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A learning based framework for diverse
biomolecule relationship prediction in molecular
association network
Zhen-Hao Guo1,2,5, Zhu-Hong You1,2,5✉, De-Shuang Huang3, Hai-Cheng Yi1,2, Zhan-Heng Chen1,2 &

Yan-Bin Wang4

Abundant life activities are maintained by various biomolecule relationships in human cells.

However, many previous computational models only focus on isolated objects, without

considering that cell is a complete entity with ample functions. Inspired by holism, we

constructed a Molecular Associations Network (MAN) including 9 kinds of relationships

among 5 types of biomolecules, and a prediction model called MAN-GF. More specifically,

biomolecules can be represented as vectors by the algorithm called biomarker2vec which

combines 2 kinds of information involved the attribute learned by k-mer, etc and the behavior

learned by Graph Factorization (GF). Then, Random Forest classifier is applied for training,

validation and test. MAN-GF obtained a substantial performance with AUC of 0.9647 and

AUPR of 0.9521 under 5-fold Cross-validation. The results imply that MAN-GF with an

overall perspective can act as ancillary for practice. Besides, it holds great hope to provide a

new insight to elucidate the regulatory mechanisms.
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The central rule proposed by Crick F. et al. explains the flow
of genetic information in living organisms and directs the
development of molecular biology for decades1. However,

accumulated evidence reveals the existence of different kinds of
biomolecules in human cells and proves that the relationships
between them are fundamental in cellular processing, information
transfer and decision-making2,3. For instance, with the intro-
duction of the competing endogenous RNAs (ceRNA) mechan-
ism, more and more experiments and literatures indicate that the
interaction of ncRNA and mRNA regulates gene expression4.
Cumulative studies have indicated that a series of ncRNAs are
associated with numerous diseases such as cancers5, blood dis-
eases6, and neurodegeneration diseases7. Consequently, micro-
scopic study of the relationships between biomolecules not only
opens innovative insights to understand life process, but also
facilitates to disease prevention, diagnosis, treatment, and drug
development.

Benefiting from the development of high-throughput technol-
ogies, vast array of sequences and relationships are determined
and published on numerous online databases such as HMDD8,
STRING9, and DrugBank10. Although experimental verification-
based methods have strongly promoted people’s understanding of
cellular activities at the molecular level. The number of rela-
tionships that are validated by these experiments only occupies a
small part of the whole. Moreover, the high false-positives and
false-negatives presented in manual experiments due to various
factors may moderate and mislead the progression11. It is
necessary and urgent to propose reliable and efficient computa-
tional approaches to handle massive data for the guidance of
practical experiments.

In fact, numerous computational prediction methods have
been designed to infer new relationships between transcripts,
translations and small molecule compounds over the past few
years. Most prediction models belong to several categories owing
to research object or calculation methods. According to research
object, the prediction model can be segmented into the following
typical representatives. For protein–protein interaction (PPI),
Huang et al. proposed a sequence information based model to
predict potential interaction by using weighted sparse repre-
sentation model combined with global encoding12. For ncRNA-
protein (RPI), Yi et al. achieved outstanding prediction results on
multiple RIP datasets by combining evolutionary information and
deep learning frameworks13. For ncRNA-disease, Guo et al.
presented a learning-based method to predict uncovered
lncRNA-disease associations by integrating multiple types biolo-
gical information and rotation forest14. For miRNA-disease, Li
et al. predicted potential associations by Network Topological
Similarity Based on DeepWalk15. According to calculation
manner, the prediction model can be divided into network-based
methods, machine learning-based methods, and matrix
decomposition-based methods. A supervised framework was
proposed by Wang et al. to predict protein–protein interactions
through combining stacked sparse autoencoder and probabilistic
classification vector machine (PCVM) classifier16. Li et al.
introduced a matrix decomposition-based method called
MCMDA to predict potential associations by updating the adja-
cency matrix of miRNA-disease17. Huang et al. came up with a
network-based model called EPLMI to discover potential
miRNA-lncRNA interaction based on two-way diffusion from
expression profiles18.

