariate and multivariate Cox regression
analyses to assess whether the TIR risk score was prognostic
independently of clinicopathological factors, including the age,
gender, stage, and TNM classification. The hazard ratio (HR) of
the TIR risk score and the 95% confidence interval (CI) were
1.618 and 1.405–1.863 in the univariate Cox regression analysis
(P < 0.001), and were 1.513 and 1.308–1.751 in the multivariate
Cox regression analysis (P < 0.001), respectively, suggesting that
the TIR risk score was an independent prognostic factor in

melanoma patients in the TCGA cohort (Fig. 4a, b). Further, by
performing univariate and multivariate Cox regression analyses
of the GSE65904 dataset, we validated the TIR risk score as an
independent factor prognostic of survival (Fig. 4c, d).

To evaluate the sensitivity and specificity of the TIR risk score,
we performed the time-dependent receiver operating character-
istics (ROC) analysis of the TCGA cohort. The area under the
ROC curve (AUC) of the TIR risk score was 0.76, which was
higher than those of clinicopathological factors (Fig. 4e). Similar
results were obtained from the GSE65904 cohort (Fig. 4f). We
also performed ROC analyses of the TCGA cohort and the
GSE65904 cohort to compare the TIR risk score with other
biomarkers, including PD-L1, CD8A, and IFNG31–33, finding that
the TIR signature had higher AUC than other biomarkers in both
cohorts (Fig. 4g, h). These results suggest that the TIR signature
can better predict the survival of melanoma patients.

Correlation of the TIR signature with the immune infiltration,
anti-CTLA4 immunotherapy response, and gene methylation
in melanoma. Given that the TIR signature was established
based on tumor immunity, we analyzed the correlation between
the four genes in the TIR signature and the infiltration of
immune cell types in melanoma by using the Tumor IMmune
Estimation Resource (TIMER; https://cistrome.shinyapps.io/
timer/) algorithm34. As shown in Supplementary Fig. 4, the
expression levels of SEL1L3, HAPLN3, BST2, and IFITM1 were
positively associated with the infiltration levels of CD8+ T cells,
CD4+ T cells, macrophages, and dendritic cells. We also found
significant correlations of these four genes with the mRNA levels
of CTLA4, PD-L1 (Supplementary Fig. 5a), and MHC-I mole-
cules, including HLA-A, HLA-B, and HLA-C (Supplementary
Fig. 5b).

Next, we evaluated whether the TIR signature can predict the
response to ICIs. By analyzing a melanoma cohort (database
of Genotypes and Phenotypes (dbGaP) accession number:
phs000452.v2.p1) with RNA-seq data and anti-CTLA4 (ipilimu-
mab) therapy response information available from 42 patients28,
we found that patients with low TIR risk scores had a higher
anti-CTLA4 response rate than patients with high TIR scores
(chi-square test, P= 0.03, Fig. 5a). The ROC curve also showed
that the TIR signature could predict the ipilimumab therapy
response of melanoma patients (AUC= 0.7, 95% CI= 0.51–0.85,
Fig. 5b). By performing the Kaplan–Meier analysis of this cohort,
we found that patients with high TIR risk scores had a worse
survival rate than patients with low TIR risk scores (log-rank
P= 0.0169, Fig. 5c). ROC curves for survival prediction showed
that the TIR risk score had higher AUC than clinicopathological
factors (Fig. 5d) and other biomarkers (PD-L1, CD8A, and IFNG,
Fig. 5e). The risk curve and scatterplot of this cohort demon-
strated that the risk coefficient and mortality of patients with high
TIR risk scores were higher than those with low TIR risk scores
(Fig. 5f, g). The heatmap of the TIR signature in this cohort
showed that the expression levels of SEL1L3, HAPLN3, BST2, and
IFITM1 were higher in the low-risk group than in the high-risk
group (Fig. 5h). Collectively, these results suggest that the four-
gene TIR signature is a predictor of anti-CTLA4 immunotherapy
response and survival of melanoma patients.

