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Quantitative investigation reveals distinct phases
in Drosophila sleep
Xiaochan Xu1,5, Wei Yang2,5, Binghui Tian3, Xiuwen Sui3, Weilai Chi3, Yi Rao1,2 & Chao Tang 1,3,4✉

The fruit fly, Drosophila melanogaster, has been used as a model organism for the molecular

and genetic dissection of sleeping behaviors. However, most previous studies were based on

qualitative or semi-quantitative characterizations. Here we quantified sleep in flies. We set up

an assay to continuously track the activity of flies using infrared camera, which monitored the

movement of tens of flies simultaneously with high spatial and temporal resolution. We

obtained accurate statistics regarding the rest and sleep patterns of single flies. Analysis of

our data has revealed a general pattern of rest and sleep: the rest statistics obeyed a power

law distribution and the sleep statistics obeyed an exponential distribution. Thus, a resting fly

would start to move again with a probability that decreased with the time it has rested,

whereas a sleeping fly would wake up with a probability independent of how long it had slept.

Resting transits to sleeping at time scales of minutes. Our method allows quantitative

investigations of resting and sleeping behaviors and our results provide insights for

mechanisms of falling into and waking up from sleep.
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S leep is a universal physiological state among species. It plays
an irreplaceable role in many aspects of life, ranging from
regulating the body’s metabolism1–3 and immunity4,5,

improving learning and memory6,7 to cleaning up the brain8.
Sleep disorder is associated with neurodegenerative diseases9,10

and an increased risk of cardiovascular disease11,12. As a simple
yet powerful model system, the study of fruit fly sleep behavior
has led to the discoveries of important genes and mechanisms,
which are also conserved in mammals13–15. The flies’ sleep
behavior is usually characterized as a long-term resting
behavior16. The animals hardly respond to moderate stimuli in a
prolonged resting period, and they perform sleep rebound after
sleep deprivation17. Before flies fall asleep, there is a latent phase
in which flies display the same rest posture as they sleep but
reduce their consciousness gradually. Thus, it is hard to distin-
guish whether a fly is in the sleep latency phase or sleep phase
with undisturbed observation. On the other hand, judging flies’
sleep state by disturbing flies’ sleep with stimuli is incompatible
with measuring sleep time. To make some compromise, previous
studies used 5 min as a threshold to extract long-term rest epi-
sodes as sleep bouts based on observing the wildtype flies’
response to stimuli17. However, a unique threshold for all flies is
questionable, especially for studies including mutants that are
supposed to change their sleep behavior either in the latency
phase or sleep phase. For example, this standard will confound
mutants with shorter latency and mutants with shorter sleep
time18. This issue greatly hindered sleep behavior research in flies.
The field is calling for accurate and quantitative methods to
characterize the sleep behavior of flies.

The short-term rest behavior of flies is fractal and embedded
within active ones. Several studies suggest that the temporal
structure of the behavior is scale invariant19,20. A power law
exponent is used to describe the individual fly’s short-term rest
behavior and the exponent can be tuned by dopamine21. But for
the long-term rest behavior associated with the sleep phase, the
power law is not an accurate characterization of the temporal
structure20. The long-term rest samples were usually ignored or
simply regarded as a tail of the power law distribution, often due
to the lack of statistics compared with that of the short rest
samples.

In order to develop a systematic framework of quantitative
characterization of flies’ sleep behavior including both sleep
latency phase and sleep phase, we established a device to monitor
fly behavior continuously with high spatiotemporal resolution.
Our datasets enriched the long rest behavior of flies. Our work
demonstrated that the temporal structure of rest behavior inclu-
ded different phases, clearly showing that the state of the fly in
long-term rest was distinct from that of short-term rest. The long-
term rest was memoryless of time, resulting in an exponential
distribution of sleep duration. Including the power law distribu-
tion in the latent phase, we concluded a generic sleep pattern of
the fruit flies. This pattern described an intrinsic law of the whole
sleep process and gave parameters to characterize single fly’s sleep
properties quantitatively. The parameters of the sleep pattern
accurately captured the sleep architecture at different ages and in
different environments, as demonstrated by the aging-associated
and light-associated changes. Thus, the pattern provides a
quantitative method for comparison between different scenarios,
as well as insights into the mechanisms of sleep.

