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Sparse estimation of mutual information
landscapes quantifies information transmission
through cellular biochemical reaction networks
Swarnavo Sarkar 1✉, Drew Tack1 & David Ross 1✉

Measuring information transmission from stimulus to response is useful for evaluating the

signaling fidelity of biochemical reaction networks (BRNs) in cells. Quantification of infor-

mation transmission can reveal the optimal input stimuli environment for a BRN and the rate

at which the signaling fidelity decreases for non-optimal input probability distributions. Here

we present sparse estimation of mutual information landscapes (SEMIL), a method to

quantify information transmission through cellular BRNs using commonly available data for

single-cell gene expression output, across a design space of possible input distributions. We

validate SEMIL and use it to analyze several engineered cellular sensing systems to

demonstrate the impact of reaction pathways and rate constants on mutual information

landscapes.
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A ll living systems need to sense and respond to environ-
mental changes for survival. At the cellular level, bio-
chemical reaction networks (BRNs) accomplish the

necessary sensing and response functions by controlling the
conditional expression of genes. Studies of natural BRNs highlight
the importance of sensing to optimally adjust gene expression in
naturally evolved systems. More recently, advances in synthetic
biology have enabled the design of synthetic BRNs and the
construction of hierarchical modular arrangements of BRNs1.
These new capabilities to engineer BRNs offer enormous potential
for living therapeutics2 and other applications of programmed
sensing3. However, reliable engineering of BRNs will require
quantitative metrics for performance and robust methods to
evaluate those metrics from experimental data.

BRNs allow cells to react to unpredictable environments by
transmitting information about input stimuli into cellular output
response4. Consequently, as a performance metric for engineered
BRNs, one should ask, how much information do they transmit?
Information theory provides the only general metric for
this purpose: the mutual information between the input and the
output, which is a logarithmic measure of the number of distin-
guishable output response levels5–8. Mutual information has
emerged as an important aspect of biology as we search for
quantitative principles to unify our understanding of signal
transmission in gene expression9, differentiation10, cell death11,
and other biological processes7,8,12,13.

Notably, information transmission depends both on the prob-
ability distribution of the input and the conditional probability
distribution of the output for each possible input. The role of sto-
chasticity in BRN outputs is mainly studied using the magnitude of
noise14,15, but the evaluation of mutual information would provide
a universally applicable way to study the impact of a stochastic
input environment on the state of a BRN16. With mutual infor-
mation, different BRNs could be compared independent of their
biological context using the same metric, and the same, comparable
units (e.g., bits). However, conventional methods for computing
mutual information cannot be directly applied to most commonly
available data, which consist of output distributions measured at a
relatively small number (~10) of fixed input values, because those
methods either require data at a large number of densely spaced
input values17 or a parametric model of the output response18.

Here, we present sparse estimation of mutual information
landscapes (SEMIL), a method to determine the information

transmission through BRNs using commonly available data such
as flow cytometry or single-cell microscopy. SEMIL finds the best
discrete and sparse approximation for each possible continuous
input probability distribution19, which enables estimation of
information transmission using BRN output data for a small
number of discrete input values (see Methods, Supplementary
Methods 1, and Supplementary Fig. 1). SEMIL produces mutual
information landscapes that quantify the performance of engi-
neered BRNs across a design space, consisting of the input
probability distributions within which the BRNs are targeted to
function (Fig. 1). We validate the accuracy of SEMIL using
simulated output from model BRNs, and demonstrate the utility
of SEMIL using engineered BRNs in bacterial cells.

Results
Validation of SEMIL using model response functions. To
validate SEMIL, we first used simulated data for a model response
function approximating the gene expression output of a BRN using
a gamma distribution with parameters that depend on the value of
the input (Fig. 2a and Supplementary Methods 2). We used this
model to generate mock data to analyze using SEMIL and com-
pared the estimated mutual information with the correct results
obtained via numerical integration. The comparison demonstrates
that SEMIL can provide accurate estimates of mutual information
(typically within 0.05 bits) even with data from a set of only five
discrete input values (Fig. 2b, c). The accuracy further improves
(typically within 0.02 bits in the high information transmission
region) if the set of input values is increased from five to ten. Larger
error (~0.2 bits) only occurs when the input distribution cannot be
well approximated by the set of inputs at which the output data is
available, for example, when the geometric mean of the input dis-
tribution is comparable to the lowest discrete input value (near the
left boundary of Fig. 2c).