By analyzing the TCGA genomics data of SEL1L3, HAPLN3,
BST2, and IFITM1, we found that the gene alteration rates in
melanoma were 10% for SEL1L3, 4% for HAPLN3, 0.8% for BST2,
and 0.6% for IFITM1 (Fig. 6a), and these alterations were not
recurrent. There was no significant difference in SEL1L3 and
HAPLN3 gene expression levels between the mutated group and
the wild-type group (Fig. 6b, c). Instead, the DNA methylation
levels of SEL1L3, HAPLN3, BST2, and IFITM1 genes showed
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Fig. 2 Establishment of a tumor immune-related prognostic signature (TIR signature) for melanoma. a Cox proportional hazard regression model was
used to construct a prognostic signature consisting of four genes (SEL1L3, HAPLN3, BST2, and IFITM1). The coefficient (β), P value, and hazard ratio of each
gene were calculated by the model. b Kaplan–Meier curves of the overall survival of patients with high TIR risk scores and those with low TIR risk scores.
Statistical significance was determined by the log-rank test. c All TCGA SKCM patients were ranked from the lowest to the highest TIR risk score. d The
overall survival time and survival status of individual patients. The black dotted line represents the median TIR risk score that divides patients into low-risk
and high-risk groups. e Heatmap of SEL1L3, HAPLN3, BST2, and IFITM1 expression levels. Rows represent genes and columns represent patients.
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Fig. 3 Validation of the TIR signature for survival prediction in an independent cohort. a Kaplan–Meier curves of the survival rate of patients in the
GSE65904 cohort with high TIR risk scores and those with low TIR risk scores. Statistical significance was determined by the log-rank test. b All patients in
the GSE65904 cohort were ranked from the lowest to the highest TIR risk score. c The overall survival time and survival status of individual patients in the
GSE65904 cohort. The black dotted line represents the median TIR risk score that divides patients into low-risk and high-risk groups. d Heatmap of SEL1L3,
HAPLN3, BST2, and IFITM1 expression levels. Rows represent genes and columns represent patients in the GSE65904 cohort.
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Fig. 4 The Cox regression and ROC analyses of the TIR signature in predicting the survival of melanoma patients. a, b The univariate (a) and
multivariate (b) Cox regression analyses of the TIR risk score, age, gender, stage, and TNM classification in the TCGA cohort. c, d The univariate (c) and
multivariate (d) Cox regression analysis of the TIR risk score, age, and gender in the GEO validation set GSE65904. In a–d, the colored blocks represent the
hazard ratio and the horizontal bars extend from the lower limit to the upper limit of the 95% confidence interval of the estimate of the hazard ratio.
e Receiver operating characteristics (ROC) curves of the sensitivity and specificity of the TIR signature in predicting the overall survival (OS) of patients in
the TCGA cohort. The area under the curve (AUC) values for the TIR risk score, age, gender, stage, and TNM classification were calculated based on the
ROC curves of the TCGA cohort. f The AUC values for the TIR risk score, age, and gender were calculated based on the ROC curves of the GEO validation