Recently, the discovery of new kinds of biomolecules and the
evidence of adequate experimentally validated relationships
inspire researchers to take extra biomarker as a bridge or inter-
mediary to improve the performance of the computational model.
Chen et al. took lncRNA as an intermediary to discover potential
miRNA-disease associations in heterogeneous networks through

label propagation algorithms19. Peng et al. characterized the
similarity between miRNA-gene and disease-gene, respectively,
and predicted the association between miRNA-disease in the
framework of machine learning model20. The methods proposed
by them mitigates the impact of data loss on predictions to a
certain extent and integrates the idea of the pathway. However,
they are still the congeners of reductionism essentially.

Reductionism, which disassembles the biological system into
several basic components based on composition or function from
a modular point of view and studies each unit in a focused or
isolated manner, has been the dominant idea in bioinformatics
for decades21. Given the fundamental principle plays in network
biology and the increasingly clear evidence shed light on that
cells, as inherent in a complete individual, are affected by con-
stituent elements without a doubt. Different kinds of biomole-
cules and relationships are like nodes (biomolecules) and edges
(relationships) in a network (cell). Network is an unstructured
data that is common in the real world and is widely studied.
Modeling cells into networks is compatible and can be borrowed
from existing efficient computer network algorithms. To address
this challenge, the large-scale Molecular Associations Network
(MAN) is constructed by various kinds of relationships among
several different types of biomolecules.

In this paper, we construct a network called MAN including
nine kinds relationships among five types biomolecules and a
model called MAN-GF that can predict any edges between
arbitrary nodes in the framework. The network is shown as Fig. 1.
Firstly, relationships including lncRNA-miRNA, drug-disease,
protein–protein, etc. between biomolecules such as protein,
ncRNA and disease, are collected from diverse databases to
develop the network. After MAN is defined as a homogenous
undirected graph, we construct a lower triangular portion of
adjacency matrix to facilitate storage and computation. Secondly,
each node in MAN can be represented by the algorithm called
biomarker2vec by combining two kinds of feature including the
node behavior (edges with other nodes) learned by GF and the
node attribute (e.g., ncRNA sequences, disease semantics, and
drug molecular fingerprint) learned by k-mer etc. Finally, Ran-
dom Forest, a common ensemble classifier, is applied to perform
training and prediction tasks based on known positive samples
and randomly drawn negative samples. Note that in each step,
parameters are set to default values to improve the reproducibility
of the experiment. The proposed MAN-GF model achieves
remarkable results with AUC of 0.9647 and AUPR of 0.9521
under 5-fold Cross-validation, respectively. Moreover, the feature
comparison experiment indicates that vectors integrated two
kinds of feature are more distinguishable. Furthermore, experi-
ments on different proportions of training sets proves that MAN-
GF can still achieve satisfactory prediction effects even if the
training samples are rare. In addition, we make a special test to
compare the traditional method based on local idea and the
proposed model based on global view. Results demonstrate that
the MAN do contain a wealthy of biology information and pro-
moted the prediction performance from the comprehensive per-
spective with regards to isolated view. Finally, a miRNA-disease
association prediction case study strongly proves the effectiveness
of the proposed framework in actual environments. In short, we
detect how biomolecules interact in human cells by integrating
traditional multi-type biology data and the state of art complex
network technologies from a systemic perspective. There is no
doubt that the development of reliable global view to assist in
solving biological problems will have a revolutionary impact on
current bioinformatics research. MAN-GF will become the vital
engine of detecting undiscovered relationships and we hope this
work can bring beneficial inspiration and advance for related
network biology and biomedical research.
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Results
Multi-type relationship prediction under 5-fold Cross-valida-
tion. In relationship prediction, a network with a certain fraction
of edges removed is given, and we want to predict the missing
edges. Here, Cross-validation is applied to assess the link pre-
diction effect of the model globally. Cross-validation is a com-
monly used standard for evaluating the performance of machine
learning models. Under the 5-fold Cross-validation, all biomo-
lecular relationships are randomly divided into five mutually
exclusive subsets of approximately equal size. Each subset can be
treated as the test set to assess the performance of the model, and
the remaining subsets will be regarded as training set to construct
the classifier.

Receiver Operating Characteristic Curve (ROC) is a curve
drawn on the abscissa False Positive Ratio (FPR) and the ordinate
True Positive Ratio (TPR) as the coordinate axes. The horizontal
and vertical axes of the Recall Precision (PR) curve are Recall and
Precision, respectively. The surface enclosed by the curve and the
coordinate axis, called AUC or AUPR, can objectively reflect the
classification performance of the model to some extent. For 5-fold
Cross-validation, MAN-GF has achieved AUC of 0.9647 and
AUPR of 0.9521.