Results
High resolution tracking platform for fly behavior. We used an
infrared camera tracking method instead of the traditional device
(Drosophila Activity Monitoring System, DAMS) to monitor the
locomotive trajectories of flies. It improved the accuracy of

determining the rest time and sleep behavior. It monitored the
flies day and night continuously. Our experimental setup inclu-
ded infrared lighting, computer, and observing chambers
(Fig. 1a). Two rows of infrared lamps were placed on both sides of
the observation area, and the camera was fixed above it for
overhead shooting. During an experiment, each of the prepared
fruit flies was transferred to a single small chamber, one end of
which contained food, while the other was closed with a sponge to
prevent flies from escaping and to maintain air circulation. The
food filled the whole vertical space, and the flies could not walk
on it. The flies could walk but not fly in the empty space of the
chambers freely. The whole device was placed in an incubator
(25°C, 60% humidity) with alternating 12 h-light and 12 h-dark
conditions (referred to LD hereafter). The experiments took
4 days in total. The shooting was started after the flies had been in
the chambers for 1 day to stabilize their behavior. The frame rate
of the recording was 25 fps, the resolution was 560 × 960, and the
shooting lasted for 3 days.

To efficiently track the activity, we designed an image-
processing program that automatically tracks the flies in the
captured video (Fig. 1b, Supplementary Fig. 1a–d). Flies were
detected by tracking the difference between the instant image and
the background image. The flies were much brighter than the
background (black) under the camera, improving the detection
accuracy. Our program could detect the flies even when
they walked along the edges of the chambers (Supplementary
Fig. 1a, middle row). After trajectory reconstruction, the rest
bouts of the fly were determined (see “Methods”). We have two
sizes of the observing chambers, larger elliptic ones (Supplemen-
tary Fig. 1a) and small tubular ones (Supplementary Fig. 1b). The
elliptic chamber provided a 2-dimensional space for the fly to
explore the environment (referred to as 2D chamber hereafter),
while the tubular chamber limited the fly to move mainly along
one dimension (referred to as 1D chamber hereafter).

We validated our tracking platform and the rest behavior
measurement by comparing the circadian activities and sleep
profiles of the flies in the 1D chamber with the DAMS methods.
We virtually separated the tubular chamber into two parts with
the midline of the y-coordinate (Fig. 1c). The midline worked like
an imaginary infrared beam. We could obtain the activity and
sleep profile of the fly by counting how many times the fly crossed
the midline, mimicking the measurement done with DAMS.

The flies in the experiments had robust circadian activities.
Both male flies (Fig. 1d) and female flies (Fig. 1e) gradually
increased their locomotion activity before the light was turned on
(ZT0) and turned off (ZT12), known as the anticipation
phenomenon of flies’ circadian rhythm22. The sleep profile of
the flies not only showed the difference between light phase and
dark phase within the same gender but also the difference
between male flies and female flies (Fig. 1f). Both male and female
flies slept less in the day, especially females, which is consistent
with the experimental results performed in DAMS23,24.

Previous studies also found that flies have location preference
for near a food source during sleep16,25. We found the long-term
stop locations of the flies distributed closely to the food sites in
the experiments in the 2D chamber (Supplementary Fig. 1e–g).
Intriguingly, the female flies in the 1D chambers preferred to have
siesta at both ends of the tubes in the day, while male flies only
preferred the ends with food (Supplementary Fig. 1h–i).

Quantitative sleep pattern of Drosophila melanogaster.
Although sleep is highly variable among individuals and the same
fly may behave differently in different environments, a general
pattern for the probability distribution of fly rest duration can be
determined.
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To obtain the temporal distribution of rest behavior, we first
classified the rest intervals by the circadian phases. The rest events
in the light phase were labelled with “day”, and those in the dark
phase were labelled with “night”.

In each phase and each gender, the distribution of the
individual fly’s resting time showed a power law decay with a
cutoff of around 100 s. It could be seen clearly when the data was
presented with the complementary cumulative probability
(referred to “probability” hereafter) (Fig. 2a–d).

Let P tð Þ ¼ PðX>tÞ, where X is the length of the rest time. The
probability function P tð Þ represents the probability of rest bouts

with intervals larger than t. Due to the power law decay when t
was small, the probability function had a linear relationship on
double logarithmic plot (Fig. 2a–d, left panels). This linear
relationship lasted from the beginning to the order of hundreds of
seconds, spanning two orders of magnitude. As t became larger,
the frequency of longer rests deviated from the linear relationship,
making the tail of the data curve. The data on this “curved tail”
was linear in t on a semi-logarithmic plot (Fig. 2a–d, right
panels), indicating an exponential decay on the tail of the
distribution. We fitted the tail part of the same data with
gaussian decay, which is much faster than an exponential decay