We further evaluated SEMIL by comparing with an exact result
for information transmission in the small noise limit: the
cumulative distribution function of the optimal input distribu-
tion, at which information transmission is maximal, converges to
the mean input–output response function with decreasing noise
in the output16. Therefore, we considered three model
input–output response functions with the same mean response
function but decreasing magnitudes of noise (green lines in
Fig. 2d–f and Supplementary Methods 3). For each of the three

Fig. 1 Estimating mutual information of BRNs with SEMIL. Scheme for computing mutual information with SEMIL using output distributions for a sparse
set of input values. Step 1: Data are acquired for the distribution of BRN output at a set of fixed input values. Step 2: A design space is specified to cover the
range of input probability distributions within which the BRNs are targeted to function. Each point in the design space corresponds to a possible input
probability distribution. Step 3: The best discrete approximation is identified for each input distribution in the design space. Step 4: The output distributions
and the discrete approximation to the input distribution are used to calculate the mutual information landscape.
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model response functions, we sampled the output data for the
same set of input values. The corresponding optimal input
distributions from SEMIL matched the theoretically expected
trend of approaching the mean response function with decreasing
noise (blue lines in Fig. 2d–f).

Validation using stochastic simulation data. To test SEMIL with
more realistic output data, we used the Gillespie algorithm to
simulate a simple BRN modeled after the lactose sensing system
in Escherichia coli (see Methods, Supplementary Methods 4, and
Supplementary Fig. 2). We simulated output data for a dense set
of input values to compute a reference mutual information
landscape without SEMIL (Supplementary Fig. 3). Then, we took
sparse subsets of the total data, for 5, 10, and 20 discrete input
values, and determined the same mutual information landscape
using SEMIL. The landscape has a central region of high-mutual
information (Fig. 3a–c, panel 2), with well-defined peak that

defines the optimal input distribution (white dots in each plot).
The optimal input distribution is approximately matched to the
midpoint of the BRN input–output response function, but is
generally wider than the response function (Fig. 3a–c, panel 1). In
the center of the design space, the accuracy of SEMIL does not
depend on the number of input levels used (Fig. 3d–f). Near the
boundaries of the design space, the accuracy generally improves
with increasing number of input values. This is particularly
noticeable along the boundaries corresponding to very narrow or
very wide input distributions (top and bottom edges of each plot).

Mutual information landscapes of engineered BRNs. To
demonstrate the utility of SEMIL for comparing the performance
of engineered BRNs, we constructed six different BRNs similar to
the lactose sensing system in E. coli and used them to system-
atically examine the effect on the mutual information landscape
due to changes in the rate constants and feedback pathways of the
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Fig. 2 Validation of SEMIL using model response functions. aModel input–output response used for validation of SEMIL. The green line is the mean gene
expression input–output response function and the shaded region shows the 5% to 95% quantile range. The point symbols mark the discrete input values
used for mutual information estimates with five (red circles) or ten (all markers) input values. b Comparison between SEMIL mutual information estimates
and the correct mutual information for input distributions with a fixed geometric mean, E, and varying geometric standard deviation, σ. c Comparison
between SEMIL mutual information estimates and the correct mutual information for input distributions with fixed geometric standard deviation and
varying geometric mean. In b, c, the red curves are the mutual information estimates obtained using SEMIL with mock data at five input values and the blue
curves are the estimates obtained with ten input values. The shaded region around each curve bounds the 5% to 95% confidence interval from 100
replicates. The dashed black curve is the correct mutual information calculated using numerical integration. The fixed geometric mean for b and the fixed
geometric standard deviation for c were chosen to match the input distribution at which mutual information is maximum. d–f Comparison of SEMIL result
to the small-noise-limit prediction. The green curves (left y-axis) are the mean gene expression output and the shaded region shows the 5% to 95%
quantile range. The blue curves (right y-axis) show the optimal cumulative distribution function (CDF), corresponding to the input distribution that
maximizes the mutual information. The geometric means of the optimal input distributions are 7.76 (d), 19.5 (e), and 39.8 (f). The geometric standard
deviations of the optimal input distributions are 100 (d), 19 (e), and 4.07 (f). For comparison, an input distribution with a CDF exactly matched to the mean
gene expression output curve would have a geometric mean of 50 and a geometric standard deviation of 2.51.
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BRN (see Fig. 4a and Methods). Specifically, we studied two
groups of BRNs: one with the lacY gene controlled by the BRN
output and one with the lacY gene deactivated. When activated,
lacY increases the transport of the input signal, isopropyl β-D-1-
thiogalactopyranoside (IPTG), into the cell, acting as a positive
feedback on the BRN output. Within each group, we also varied
the rate of translation of the lacI repressor by using three different
ribosomal binding site (RBS) sequences with predicted translation
rates that varied over three orders of magnitude20. For each of the
six BRNs, we used flow cytometry to measure the distribution of
gene expression output at a set of IPTG concentrations. The
mutual information landscapes for the engineered BRNs are
shown in Fig. 4b–f (replicates in Supplementary Figs. 4–9).