cohort GSE65904. g ROC curves of the sensitivity and specificity of the TIR signature and other biomarkers in predicting the OS of patients in the TCGA
cohort. h ROC curves of the sensitivity and specificity of the TIR signature and other biomarkers in predicting the OS of patients in the GEO validation
cohort GSE65904.
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Fig. 5 The TIR signature can predict the response of melanoma patients to anti-CTLA4 therapy. a Anti-CTLA4 responses (response or nonresponse) of
melanoma patients with high or low TIR risk scores in the dbGap cohort (n= 42). Statistical significance was determined by the chi-square test. b ROC
curves evaluating the accuracy of the TIR signature for predicting the anti-CTLA4 response of patients in the dbGap cohort. c Kaplan–Meier curves of the
overall survival of patients in the dbGap cohort with high TIR risk scores and those with low TIR risk scores. Statistical significance was determined by
the log-rank test. d ROC curves of the TIR signature and clinicopathological factors in predicting the OS of patients in the dbGap cohort. e ROC curves of
the sensitivity and specificity of the TIR signature and other biomarkers in predicting the OS of patients in the dbGap cohort. f All patients in the dbGap
cohort were ranked from the lowest to the highest TIR risk score. g The overall survival time and survival status of individual patients in the dbGap cohort.
The black dotted line represents the median TIR risk score that divides patients into low-risk and high-risk groups. h Heatmap of SEL1L3, HAPLN3, BST2, and
IFITM1 expression levels. Rows represent genes and columns represent patients in the dbGap cohort.
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Fig. 6 Multi-omics analyses of the four genes in the TIR signature. a The mutational status of SEL1L3, HAPLN3, BST2, and IFITM1 in TCGA SKCM patients.
Data were from the cBioPortal database. b, c mRNA levels of SEL1L3 (b) and HAPLN3 (c) in the TCGA SKCM patients stratified by the mutation status.
Statistical significance was determined by the Wilcoxon test. SEL1L3 and HAPLN3 were not analyzed due to the very small sample size in the mutation
group. The boxplot consists of a box and a set of whiskers. The box is drawn from the first quartile (25th percentile) to the third quartile (75th percentile)
with a horizontal line drawn in the middle to denote the median. The lowest point is the minimum of the dataset and the highest point is the maximum of
the dataset. d–g Correlations between mRNAs levels and methylation levels of SEL1L3 (d), HAPLN3 (e), BST2 (f), IFITM1 (g) in TCGA SKCM patients.
Statistical significance was determined by the Spearman correlation test. h Heatmap of SEL1L3, HAPLN3, BST2, and IFITM1 methylation levels in H and L
subtypes. Rows represent genes and columns represent patients.
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significant inverse correlations with their mRNA levels (Fig. 6d–g).
Moreover, the methylation levels of BST2 and IFITM1 were higher
in the L subtype than in the H subtype (Fig. 6h), suggesting that
DNA hypermethylation may underlie the underexpression of BST
and IFITM1 in the L subtype (low immunity, high risk).
Consistently, patients with IFITM1 or BST2 hypermethylation,
but not SEL1L3 or HAPLN3 hypermethylation, had significantly
worse OS than the hypomethylation groups (Supplementary
Fig. 6a–d).