Fig. 1 High resolution video platform for tracing flies’ locomotion activities. a Schematic of the experimental device. The cold light source was used to
provide periodic light to the fruit fly to maintain the normal circadian clock; the infrared camera was placed directly above the observation area; two rows of
infrared lights were arranged on both sides of this area; the food was placed at one end of the chamber and a sponge at the other. b The videos obtained by
the infrared camera were analyzed by computer program (see “Methods”). c Imitating the DAMS with the trajectory of the fly. The midpoint of the y-
coordinate is used to calculate how many times the fly has interrupted the infrared beam if it is in the DAMS. d–e Average daily activity profiles of male and
female flies in 3 days (72 h) within each 30min bin. The white and black columns indicate activities during the light and dark phases, respectively. f Average
sleep profiles of male and female flies in 3 days within each 30min bin. The white and black bars above indicate the light and dark phases, respectively. The
blue curve is for male flies, red curve is for female flies. The error bars in (d–f) indicate SEM for five biologically independent experiments and n for the
number of flies used.
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(Supplementary Fig. 2a–d). The quantified relative Akaike
information criterion (AIC) showed that the likelihood of the
gaussian distribution model is much lower compared with the
exponential distribution model (Supplementary Fig. 2e).

The above observation revealed that there was a specific time K
that divided the whole probability distribution into two parts,
such that

ln P tð Þ ¼ �β ln t þ b1; t ≤ K

�λ�1t þ b2; t > K

�
ð1Þ

That is,

P tð Þ / t�β; t ≤ K

e�λ�1t ; t > K

(
ð2Þ

Thus, the temporal distribution of rest behavior showed that the
shorter bouts obeyed a power law distribution, while the longer
ones obeyed an exponential decay distribution, referred to as the
exponential distribution.

The meaning and implication of the power law distribution
and that of the exponential distribution were completely different.
If we denote as w(t) the switching rate from rest to movement at
instant moment t, we get:

dP tð Þ ¼ �P tð Þw tð Þdt ð3Þ

For the power law distribution, this gives

w tð Þ ¼ β

t
; t ≤ K ð4Þ

This form of switch rate is universal for power law
distributions, that is, after the fly entered the resting state, the
rate of switching from rest to motion is inversely proportional to
the time it has rested. In other words, the longer a fly stayed at
rest, the more likely it would continue to rest, implying that the
fly had a memory of the rest duration. Obviously, this state
cannot be continued indefinitely, otherwise the fly would never
move again. Consistent with this, the duration of rest obeys a
power law distribution only below a threshold period K, above
which the fly entered another phase with an exponential
distribution.

For the exponential distribution, the switch rate takes the form

w tð Þ ¼ λ�1; t >K ð5Þ
In this phase, the probability of switching from rest to motion was
no longer affected by the duration but was instead equal to a
constant. The memory of duration disappeared.

Note that in previous studies of flies, a rest interval ≥ 5 min was
used as a criterion for sleep phase. Here we found that there was
indeed a state transition in resting behavior at around this time
scale. The relatively rare long-term rest behavior corresponding to
sleep displays a different statistical characteristic compared with
the short-term rest behavior.

Fig. 2 Quantitative sleep pattern definition based on the probability distribution of rest-bout duration. a–b Probability of rest time of male flies in light
and dark phases, respectively. c–d Probability of rest time of female flies in light and dark phases, respectively. For both the males and females, 15 examples
are shown. Graphs on the left panels of (a–d) use logarithmic scales on both the horizontal and vertical axes, and on the right panels only use logarithmic
scale on the vertical. e Schematic of the two phases of sleep behavior in the fly. Power law decay and exponential decay is separated by the sleep latency
(K). Five sleep parameters (shown on the right) can be extracted from the sleep pattern to quantitatively analyze the sleep behavior of each individual fly.
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In summary, we established a general rule of sleep in individual
flies, characterized by the probability of rest duration or
equivalently by the switching rate from rest to motion (Fig. 2e).
This model consisted of two phases: (1) sleep latency phase: the
early stage of rest behavior, characterized by a power law
distribution of rest duration. The larger the power law exponent
β, the more probable the fly would move again in a resting state.
We called β as the active index; (2) sleep phase: fly entered a long
period of rest, characterized by an exponential distribution of rest
duration. The parameter λ of the exponential distribution
indicated how hard a fly would wake up spontaneously in the
sleep phase. This parameter can be used to represent the average
sleep duration in the sleep phase. From the transition time
between the two distinct resting patterns, we got the parameter K
as sleep latency. With the K threshold, we could count how many
times the fly fell asleep (N) and estimate the total time (Total) the
fly spent in the sleep phase (λ ×Ν).

Parameters of the sleep pattern. Previous studies have observed
that the sleep behavior differs between male flies and female flies
and between the light phase and dark phase. The sleep pattern we
found was prevalent for all flies, but the five parameters β, λ, K, N,
and Total characterizing the pattern could be different for each
individual fly and may vary between day and night, and between
male and female (Fig. 3).