Discussion
The resulting mutual information landscapes of all six BRNs have
some common features (Fig. 4). As with the simulation results, each
landscape has a region of high-mutual information that approxi-
mately coincides with the midpoint of the BRN response function.
In addition, the high-mutual information region is funnel shaped: as
the mean of the input distribution varies, the mutual information

changes more steeply for narrow input distributions than for wide
input distributions. The mutual information landscapes thus show
quantitatively how sensing applications with a narrowly distributed
input signal require more precise matching of the BRN response
function to the input distribution, because the midpoint of the BRN
response function must be near the median of the input distribution
to enable high information transmission. Whereas applications with
a wide input distribution will require less precise matching since the
active range of the BRN response will overlap with the input dis-
tribution, providing relatively high information transmission even
when the median of the input distribution and midpoint of the BRN
response function do not coincide. SEMIL compares favorably with
Blahut–Arimoto algorithm (Supplementary Fig. 10), which is the
most common existing method to compute the maximum mutual
information. However, the corresponding optimal input distribution
from Blahut–Arimoto is spiky and discontinuous and difficult to
interpret as a biologically plausible input distribution7. SEMIL cir-
cumvents this problem of interpretation by using a well-defined
design space of continuous probability distributions. We also
computed the mutual information landscapes for the experimental
data using output data for smaller sets of input (Supplementary
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Fig. 3 Accuracy of mutual information landscapes estimates from SEMIL for simulated BRN data. a–c Mutual information landscapes from SEMIL
obtained using data at 5 (a), 10 (b), and 20 (c) discrete input values. Panel 1 of each subplot shows the mean gene expression input–output response
function (green, left y-axis) and the cumulative distribution functions (CDFs) of the optimal input distribution (blue, right y-axis) for the simulated BRN. The
optimal input distribution is the distribution that maximizes the mutual information. The green point symbols indicate the discrete input values used for
each case. Panel 2 of each subplot shows the mutual information landscape. Each point in the two-dimensional landscape represents an input distribution
with the specified geometric mean, E, and geometric standard deviation, σ. The heat map color indicates the mutual information, I, for the input distribution
defined by the coordinates (E, σ). The optimal input distribution is marked with a white dot in each landscape plot. The geometric means of the optimal
input distributions are the same in all three cases, 33.9. The geometric standard deviations of the optimal input distributions are 15.9 (a), 17.3 (b), and 20.2
(c). d–f Accuracy of SEMIL across the design space. The heat map plots show the error in the SEMIL results, δI= ISENIL− Icorrect, for mutual information
estimates obtained using data at 5 (d), 10 (e), and 20 (f) discrete input values.
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Figs. 11–16), and found that halving the set of output data did not
effect the profile and the magnitude of the landscape.