In order to evaluate our model fairly and broadly, a range of
evaluation criteria including accuracy (Acc.), sensitivity (Sen.),
specificity (Spec.), precision (Prec.), and MCC were used to

objectively and comprehensively describe the predictive perfor-
mance. Under 5-fold Cross-validation, the results are shown in
Table 1, in which the average values of accuracy (Acc.), sensitivity
(Sen.), specificity (Spec.), precision (Prec.) and MCC were
separately 91.47, 90.96, 91.98, 91.90, 82.94, and 96.47, the
standard deviations of the above data were 0.22, 0.32, 0.25,
0.24, 0.44, and 0.13, respectively. The competitive results in the
indicators demonstrate competitive predictive power of the
proposed model, and the lower standard deviation prove that
the framework exhibits stability and robustness in various
environments.

Feature importance comparison. As mentioned in the intro-
duction, each biomolecule in the entire network can be described
by two kinds of feature including biomolecule attribute and
behavior. In this chapter, we will elaborate on the impact of each
type of information on relationship prediction tasks between
biomolecules in the MAN.

The results of different models under 5-fold Cross-validation
including pure attribute-based methods, pure behavior-based
methods, and method of combining the above two kinds of
information are shown in the Table 2. After combining different
types of feature, it is obvious that the representation vector of the
node has more prominent characteristic expression ability and is
easier to distinguish.

A�ributeBehavior

A�ributeBehavior

Fig. 1 Schematic diagram of molecular associations network. Different colored nodes represent different types of biomolecules. As shown in the figure,
each node can be described or represented by two kinds of feature including the node behavior (relationships with other nodes) and the node attribute
(e.g., RNA sequences, disease semantics, and drug chemical structure).
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Comparison performance based on varying proportion of
training set. In order to explore the effect of varying proportion
of training set on the prediction performance, we extracted dif-
ferent percentage of edges of the whole network to obtain the
representation vectors by network embedding. Specifically, we
take 20, 40, 60, and 80% of all edges as known samples, and map
nodes to vectors through GF. When performing link prediction
tasks, the training set is the known edges, and the test set is the
remaining edges i.e., 80, 60, 40 and 20% of the total edges. Each
node is represented as a 64-dimensional vector which processed
by only GF. The results are in the Table 3.

Classifier comparison. The performance of classifiers is different
on different datasets. In this section, we compare the performance
of different classifiers including Random Forest (RF), Extra Trees
(ET), Logistic Regression (LR), and Naive Bayesian (NB) on
MAN and try to analyze the reasons. Under 5-fold Cross-vali-
dation, the results are shown in Table 4 and Fig. 2. Note that all
classifiers were adopted from Scikit-learn library and all para-
meters were set to default values.

The cause of this phenomenon can be explained as follows. For
Naive Bayesian, the representation vector may not be indepen-
dent between degrees, which is contrary to the hypothesis of
classifier. For Logistic Regression, the model itself is difficult to fit
the high complexity data and easy to under fit. For Random
Forest and Extra Trees, the ensemble learning model shows its
strong reliability and stability.

Additional evaluation based on miRNA-disease association
prediction. Despite the emergence of many powerful prediction
models as complements to manual experiments, the major lim-
itation of the prediction capabilities of these methods is that the

thoughts based on reductionism only considering the problem
itself. In this section, we choose miRNA-disease association
prediction as a more specific research object to compare the
difference between the proposed global perspective method and
the previous local point approach. After removing redundancy
and uniform identifiers, 16427 miRNA-disease associations con-
taining 901 different miRNAs and 877 different diseases were
obtained from HMDD in April 26, 2019. The results of predicting
miRNA-disease association in four different ways under 5-fold
Cross-validation are shown in the Fig. 3.