In 1D chambers, the active index β in flies of the same gender
differed slightly between day and night but varied significantly
between genders (Fig. 3a). In the light phase, the active index was
0.73 ± 0.04 for males and 0.85 ± 0.03 for females. In the dark
phase, the active index was 0.78 ± 0.02 for males and 0.89 ± 0.04
for females. Overall, the active index value had a range of 0.7–1.
Female flies’ rest time tended to be shorter than male flies. For
both genders, the rest time was shorter in the dark phase than the
light phase.

Interestingly, unlike the active index, the sleep phase
parameters N, λ, and Κ showed significant differences between
the light phase and dark phase rather than between genders
(Fig. 3b–d). Compared with the light phase, flies preferred to

sleep longer every time they entered the sleep phase and with a
reduced number of sleep bouts in the dark phase (larger λ and
smaller N). Thus, sleep in the light phase is more fragmental. The
male had comparable total sleep time for the light phase and dark
phase, while the female mainly slept in dark time (Fig. 3e). These
differences in the five parameters could also be seen from the
distributions of individual flies (Fig. 3f–j).

The sleep latency K was similar between males and females.
The K value during the day was around 200 s, and during the
night was around 300 s. These values are very close to the 5 min
threshold used in transitional studies. Our method provides a
more precise and individualized threshold for each fly.

We note that the 1D chamber may be an unnatural exploring
context for the flies. To test the generality of the quantitative sleep
pattern we found, we performed the same experiments in 2D
chambers and compared the results with those in 1D (Supple-
mentary Fig. 3). The flies in 2D chambers had much larger space
to explore and could move in different directions. We found that
the flies in 2D chambers showed the same probability pattern of
the rest time as in 1D chambers (Supplementary Fig. 3a–b). The
three parameters (N, λ, and Κ) of the sleep phase varied slightly
from 1D to 2D chambers (Supplementary Fig. 3d–f), and the
male decreased the sleep latency (K) in the dark phase. Notably,
the active index in the light phase consistently decreased for both
males and females in the 2D chambers (Supplementary Fig. 3c).
The change hints that the active index is related to not only the
light phase but also to the space the flies are exploring.

These results indicate that the general mechanism behind the
sleep pattern is universal, but the animal may fine tune the sleep
pattern to adapt to the environment, as reflected in the changes of
the parameters.

Age-associated and light-associated changes in sleep pattern.
Sleep is regulated by various internal and external factors. To
investigate how these factors may influence the sleep pattern, we
chose aging and constant darkness as the representative internal
and external factors, respectively. We found that our methods
could also quantify the changes associated with these factors.

Fig. 3 Comparison of sleep parameters between the light and dark phases. a Distribution of β (active index). b Distribution of N (number of times the fly
fell into sleep phase in 3 days). c Distribution of λ (sleep duration in seconds). d Distribution of K (sleep latency). e Distribution of total sleep time in 3 days.
Each panel of (a–e) shows the statistical test (two-sample t test) results of the significance level of difference between male and female and/or in the light
phase and dark phase, as indicated. Error bars indicate SEM of five biologically independent experiments. f–j The distribution of each index with histograms.
Hollow columns represent the light phase, filled columns the dark phase. The blue columns represent male (n= 153), and the red columns female (n= 126).
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The aging process causes loss of sleep consolidation in elderly
human and flies26,27. We applied our sleep pattern study to the
aging-associated sleep changes. The parameters of the sleep
pattern of the older flies (20 days post eclosion) were compared
with the young groups (5 days post eclosion).

On day 20, the flies were still normally active (Supplementary
Fig. 4a). The older male flies had similar sleep profiles to the
younger flies (Fig. 4a), indicating that the sleep architecture is still
maintained. This is consistent with the previous observation that
the male flies’ sleep architecture showed little change until around
3 weeks27. Correspondingly, the 5 parameters of sleep did not
significantly change in older male flies (Fig. 4c–g).

Unlike the males, the female flies increased their activity
dramatically and slept less at day 20 (Fig. 4b, Supplementary
Fig. 4a, middle), indicating that their sleep behavior had changed.
From the comparison with the younger flies, we found that the

older female fliers’ sleep bouts (N) increased (Fig. 4d) both in the
day and night. On the other hand, the sleep duration parameter λ
decreased (Fig. 4e). The change in λ was very large especially
during the night and led to a reduction in older female’s total
nighttime sleep even though sleep happened more times (Fig. 4g).
The fragmental sleep behavior of the female caused by aging was
well quantified with our method.

The light cycle is a crucial factor for the circadian and sleep28.
We then compared the sleep pattern of flies in constant dark
condition (DD) and those in normal light-dark condition (LD).
The flies transferred to the DD condition increased their activity
dramatically (Supplementary Fig. 4b–c). Overall, they slept less in
the constant darkness (Fig. 4h, i).

Interestingly, removing light not only changed the sleep
profiles but also the active index. In cyclic LD condition, the
active index is smaller in the light phase than in the dark phase.