The shape of the optimal input distribution and the region of
high-mutual information both depend on the relative gene expres-
sion output noise of the BRN. With small BRN output noise, the
mutual information landscape has a clear local maximum at an
input distribution with both center and width approximately mat-
ched to the BRN response function (Fig. 4c, d). With larger BRN
output noise, the optimal input distribution has a higher geometric
standard deviation, and the information transmission becomes less
sensitive to changes in the width of the input distribution. Positive
feedback decreases the width of the response function, but it also
increases the BRN output noise. Consequently, we observe that
although the BRNs with feedback have a sharper, more step-like

response function, from low to high output, the resulting optimal
input distributions are wider than the width of the BRN response
function (Fig. 4e–g), or the probability density is less concentrated
near the midpoint of the response function. Additionally, BRNs with
positive feedback have a flatter mutual information landscape with a
larger region of nearly optimal information transmission compared
to the BRNs without positive feedback (black or white contours in
Fig. 4). In particular, the region of nearly optimal information
transmission for some of the BRNs with positive feedback extends
across a large range of geometric standard deviation (Fig. 4f–g and
Supplementary Figs. 8 and 9).

SEMIL uses ideas from information theory and stochastic
modeling to provide a universal quantitative BRN performance
metric, which evaluates the information transmission capability of

O
ut

pu
t, 
g

5k

10k

15k

0

0.5

1

Input, X
10−2 10−1 100 101 102 103 104

2.5k
5k

7.5k
10k

0

0.5

1

Input, X
10−2 10−1 100 101 102 103 104

2.5k

5k

7.5k

10k

O
ptim

al input C
D

F0

0.5

1

Input, X
10−2 10−1 100 101 102 103 104

σ

101

102

103

E
10−2 10−1 100 101 102 103 104

101

102

103

E
10−2 10−1 100 101 102 103 104

I (bits)

0

0.5

1

1.5

101

102

103

E
10−2 10−1 100 101 102 103 104

O
ut

pu
t, 
g

10k

20k

30k

0

0.5

1

Input, X
10−2 10−1 100 101 102 103 104

2.5k

5k

7.5k

10k

0

0.5

1

Input, X
10−2 10−1 100 101 102 103 104

2.5k

5k

7.5k

O
ptim

al input C
D

F0

0.5

1

Input, X
10−2 10−1 100 101 102 103 104

σ

101

102

103

E
10−2 10−1 100 101 102 103 104

101

102

103

E
10−2 10−1 100 101 102 103 104

101

102

103

E
10−2 10−1 100 101 102 103 104

a

b c d

e f g

Fig. 4 Applications of SEMIL to experimentally measured BRNs. a DNA design schematic26 of the engineered BRNs used to obtain output data for SEMIL
(see Methods). To systematically study the effect of positive feedback on mutual information landscapes, half of the engineered BRNs (data shown in e–g)
included the lacY gene as shown in the diagram, while the other half (data shown in b–d) included a deactivated lacY gene (Supplementary Methods 5).
b–g Panel 1 of each plot shows the measured input–output response function (green, left y-axis) and the cumulative distribution functions (CDFs) of the
optimal input distribution (blue, right y-axis) for each BRN. The optimal input distribution is the distribution that maximizes the mutual information. The
green point symbols indicate the discrete input values used for each case. Panel 2 of each plot shows the mutual information landscape calculated with
SEMIL for each BRN. b–d Results for BRNs without the lacY feedback with three different translation rates for the lacI repressor gene. e–g Results for
BRNs with the lacY feedback for the same three lacI translation rates. The estimated relative lacI translation rate constants are 0.008 (b, e), 1 (c, f),
and 10 (d, g)20. For each mutual information landscape, black or white dots indicate the location of the optimal input distribution and the same-colored
contours around them bound the mutual information values that are within 0.05 bits of the maximum. Biological replicate data for each BRN is shown in
Supplementary Figs. 4–9. For the BRN without lacY feedback and the weakest lacI translation rate constants (b), the maximum mutual information is
located at the boundary of the design space for two out of three biological replicates, hence a does not show an optimal input distribution.
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engineered BRNs across a broad range of possible input environ-
ments. Currently, there is considerable interest in understanding
the role of information transmission in biology, specifically with
regard to metabolic activity, fitness, and phenotypic differentiation.
As we demonstrate here, SEMIL can be easily applied to explore
these questions using readily available single-cell response data.