In Fig. 3a, focusing on miRNA and disease, the nodes are only
represented by attribute information, that is, miRNA sequence or
disease semantics. This method is a baseline for comparison with
other prediction models. In Fig. 3b, this is a traditional local
method proposed by T. van Laarhoven et al.22, which is widely
used in drug-target, miRNA-disease association prediction23. It is
local method and measures the functional similarity of miRNA
and disease by Gaussian kernel function. Briefly, 80% associations
of the miRNA-disease network are processed by Gaussian kernel
function in each fold and then each node can be represented as a
128-dimensional by combining node attributes and functional
similarity vectors. In Fig. 3c, this is a local embedding method
similar to the idea of Fig. 3b, 20% of miRNA-disease associations
are used for test, and remaining 80% of the miRNA-disease
associations are used for GF network embedding. Finally, each
node is abstracted into a vector by concatenating node 2 kinds of
feature. In Fig. 3d, this is result of the global model presented in
this paper. In each fold of Cross-validation, 20% of miRNA-
disease associations were segmented as the test sample, and the
remaining miRNA-disease associations along with the rest eight
kinds of associations were sent to GF for representation. Each
node can be stated by combining node attributes and node
behaviors. Competitive results relative to other methods

Table 2 Comparison of various evaluation criteria based on different types of feature including pure attribute, pure behavior, and
combination of above two.

Feature Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUC (%)

Attribute (A) 87.92 ± 0.30 90.44 ± 0.11 85.40 ± 0.54 86.10 ± 0.45 75.94 ± 0.59 93.76 ± 0.26
Behavior (B) 89.75 ± 0.25 87.69 ± 0.39 91.82 ± 0.33 91.47 ± 0.31 79.58 ± 0.50 95.34 ± 0.16
Both 91.47 ± 0.22 90.96 ± 0.32 91.98 ± 0.25 91.90 ± 0.24 82.94 ± 0.44 96.47 ± 0.13

Table 3 Comparison of various evaluation criteria based on varying number of training samples.

Percentage Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUC (%)

20% 78.03 73.56 82.51 80.79 56.29 85.61
40% 84.56 80.90 88.21 87.28 69.30 91.52
60% 87.27 84.34 90.19 89.58 74.66 93.67
80% 89.78 87.60 91.95 91.59 79.63 95.39

Table 1 Multi-type relationship prediction results of various evaluation criteria under 5-fold Cross-validation.

fold Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUC (%)

0 91.35 90.71 92.00 91.89 82.71 96.38
1 91.39 91.16 91.62 91.58 82.78 96.41
2 91.86 91.41 92.31 92.24 83.72 96.69
3 91.38 90.68 92.07 91.96 82.76 96.46
4 91.37 90.84 91.89 91.81 82.74 96.41
Average 91.47 ± 0.22 90.96 ± 0.32 91.98 ± 0.25 91.90 ± 0.24 82.94 ± 0.44 96.47 ± 0.13
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demonstrate the superiority of the comprehensive and systemic
perspectives to carry out this task.

In this section, by comparing proposed model with different
previous methods, the results proved that additional relationships
beyond direct research targets are valuable for predicting
potential miRNA-disease associations. To our knowledge, the
existence of information exchange between nodes in MAN
provides a novel perspective to detect undiscovered associations
in certain aspects and helps to recognize gene expression in a
novel view.

A case study based on miRNA-disease association. To evaluate
the performance of our proposed model in a real environment, a
case study of colon neoplasms was implemented on MAN-GF for
yielding the most probable related miRNAs. First, pairs related to
colon neoplasms were all removed from the dataset. Hence, the
remaining 16282 (16427–145) miRNA-disease associations were
used as training set to construct the model. Colon neoplasms
connect all miRNAs to form association pairs respectively as the
predictive sample. As a result, 18 of top-20 candidates were
confirmed to have associations with colon neoplasms based on
dbDEMC 2.024 and HMDD8 as shown in the Table 5.

Conclusion
In this study, we constructed a large-scale Molecular Associations
Network (MAN) including nine kinds of relationships among five
types of biomolecules and a model called MAN-GF that can
predict any links between arbitrary nodes in the framework.
Specifically, MAN is a heterogeneous network with multiple
biological elements consists various subnets including
protein–protein interaction network, drug-target network,