Fig. 4 Sleep pattern changes in older flies or under constant darkness. a–b Sleep profiles of older male and female flies (20 days post eclosion) compared
with younger flies (5 days post eclosion). The blue, older male; red, older female; grey, younger male or younger female. Error bar indicates SEM of five
biologically independent experiments for the younger groups and three biologically independent experiments for the older groups. c–g Comparison of the
sleep pattern parameters of older flies with the younger ones. The hollow and filled columns represent the mean of the parameter in the light and dark
phases, respectively; grey: younger flies; blue, older male; red, older female. h–i Sleep profiles of flies under constant dark condition (DD, 12 h:12 h)
compared with groups under cyclic light condition (LD, 12 h:12 h). The blue, male in DD; red, female in DD; grey, male or female in LD. Error bar indicates
SEM of three biologically independent experiments for the LD groups and three biologically independent experiments for the DD groups. The light phase of
DD in h and i is hypothetically assigned in accordance with the normal light-dark condition (LD, 12 h:12 h). The flies in the DD group had been raised under
the LD condition and then transferred to the DD condition. j–n Comparison of the sleep pattern parameters of flies under different light conditions. Grey:
male or female in LD; blue, male in DD; red, female in DD.
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Under constant darkness, this parameter in the light phase
significantly increased to a level similar to that of the dark phase
(Fig. 4j). (Under DD, the light phase means the period when the
light would be on in the LD condition.) The constant darkness
had the same effects on the active index of males and females.
Thus, the active index may also be regulated by light.

Looking through the sleep profiles (Fig. 4h, i), both the male
and female flies remarkably reduced their sleep in the light phase
under the DD condition. Comparing the sleep parameters, we
found that this reduction of sleep came from different changes
in the sleep architecture between the male and female flies. The
male flies had fewer sleep bouts (Fig. 4k), the same sleep
duration (Fig. 4l), and the same sleep latency (Fig. 4m) when they
were in constant darkness. The female flies had the same sleep
bouts, shorter sleep duration, and shorter sleep latency. The total
sleep time (Total), which integrated the changes in sleep bouts
(N) and sleep duration (λ), decreased both in male and female
flies in the light phase of the DD condition compared with that of
LD condition (Fig. 4n), consistent with the observations in
Fig. 4h, i.

In the dark phase, the differences between LD and DD
conditions were hard to distinguish from the sleep profiles with
the standard measurements (Fig. 4h, i), other than that the flies
slept slightly more in some hours and less in some other hours.
The sleep parameters did not show much difference in male flies
either, indicating that the sleep architecture of male flies did not
change in the dark phase under DD condition compared with LD
condition. However, for females, we observed a decrease in sleep
duration (λ) (Fig. 4l), which led to less total sleep time (Fig. 4n).
We also noticed that the sleep latency (K) of the females
decreased under the DD condition (Fig. 4m). Thus, the female
flies fell asleep more quickly and slept a little shorter in DD
condition based on our analysis. These subtle changes could
hardly be detected by the standard measurements but could be
accurately characterized by our method.

Taken together, these results indicate that the sleep pattern is a
widely applicable metric to quantify the individual fly’s sleep
behavior. It can accurately capture the difference when the
experimental scenario changes.

Correlation between sleep parameters. Noting that the active
index tended to change differently from the other sleep para-
meters, we investigated the correlation between the parameters.
We used the rank correlation (Spearman’s correlation coeffi-
cients) to quantify the correlations. The dataset consisted of all
the samples from different settings and conditions discussed
before (male/female, light/dark, different ages, different arena
sizes, and different light conditions).

Hierarchical clustering classified the ten parameters (five from
the light phase, five from the dark phase) into two groups
(Fig. 5a). The sleep phase related parameters (λ, K, Total) were in
one group, and the active index (β) and sleep bout (N) were in the
other group. It indicates that the changes in Total mainly
depended on the changes in sleep duration (Fig. 5b–e). The
number of sleep bouts was negatively correlated with the active
index β (Supplementary Fig. 5), which made sense as a more
active fly would fall into sleep less frequently.

The active index was in general negatively correlated with all
other parameters in the day. That is probably because both the
active index and the other sleep phase parameters are regulated
by light. On the other hand, the active index was uncorrelated
with the sleep duration, the total sleeping time, and the latency at
night (Supplementary Fig. 5). It further suggested that the power
law latency phase and the exponential sleep phase were controlled
by different biological circuits.