Methods
Data requirements for SEMIL. The data needed for SEMIL consists of single-cell
gene expression output data measured at different values of an input stimulus. The
input stimulus is typically the concentration of a chemical species applied to induce
the measured cellular response, but could also be the temperature or any other
control parameter that affects the cellular response. One of the key benefits of
SEMIL is that it only requires output data for a relatively small number of discrete
input stimulus values. The output data can be obtained from simulations or from
experiments such as flow cytometry (used in this work), or from other measure-
ments such as single-cell microscopy or single-cell RNA sequencing. At each input
stimulus value, accurate mutual information calculations with SEMIL require a
sufficient number of single-cell output data points to serve as a model-free estimate
of the conditional output probability distributions (see below). For the results
shown in Fig. 3, 250,000 points were used for each input value, and for the results
in Fig. 4, between 1000 and 50,000 data points were used for each input value.

Design space for mutual information landscapes. The first step in analyzing a
BRN with SEMIL is to choose the design space, which is the space of input
probability distributions, p(X), over which the mutual information will be calcu-
lated. The design space can consist of any continuous probability distribution, but
if unbounded distributions are used, the errors in the mutual information estimate
can be large. Consequently, the design space should be restricted to bounded
probability distributions of input values, X. For most BRNs, the bounded interval
can be chosen based on the application, for example, the minimum and maximum
chemical concentrations that might be encountered in a sensing application. If
necessary, an unbounded range of input values can be mapped to a bounded
interval using, for example, the logistic transform, so the requirement for a
bounded interval of input values does not affect the general applicability of SEMIL.
In this work, we chose a design space of log-transformed beta distributions on a
bounded interval of the input concentration, which enables inclusion of both
unimodal and antimodal probability distributions in the same design space. For
visualization of the resulting mutual information landscapes, we plot the mutual
information values as a heat map vs. the center (geometric mean) and width
(geometric standard deviation) of the input distributions. More specifically:

X ¼ input concentration;

p Xð Þ ¼ 1
Xlog Xmax=Xminð Þ ρbeta

log10 X=Xminð Þ
log10 Xmax=Xminð Þ

� �
;

ð1Þ

where Xmin and Xmax are the upper and lower bounds for the input concentration,
X, and ρbeta is the beta density function for the domain [0, 1].

The input stimulus values used to generate the data for SEMIL need to be
matched to the design space so that the range of input values with high probability
density is well covered by the set of discrete input values. For example, for the
mutual information landscapes shown in Figs. 2 and 3, the input values were
chosen to span the range of geometric means used for the design space, and the
spacing between different input values was chosen to match the minimum
geometric standard deviation used for the design space.

Stochastic reduced-order model of input distribution. The second step of
SEMIL is to find the best discrete approximation for each continuous input dis-
tribution in the design space. For each input distribution in the design space,
stochastic reduced-order modeling is used to find the optimal probability masses to
assign to the available set of discrete input values so that the resulting discrete
probability distribution best represents the continuous input distribution. The best
discrete approximation is found by minimizing the sum of two error functions, one
given by the integral of the squared error of the cumulative distribution and the
second given by the sum of squared errors of the distribution moments (Supple-
mentary Methods 1).

Simulations. Simulated BRN output data used for validation of SEMIL (Fig. 3a–f)
were obtained using the Gillespie algorithm to simulate the output response from a
reaction network model of the E. coli lactose (lac) operon21 (Supplementary
Methods 4 and Supplementary Tables 1–4).