ncRNA-disease network and etc. Biomarker2vec focuses on
learning the low-dimensional representation of nodes by attribute
information and behavior information, which efficiently explains
the intrinsic characteristic and topological properties of the
complex network. MAN-GF made link prediction based on these
projection vectors. Taking the mapped low-dimensional space
vector as input, the Random Forest classifier is chosen to carry
out the link prediction task. The proposed model achieved a
competitive performance with AUC of 0.9647 and AUPR of
0.9521 under 5-fold Cross-validation, and additional experiments
strongly support the existence of information transfer between
biomolecules in MAN. In general, the proposed model can not
only be treated as a supplement for wet experiments, but also
stimulate researchers to step out in understanding the transmis-
sion of information between biomolecules. Although far from
complete, the seamless integration of complex network technol-
ogy with biological big data provides a new insight into the
understanding of life activities and disease mechanisms at global
view. We hope that this work can represent an important step
towards a systematic and comprehensive perception in compre-
hension of all aspects in both computer and life sciences.

Methods
Materials. The known relationships and biomolecules are downloaded from var-
ious databases and carefully preprocessed8–10,25–30. The identifiers of miRNA,
lncRNA, protein, and drug are unified by miRBase, NONCODE, STRING, and
DrugBank, respectively. We directly applied the disease name of each original
database. After the operations such as unified identifier, de-redundancy and
removing nodes with low frequency just like described in the article of Zhang
et al.31, a comparatively dense adjacency matrix with 6528 rows and 6528 columns
was constructed by 105546 relationships to store the whole information of MAN.
The details of the data can be seen in the Table 6 and Fig. 4. Besides, we uploaded
all relationships on github pages: https://github.com/CocoGzh/MAN-1.0.

Table 4 Comparison of various evaluation criteria based on different classifiers including Naive Bayes, Logistic Regression, Extra
Tree and Random Forest under 5-fold Cross-validation.

Classifier Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUC (%)

NB 67.69 ± 2.32 77.47 ± 2.12 57.91 ± 3.01 64.81 ± 2.07 36.07 ± 4.68 75.71 ± 1.55
LR 80.78 ± 0.44 85.16 ± 1.07 76.41 ± 0.34 78.30 ± 0.19 61.81 ± 0.94 87.39 ± 0.28
ET 91.77 ± 0.17 91.05 ± 0.22 92.50 ± 0.13 92.39 ± 0.14 83.56 ± 0.34 96.13 ± 0.04
RF 91.47 ± 0.22 90.96 ± 0.32 91.98 ± 0.25 91.90 ± 0.24 82.94 ± 0.44 96.47 ± 0.13

Fig. 2 Comparison of the receiver operating characteristic curves (ROC), area under ROCs, precision recall (PR) curves, and area under PRs based on
different classifiers including random forest, extra tree, logistic regression and naive bayes. These classifiers achieved corresponding AUCs of 0.9647,
0.9613, 0.8739, and 0.7571, and corresponding AUPRs of 0.9521, 0.9505, 0.8463, and 0.7168.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0858-8 ARTICLE

COMMUNICATIONS BIOLOGY |           (2020) 3:118 | https://doi.org/10.1038/s42003-020-0858-8 |www.nature.com/commsbio 5

https://github.com/CocoGzh/MAN-1.0
www.nature.com/commsbio
www.nature.com/commsbio


In this paper, all experimentally validated biomolecule relationships (105,546
pairs) are treated as the golden standard positive dataset, and the same number
unconfirmed relationships are randomly selected as the negative samples.
Considering that there may exist potential true positive relationships in negative
sample which are only a small part of the total number, the noises presented do not
cause large deviations in the classifier. This is a typical technique for subsampling
in unbalanced data and is widely used in bioinformatics and link prediction32,33.

Node attribute representation: K-mer, semantic, and fingerprint. For miRNA,
lncRNA and protein, sequences of them are downloaded from miRbase34, NON-
CODE35, and STRING9, respectively. The method proposed by Shen et al. is
applied to analyze and normalized the components to characterize the sequence for
both ncRNA and protein36. For ncRNA, the sequence consists of four types of
nucleotides: A, C, G, and U. Each dimension of ncRNA feature vector represents
the normalized frequency of the corresponding conjoint k, i.e., k-mer. In this paper,
k is set to 3. Thus, each ncRNA sequence can be represented as a 64 (4 × 4 × 4)
dimensional vector, where each element of the vector corresponds to the nor-
malized frequency of the corresponding 3-mer in the sequence.