Mathematical model. The molecular mechanism leading to the
observed statistical properties of flies’ sleeping behavior is
unknown. Previous efforts were using mathematical models to
understand sleep regulation. For example, one of the widely
applied models, the “two-process model”29,30, considered both
the circadian and homeostasis regulation of the sleep. The
initial intention of that model is different from the theme of this
paper, but it reminded us to check if the current sleep length is
correlated with the previous sleep history. We found the cur-
rent sleep duration was not affected by the total amount of
previous sleep (Supplementary Fig. 6a–d). In addition, neither
the total sleep in the previous day nor night showed correlation
with the total sleep in the following night or day (Supplemen-
tary Fig. 6e, f). This is probably because the flies in our
experiments were under undisturbed conditions and their rest
behavior happened spontaneously. Unlike the sleep deprivation
experiment, in our experimental settings the flies’ sleep pressure
could be released anytime. Thus, it is conceivable that in our
experiments each rest behavior started approximately with the
same state of the fly.

An exponential distribution of time durations (as for the rest
time in the sleeping phase) is often associated with a simple
two state transition (e.g., from sleep state to wake state) with
a memoryless transition rate. On the other hand, a power
law distribution of time durations (as for the rest time in
the latent phase) is usually more complicated and can be
generated by multiple mechanisms. It is known that the human
brain has a few different states during sleep31,32. Previous
research also found that the activity of fly brain has different
quiescent states when the fly is resting33. It may be conceivable
that during one bout of rest, the fly brain changes its state from
one to another. Here we present a simple mathematical model
based on brain state transitions to account for the observed
sleep pattern.

As illustrated in Fig. 6a, the model is a random walk in a space
of brain states. Fly has two hemispheres. Assume these
hemispheres were identical yet independent, and each hemi-
sphere has L possible states during rest (Fig. 6a). Starting from the
origin, the brain state of the fly performs a random walk in the
two-dimensional state space of resting. It will continue to rest as
long as the brain state is inside the state space. The time interval
of a rest bout is the first recurrent time of the random walker back
to the boundaries (indicated by the green dots in Fig. 6a). When
the walker walks in the 2-D state space, it can only jump to the
neighboring states. The dwell time of the walker in a resting state
is related to its distance from the origin. Specifically, the dwell
time is given by an exponential distribution regarding the switch
as a Poisson process, that is:

dwell time � e�t=θ; θ ¼ ði2 þ j2Þa2 ð6Þ

Furthermore, when the walker is deep inside the resting state
space, the brain states turn to the sleep phase (red dots in Fig. 6a).
In other words, there is a threshold in the “distance from the
origin” (the dash line in Fig. 6a), above which the fly goes from
resting to sleeping. Once the brain state enters the sleeping phase,
it will jump out (wake up) with a constant rate ε.

The model gave a similar probability curve as the experimental
results (Fig. 6b, c). The parameter ε is closely related to the
inverse of the sleep duration (λ–1) while the parameter a related
to the active index β (Fig. 6d) and w to the sleep latency K
(Fig. 6e). If we restricted the model parameters to be those
(marked by asterisks in Fig. 6e) corresponding to experimentally
observed latency values (80–300 s), the range of β and K values
generated by the mathematical model agreed reasonably well with
the experimental values (Fig. 6f).
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Discussion
In the past years, power law distributions of rest duration were
also observed in mammalian species including mice and
humans34. In humans, the power law exponent β was found to
relate to some psychological disorders. The exponent decreases in
depression patients (β ≈ 0.7) and bipolar II patients (β ≈ 0.7)
compared with a normal value (β ≈ 0.9)35,36. In our experiments,
the power law exponent for flies was around 0.7–1 (instead of
0.37 as measured previously19), which is quite close to the ranges
in mice and humans. Furthermore, the sleep duration of mam-
malians was found to be exponentially distributed by using EEG
measurement37. Our results in flies suggest that this pattern of
rest and sleep can be more universal. Even though the sleep state
of flies is short of accurate physiological definition as in mam-
mals, it is still possible to define sleep state quantitatively at the
behavior level through the sleep pattern we found. With the five
parameters (β, λ, K, N, Total), one can obtain quantitative
information about each fly’s rest and sleep behavior. Given the
shared universal pattern with mammals, the fly could be used as a
model organism to study rest and sleep behavior.

The Discrete Hidden Markov Model (DHMM) has been used
for sleep staging analysis to aid the understanding of sleep
behavior in humans38. It considers the relationship between the
precious sleep state and the next sleep state and captures the
properties of stage transition of sleep behavior. It is also a pro-
mising model for sleep behavior analysis in flies, and as reported
the probability of initiating activity (P(Wake)) and the probability
of ceasing activity (P(Doze)) could give a relative measure of
sleep39. But when applying the DHHM model, those studies
hypothesized that the current state is only affected by the pre-
vious state in the last time window (short memory). This
hypothesis has never been tested biologically and is contrary to
the observation that the flies’ rest behavior has a power law decay.
A power law decay implies that the current state is dependent on
how long the animal has been resting, i.e., the state has a memory.