Calculation of mutual information. SEMIL computes the mutual information of a
BRN for each input distribution in the design space using discrete approximations
of the probability distributions of the input, X, and the output, g. The stochastic
reduced-order model maps each continuous input distribution p(X), to a discrete

distribution of the input, P(X= xi), where the input, X, takes a set of fixed values
{xi}. The BRN output data for each of the fixed input values, X= xi, is used to
estimate discrete conditional probabilities of the output, P(g= gj|X= xi) for the set
of possible output values, {gj}. For naturally discrete output data (e.g., molecular
counts from the Gillespie simulations), the set of possible output values is taken to
be the set of non-negative integers. For continuous output data (e.g., flow cyto-
metry data), the output values are binned following a procedure to minimize bias in
the mutual information estimates (Supplementary Methods 6). To avoid the need
for additional assumptions, the observed frequencies are used directly as the esti-
mates for the discrete conditional probabilities used to calculate the mutual
information, I:

I X; gð Þ ¼
X
i

P X ¼ xið ÞH g X ¼ xijð Þ þ H gð Þ; ð2Þ

where H(g) is the entropy of the associated marginal output distribution

H gð Þ ¼ �
X
j

P g ¼ gj
� �

log2P g ¼ gj
� �

; ð3aÞ

P g ¼ gj
� �

¼
X
i

P X ¼ xið ÞP g ¼ gj

���X ¼ xi
� �

; ð3bÞ

and where H(g|X= xi) is the entropy associated with the conditional output dis-
tribution,

H gjX ¼ xið Þ ¼ �
X
j

P g ¼ gj X ¼ xij
� �

log2P g ¼ gj

���X ¼ xi
� �

: ð4Þ

Estimates of mutual information directly from finite data as described here can
be systematically biased. To correct for this bias, for every point in the design space,
we extrapolate to the limit of infinite data using previously described methods4,7,16

(Supplementary Methods 6 and Supplementary Fig. 17).

Strain construction. Wild-type E. coli strain MG1655 was purchased from the
American Type Culture Collection (ATCC 47076). The strain MG1655Δlac was
constructed by replacing the genomic copy of the lac operon, comprising genes
lacIZYA, with the bleomycin resistance protein from Streptoalloteichus hindustanus
(Shble). The Shble cassette was synthesized by Integrated DNA Technologies as a
gBlock, and was codon optimized for expression in E. coli and placed under control
of the constitutive promoter J23101 and the RiboJ ribozyme insulator22. The Shble
cassette was inserted into the genome of E. coli MG1655 using recombineering to
facilitate homologous recombiation as described below.

Escherichia coli MG1655 was transformed with the recombineering plasmid
pSIM29, described elsewhere23. Briefly, pSIM29 contains λ phage genes Exo, Beta,
and Gam under the control of a temperature-dependent repressor (cI857) and
temperature-sensitive origin of replication. Plasmid pSIM29 was maintained in
MG1655 using lysogeny broth (LB) supplemented with hygromycin (200 μg mL−1)
and grown at 30 °C.

The Shble cassette was amplified by PCR using primers DT.01 and DT.02
(Supplementary Methods 6), which included 50 bp of homology to the genome
sequence flanking the lac operon of E. coli MG1655. Overnight culture of E. coli
MG1655 containing pSIM29 was diluted 1000-fold and grown at 30 °C in LB to
mid-log phase (5 h). Culture was then submerged in 44 °C water bath for 1 h,
followed immediately by a 30-min incubation in ice slurry. Cultures were pelleted
and washed with 10% glycerol twice, and electroporated to transform the amplified
Shble cassette. Cultures were recovered with Super Optimal broth with catabolite
repression at 37 °C for 3 h, and then plated on LB-agar supplemented with zeocin
(50 μg mL−1).

The following day, colonies were screened using colony PCR to verify insertion
of the Shble cassette. Two colonies were genome sequenced using the Illumina
MiSeq platform, with 600 cycle chemistry (2 × 300, paired ends). Reads were
aligned to the MG1655 published genome NC000913.3 using breseq program24.
Sequencing results verified successful substitution of the lac operon with the Shble
cassette.

Plasmid construction. Plasmids used for the results shown in Fig. 4 were con-
structed from the plasmid pAN18181. Plasmid pAN1818 encodes YFP under the
control of the tacI promoter and regulated by the symL (lacO) operator; pAN1818
also contains the kanamycin resistance marker, and p15A origin of replication
(Supplementary Fig. 18).