Discussion
Melanoma is highly heterogeneous in clinical, dermatological, and
histopathological aspects35. Several clinical parameters, such as
gender, age, stage, and Breslow thickness, influence the prognosis
of patients with melanoma. Previous studies have suggested the
prognostic value of immune cell infiltration in melanoma36,37. In
this study, we identified a four-gene signature associated with
survival and anti-CTLA4 immunotherapeutic responses based on
the immune subtype classification of melanoma (Fig. 7). First, we
used the ssGSEA to quantitate the enrichment level of 28 immune-
associated gene sets in each melanoma sample in the TCGA
database. Then, based on the enrichment score of each sample,

we classified the patients into three immune subtypes (high-,
medium-, and low-immunity). Next, we identified subtype-specific
features, including immune and stromal cell infiltration levels,
pathways, and gene ontology. We further identified DEGs by
comparing the transcriptomic data between melanoma patients
with different immune subtypes. A four-gene signature, named the
TIR signature, was established using the LASSO Cox regression
model, and the TIR signature was found to be highly associated
with the expression of MHC-I, the activity of CD8+ T cells, and
immune infiltration in melanoma patients.

Cancer immunotherapies by ICIs, such as antibodies against
PD-L1, PD-1, and CTLA4, have achieved notable success by
blocking immune-inhibitory signals and enabling patients to
produce antitumor immunity38. However, less than one-third of
patients respond to ICI treatment, and the identification of pre-
dictive biomarkers and regulators of immunotherapy responses is
highly needed39. When applied to a cohort of melanoma patients
treated with ipilimumab28, the TIR signature could predict the
therapy response and the survival outcome better than known
biomarkers, suggesting the potential use of this four-gene
signature to guide the treatment of melanoma patients with ipi-
limumab. We also analyzed a cohort of melanoma patients
treated with the PD-1 antibody (pembrolizumab or nivolumab)40,

Fig. 7 Graphical summary. The flow chart illustrates the process followed to identify a four-gene signature that predicts survival and anti-CTLA4
immunotherapeutic responses based on immune classification of melanoma.
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finding no significant association of the TIR signature with the
therapy response. Considering the relatively small number
of samples in this cohort (n= 28), the analysis of larger cohorts
of patients with anti-PD-1 (or anti-PD-L1) therapy response
information available is of future interest.

Although there were some genetic alterations of the four genes
in the TIR signature, no significant difference in gene expression
was found between the wild-type group and the mutation group.
Instead, the methylation levels of the four genes showed a sig-
nificant negative correlation with the mRNA levels of SEL1L3,
HAPLN3, BST2, and IFITM1, with particularly high correlation
coefficients for BST2 and IFITM1. IFITM1 is a member of the
IFN-induced transmembrane protein family. Interestingly, a
recent study revealed an association between aberrant methyla-
tion of IFITM1 and poor disease-specific survival in patients with
acral melanoma, an aggressive type of cutaneous melanoma41.
BST2 (also known as CD317), a cell surface glycoprotein, was
previously reported to be induced by type I interferon in response
to viral infection42,43. To date, SEL1L3 and HAPLN3 have not
been implicated in innate or adaptive immunity. Future studies
are warranted to uncover the function and mechanism of action
of IFITM1, BST2, SEL1L3, and HAPLN3 in antitumor immunity
and immunotherapy response.

In summary, we classified melanoma patients into three sub-
types based on immune activity and identified a four-gene TIR
signature that significantly correlates with the survival of mela-
noma patients. The TIR signature is an independent prognostic
factor and predicts survival better than other factors. Further, the
TIR signature can predict the response of melanoma patients to
anti-CTLA4 therapy and their survival outcome, with higher
accuracy than other biomarkers. Thus, the TIR signature holds
promise as a clinical biomarker. Compared with complex gene
signatures, it is much easier to implement these four genes in
clinical practice. Whether and how the genes in the TIR sig-
nature functionally regulate antitumor immunity warrants future
investigation.

Methods
Collection of SKCM data and clustering. The fragments per kilobase of transcript
per million mapped reads (FPKM) values of the SKCM RNA-sequencing data and
corresponding clinical data were downloaded from TCGA (https://portal.gdc.
cancer.gov), and the sample size is 471. Based on 28 immune-associated gene sets17

representing immune cell subsets, immune-related functions, and immune-related
pathways, we used the ssGSEA method of the R software Gene Set Variation
Analysis (GSVA) package to calculate the ssGSEA score of each SKCM sample16.
According to the ssGSEA scores of the 28 immune-associated gene sets, we per-
formed hierarchical clustering of SKCM samples by using the “hclust” function
(R package) and classified them into low-, medium-, and high-immunity subtypes
by using the “cutree” function (R package). The accession number of the dataset
from Gene Expression Omnibus (GEO) is GSE65904, and the sample size is 214.
The accession number of the dataset from dbGap is phs000452.v2.p1, and the
sample size is 42.

Evaluation of tumor purity, immune cell infiltration level, and stromal content
in SKCM. To verify the ssGSEA analysis and to draw the clustering heat map, we
used ESTIMATE18 to calculate the tumor purity, immune cell infiltration level
(immune score), and stromal content (stromal score) of each SKCM sample based
on the RNA-sequencing data.

Comparison of the proportions of immune cells between SKCM subtypes.
CIBERSORT19 was used to calculate the proportions of 15 human immune cell
subsets. We set 1000 permutations and P < 0.05 as the criteria for the successful
deconvolution of an SKCM sample. We compared the proportions of the 15
immune cells between SKCM subtypes by using the Mann–Whitney U test.