From our analysis, we found that only the sleep behavior has an
exponential decay, suggesting that the HHM model with a con-
stant transition rate is probably applicable only in the sleep phase.
The sleep pattern we found can also explain why P(Wake)
changes along the day and especially showed two peaks around
ZT0 and ZT12 in the previous study (see Fig. 1b and c in Wiggin,
T. D., et al.39). Around those times, the flies move frequently and
have mainly shorter rest time, the average level of P(Wake)
should then be larger according to P(Wake) ≈ β/t. Comparing
with the previous probabilistic analysis method, the sleep pattern
studied here gives a more straightforward framework to quantify
the whole sleep process of flies.

We found that the active index (β) of a fly was correlated with
how many times the fly fell asleep (N) but not with its sleep
duration (λ). It implied that the two phases of the sleep pattern
are associated with two different aspects of sleep: sleep onset and
sleep maintenance. It has been found that dopamine signaling
regulates the active index21 and that a variety of genes and
neurons are related to sleep behavior15. Which circuits can tune
the sleep pattern parameters is still an open question.

The observed sleep pattern can be accounted for by a mathe-
matical model of brain state transition. A key feature of the model
is that the brain states have different “quietness”, and the model
predicted that it is more difficult to jump out of a quieter state for
the flies. This is consistent with an increased arousal threshold
during the fly’s sleep latency phase33,40. But whether there are
indeed such different brain states in Drosophila needs more
experimental evidence in the future.

Applying our model to analyze the homeostasis is possible
but may be challenging since after sleep deprivation the sleep
architecture changes temporally. How to keep the fly under
constant sleep pressure needs much more effort than the classic
sleep deprivation experiments. We hope in the future we can
find a way to successfully expand our results to homeostasis
regulation.

Fig. 5 Correlation between the parameters of the sleep pattern. a Heatmap of Spearman’s correlation coefficients (Spearman’s Rho) of parameter pairs.
Each correlation coefficient was calculated with all the flies’ data from different experimental conditions. Parameters in the light phase are labeled with the
suffix “day” and in the dark phase with the suffix “night”. b–c Scatter plot of the active index (β) and total sleep time (in hours) of all the flies in the light
phase and the dark phase. d–e Scatter plot of the sleep duration (λ) and total sleep time (in hours) of all the flies in the light phase and the dark phase. In
(b–e), circle, male; triangle, female; blue, flies 5 days post eclosion in 1D chambers (LD, 12 h:12 h); red, flies 20 days post eclosion in 1D chambers (LD, 12
h:12 h); yellow, flies 5 days post eclosion in 2D chambers (LD, 12 h:12 h); purple, flies 5 days post eclosion in 2D chambers (DD, 12 h:12 h). The correlation
coefficients are shown above the scatter plots.
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Finally, it has not escaped our attention that our method can be
used to analyze behaviors of mutant flies to study genes involved
in different aspects of sleep at a level which was not previously
possible.

Methods
Fly rearing conditions and behavior experiments. All of the experiments were
performed with the standard Drosophila laboratory strain, Canton-S. Flies were
raised at 25°C (humidity: 60%) on standard yeast media with 12 h:12 h light: dark
LED light cycle. Virgin flies were collected since they were born and grouped in
plastic tubes. For all experiments, every single fly was put into the observing
channel separately under short CO2 anesthesia at day 3 post eclosion. Videos were
taken after the flies had adapted to the environment for 24 hours. For the data of
flies 5 days post eclosion was collected from days 5–7 for the following analysis. For
the data of flies 20 days post eclosion, we raised the fly until 18 days and then
collect data from days 20 to 22. For the constant darkness experiments, the flies
were raised in the normal LD condition and then transferred to the DD condition
at the same age as those in the other experiments.

The 1D chamber is 5 mm wide and 78 mm long, the food will occupy 15–20
mm of the length. The 2D chamber is an ellipse with 50 mm longer axes and 30
mm shorter axes. The depth of the Z-dimension of all the chambers is 2.5–3 mm.
The fly walked on the ceiling sometimes, but most of the time it stayed or walked
on the ground. Our observing chambers made of two parts, acrylic shaped base and
glass plate above.

Target tracking and rest behavior detection. We simplified the image processing
problem by segmenting the full images into partial images with only one fly in each
chamber. We use difference images from the subtraction of the reconstructed
background image to detect the location of the fly.

For each light phase or dark phase, we reconstructed the background picture by
calculating the mean grey value of the first frames of each hour (total 12 frames).
We can extract the area where the fly moves around by performing morphological
opening on the greyscale background picture since the designed chambers were
darker than the surroundings.