To evaluate feedback effects, the lacY gene was added to pAN1818 downstream
of the YFP cassette. The lacY gene was amplified by PCR from the genome of E. coli
MG1655 using primers DT.03 and DT.04. Plasmid pAN1818 was amplified by
PCR using primers DT.05 and DT.06. The plasmid amplicon and lacY amplicon
were combined with Gibson assembly and sequence verified with Sanger
sequencing. The resulting plasmid was used for the results shown in Fig. 4.

The plasmid with increased lacI translation rate (Fig. 4d, g) was constructed by
changing the lacI RBS (Supplementary Table 5). The plasmid was amplified by
PCR using primers DT.07 and DT.08. The resulting amplicon was recircularized
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with Gibson assembly. Plasmids containing the correct sequence were verified with
Sanger sequencing.

The plasmid with decreased lacI translation rate (Fig. 4b, e) was constructed by
changing the lacI RBS. The plasmid was amplified by PCR using primers DT.09
and DT.10. The resulting amplicon was circularized with Gibson assembly in the
presence of primer DT.11. Plasmids containing the correct sequence were verified
with Sanger sequencing.

Plasmid constructs without feedback (Fig. 4b–d) were generated by inserting
three sequential stop codons at positions D35 I36 N37 into the lacY gene encoded
on the plasmid. The plasmids were amplified by PCR using primers DT.12 and
DT.13. The resulting amplicon was circularized with Gibson assembly. Plasmids
containing the correct sequence were verified with Sanger sequencing. All plasmid
constructs were electroporated into MG1655 for routine cloning. Plasmids were
sequence verified using Sanger sequencing (Psomagen USA).

Flow cytometry. Two or three biological replicates of MG1655Δlac with each
plasmid were grown overnight to stationary phase in M9-glucose media (Supple-
mentary Tables 6 and 7). Each replicate was then diluted 1000-fold into a 96-well
assay plate (4titude, 4ti-0255) containing 500 μL M9-glucose media per well with
various concentrations of IPTG, ranging from 0 to 2.048 mmol L−1. For each
biological replicate, three technical replicates were included in each plate. Plates
were sealed with clear gas-permeable seals (4titude, 4ti-0541/SLIT) and cultures
were grown for 3.5 h with double orbital shaking in BioTek Epoch 2 plate readers at
37 °C. Optical density at 600 nm (OD600) was monitored during growth, and
typical OD600 values at the end of 3.5 h were between 0.04 and 0.07. After growth,
20 μL samples from each well were diluted into 180 μL of phosphate-buffered saline
supplemented with 170 μg mL−1 chloramphenicol to halt protein translation. The
resulting diluted samples were measured on an Attune NxT flow cytometer with
488 nm excitation laser and a 530 ± 15 nm bandpass emission filter. Blank samples
were measured with each set of E. coli samples, and the results of the blank
measurements were used with an automated gating algorithm to discriminate cell
events from non-cell events. A second automated gating algorithm was used to
select singlet cell events and exclude doublet, triplet, and higher-order multiplet cell
events. All subsequent analysis was performed using the singlet cell event data
(Supplementary Fig. 19).

Statistics and reproducibility. For each experimental BRN, we measured either
two or three biological replicates (labeled A, B, and C), and for each biological
replicate, we measured three technical replicates (labeled 1, 2, and 3). We com-
puted the mutual information landscapes for each of the replicates, which are
shown in Supplementary Figs. 5–10. Estimated mutual information was corrected
for finite-sampling bias by systematic subsampling of the experimental data and
extrapolating to unbiased mutual information values using existing methods
(Supplementary Methods 6)7.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The parameters for the numerical studies and Gillespie simulations are present in the
Supplementary Tables 1–4. The data for the main figures are in Supplementary Data 1, 2,
and 3. The flow cytometry data and all other data are available upon request. The
plasmid backbone used for this work has been deposited in GenBank, with the accession
code MT012365. Physical plasmids and their sequences, as well as E. coli strain
MG1655Δlac, have been deposited to Addgene.

Code availability
The code to compute mutual information landscapes is available at https://github.com/
usnistgov/InGene25.
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