Survival analyses. We performed survival analyses of the TCGA, GSE65904, and
dbGap cohorts. Kaplan–Meier curves were plotted to assess the differences in OS.
The log-rank test was used to evaluate the significance of OS differences with a
threshold of P < 0.05.

Gene-set enrichment analysis. We performed the GSEA of the TCGA SKCM
data by GSEA (R implementation)44,45. This analysis identified the KEGG29

pathways and gene ontology that were enriched in the high-immunity subtype or
the low-immunity subtype (false discovery rate, FDR < 0.05), respectively.

Identification of DEGs. To identify DEGs between the high-immunity subtype
and the low-immunity subtype, we used the limma R package to generate the FDR
and the fold change (FC) for each gene. Genes with FDR <0.05 and |log2FC| ≥1
were defined as DEGs46.

Establishment of a TIR signature for SKCM prognosis. Based on the clinical
data of SKCM in TCGA, we performed the univariate Cox regression analysis by
using the survival R package to screen DEGs for prognostic genes. For the con-
struction of the TIR gene signature, DEGs with a P < 0.05 were selected, and the
LASSO Cox regression model was used to prevent overfitting by using the glmnet R
package. Then, the multivariate Cox proportional hazards regression model was
used to generate the TIR signature consisting of four key prognostic genes, SEL1L3,
HAPLN3, BST2, and IFITM1. The Cox model is expressed by the hazard function
denoted by h(t, X). The hazard function can be interpreted as the risk of dying at
time t, and it can be estimated as follows: h(t, X)= h0(t) × exp(β1X1+ β2X2+…+
βmXm), where t represents the survival time, h(t, X) is the hazard function deter-
mined by a set of covariates (X1, X2,… , Xm), and the coefficients (β1, β2,… , βm)
measure the impact of covariates. h0(t) is the baseline hazard rate of h(t, X) when
all the X is zero. h(t, X) can be calculated by the “predict” function of R software.
Thus, the TIR risk score of each melanoma patient was calculated using the
“predict” function of R software based on the expression levels (X) and the
regression coefficients (β) of the four genes. Next, the TIR signature was applied to
the GSE65904 cohort and the dbGap cohort (accession number: phs000452.v2.p1)
to validate the prognostic value of the TIR signature.

Correlation analysis of the TIR signature with immune cell infiltration. The
correlations of the four genes in the TIR signature with the infiltration levels of
CD8+ T cells, CD4+ T cells, dendritic cells, and macrophages were analyzed using
the TIMER algorithm (https://cistrome.shinyapps.io/timer/).

Statistics and reproducibility. Statistical analyses were performed using R version
3.6.1. Differences between two groups of samples were compared using unpaired
Student’s t-test (normally distributed) or the Mann–Whitney U test (non-normally
distributed). Differences among three or more groups were compared using the
Kruskal–Wallis test (non-normally distributed) or one-way analysis of variance
(normally distributed). Spearman correlation analysis was used to calculate the
correlation coefficient between two factors. Survival differences between different
groups were compared using the Kaplan–Meier analysis and the log-rank test.
Differences in response rates (i.e., ratios of responders to total patients) between
different groups were compared using the chi-square test or Fisher’s exact test. To
evaluate the specificity and sensitivity of the TIR signature, we generated the ROC
curve by using the survivalROC package to calculate the AUC and 95% CI. For
each ROC analysis, we included all patients with information available for survival
and the factors (clinicopathological factors or other biomarkers) to be compared
with the TIR risk score.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets are available in the following public databases: TCGA (https://portal.gdc.
cancer.gov), melanoma dataset; Gene Expression Omnibus (https://www.ncbi.nlm.nih.
gov/gds/), accession number: GSE65904; and dbGap (https://www.ncbi.nlm.nih.gov/gap/),
accession number: phs000452.v2.p1. The data behind the figures are available in the
Supplementary Data.

Code availability
R code used for data processing and analysis was submitted to GitHub repository
(https://github.com/262062/TIR) and deposited to Zenodo (https://doi.org/10.5281/
zenodo.4536570).
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