Only the difference of the pixels in the moving area was considered. Since the
fly was the only moving object, we took the top 100 pixels that have the most
difference. We then produced a binary image of the same size as the partial image
with value 1 at the top 100 pixels. The largest connected component in this binary

Fig. 6 Mathematical model of sleep pattern. a The schematic of the model. Assume each hemisphere has L (L= 50 in our model) possible states when
the fly is resting, the quietness of the hemisphere increases from state 1 to state L. The color of each state in the 2D space indicated how quiet the whole
brain is. Fly would get back to motion if any of the hemispheres moves to state 0 (the green dots on the boundaries). If the brain state crosses the
threshold line (black dotted line), the fly would enter the sleep phase (red dots) and would wake up with a constant rate ε. b–c Simulated results of the
model. Statistics of the time the walker takes to get out of the L × L rest state space is similar to the distribution of the fly’s rest time observed
experimentally. d The active index generated by the model as a function of the parameters in the model. e The sleep latency generated by the model as a
function of the parameters in the model. Asterisk: parameters that generated a sleep latency in the range of 80–300 s. f Comparison of the active index and
sleep latency between those generated from the model with parameters marked by asterisks in (e) and those from the real data. Black squares represent
the predicted values from the model. The experimental data is shown as the mean values of the flies from 4 scenarios (in 1D chamber with LD condition at
day 5, in 1D chamber with LD condition at day 20, in 2D chamber with LD at day 5, and in 2D chamber with DD at day 5). Hollow circle, male in the light
phase; filled circle, male in the dark phase; hollow triangle, female in the light phase; filled triangle, female in the dark phase.
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image was found as where the fly was. The centroid of this largest connected area
was used as the fly’s location in the current frame. The trajectory of the fly is a time
series [x(t), y(t)] of the locations, and the y-coordinate is referred to the longer axis
of the 1D chamber or the 2D elliptic chamber.

The rest behavior is extracted from the trajectory. At each location of the
trajectory, we calculated when the fly reached the location and when the fly left it. If
the fly stayed at the same location for more than 1 second (25 frames), the fly had
been resting at that location in that time interval.

To mimic the previous measurement method of circadian and sleep profile,
DAMS, we used the midpoint of y-coordinate of the locations as an imaginary
infrared beam. This midpoint divided the whole chamber into two parts. Every
time the fly moved from one part to the other, it was regarded as crossing the
infrared beam for once.

The raw videos were first transformed to avi format then processed with the
Image Processing Toolbox provided by MATLAB 2019a.

Estimation of parameters. The rest events of each fly were classified by the light
phase and dark phase. That means, we got the distributions of the rest time in the
light phase and dark phase, respectively. The samples for the light phase dis-
tribution consisted of all the rest events when the light is on in the 3 shooting days,
while the dark phase distribution consisted of all the rest events when the light is
off in the 3 shooting days. In the paper, the data of the light phase was labeled as
“day”, and the data of the dark phase was labeled as “night”.

We used the MATLAB packages written by Aaron Clauset41 to estimate the
exponent of power law distribution. The lower bound of the power law behavior
was set as 3 s. We found the cutoff of power law distribution and the start of the
exponential decay with one-sample Kolmogorov-Smirnov test. We scanned the K
value from 50 s. For each K, the rest samples longer than K were subtracted by K
first and then tested with the null hypothesis that the data comes from an
exponential distribution with the mean λ. The smallest K that made the test fails to
reject the null hypothesis at the 10% significance level was the sleep latency
parameter K for the individual fly, and the corresponding λ was the sleep duration
parameter.

The parameterN indicates how many times the fly slept (was in rest longer than K)
in 3 days in the experiment, which is also the total sample size of the exponential
decay. We calculated the total sleep time of a fly asN × λ. The total sleep time does not
include the time when the fly was still in the sleep latency phase.

All the code for the data analysis and simulation is deposited and accessible on
Zenodo42.

Statistics and reproducibility. The two-sample t test was used to determine
whether the two data sets came from distributions with equal means. The samples
assumed from populations with equal variances were analyzed by a two-tailed
Student’s t test. The samples assumed with unequal variances were analyzed by
two-tailed Welch’s t test. The test was performed with the embedded MATLAB
function “t test2” with 5% significance level of the hypothesis. The p value of each
test was indicated within the figures. Results were presented as mean ± standard
error of mean (SEM). The total number (n) of individual flies for each experiment
was indicated within the figures and in the legends. A minimum of three biolo-
gically independent repeats was used for each experiment. The flies were randomly
sampled.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets that support the findings of this study are available from the corresponding
author upon reasonable request. The source data for the Figures and Supplementary
Figures are provided with the paper as Supplementary Data 1.

Code availability
All the code that supports the findings of this study is available at https://doi.org/10.5281/
zenodo.454073642
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