For protein, 20 kinds of amino acids are classified into four groups according to
the polarity of the side chain including (Ala, Val, Leu, Ile, Met, Phe, Trp, Pro), (Gly,
Ser, Thr, Cys, Asn, Gln, Tyr), (Arg, Lys, His), and (Asp, Glu). Then each protein
sequence can be extracted by the above-mentioned ncRNA-like coding method
through using the 4-letter reduced alphabet. Similarly, each protein sequence can
be represented as a 64 (4 × 4 × 4) dimensional vector, where each dimension is a
normalized component of each class of amino acids. Through the above sequence

encoding operation, both ncRNA and protein can be represented as 64-
dimensional vectors in preparation for subsequent node representation.

For disease, their Medical Subject Headings (MeSH) descriptors are
downloaded from https://www.nlm.nih.gov/. MeSH is a standard vocabulary
developed by the U.S. National Library of Medicine to index the magazines,
journals, and terminology in the fields of biology and medicine. Previous literature
points out that it is feasible to describe the similarities between diseases by MeSH
Tree Structures and treat them as representation vectors37. A Directed Acyclic
Graph (DAG) can be constructed by the descriptors of the disease, and the
similarity between two diseases can be calculated based on the generalized Jaccard
formula, i.e., the larger the intersection, the greater the similarity. The detailed
description of the DAG is as follows: DAG(D)= (D, N(D), E(D)), N(D) is the point
set that contains all the diseases in the DAG(D). E(D) is the edge set that contains
all relationships between diseases in the DAG(D). The contribution of disease t,
which is in the point set N(D) to the semantic value of disease D can be defined
according to Eq. (1).

D1D tð Þ ¼ 1 if t ¼ D

D1D tð Þ ¼ max Δ �D1D t0ð Þjt0 2 children of tf g if t ≠D

�
ð1Þ

where Δ denotes an attenuation factor. In the DAG generated by disease D, D’s
contribution to itself can be regarded as the maximum and equals to 1, and the
remaining diseases will contribute less and less to disease D as the distance
increases. Therefore, the sum of the contributions of diseases, which are in the set

Fig. 3 Comparison of the ROCs, AUCs, PRs, and AUPRs based on different methods. a All nodes are only represented by attribute information. b This is a
traditional local method which measures behavior similarity by Gaussian kernel function. c This is a novel local method which measures behavior similarity
by GF. d This is result of the global model presented in this paper which combines different kinds of relationships as many as possible.
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N(D) to D can be calculated according to Eq. (2).

DV1 Dð Þ ¼
X

t2N Dð Þ
D1D tð Þ ð2Þ

Then the similarity between diseases i and j can be calculated according to
Eq. (3).

Similarity i; jð Þ ¼
P

t2N ið Þ\N jð Þ D1i tð Þ þ D1j tð Þ
� �

DV1 ið Þ þ DV1 jð Þ
ð3Þ

Where DV1(i) and DV1(j) are the sum of the contributions of disease in N(i) and N
(j) to i and j. N(i) ∩N(j) is the intersection of N(i) and N(j). D1i(t) and D1j(t) is the
disease value of t to i and j in N(i) and N(j), respectively.

The attribute information of disease can be represented by disease semantic
similarity, which is converted into a 64-dimensional vector after feature extraction
and transformation by the sparse autoencoder.

For drug, we download drug SMILES from DrugBank and then transform them
into Morgan Fingerprint by python package. In order to reduce noise and improve
feature quality, sparse autoencoder is used to obtain the appropriate feature space
from the original space.

Node behavior representation: Graph Factorization. Obviously, the adjacency
matrix contains all the content of the network, where the i-th row can be con-
sidered as the one-hot representation vector of the i-th node. Although this kind of
sparse representation can include all the node behavior information and is bene-
ficial to the design of the discrete algorithm, it is not friendly to the storage and the
construction for downstream classifier. We hope to abstract the nodes into vectors
through associations in a simple and efficient way. In this paper, an algorithm

called Graph Factorization (GF), which first obtains a graph embedding in O Ej jð Þ
time38 is applied to carry out this task. To achieve this goal, GF factorizes the
adjacency matrix of the graph, minimizing the loss function according to Eq. (4).

f Y ;Z; λð Þ ¼ 1
2

X
i;jð ÞϵE
ðYij � <Zi;Zj>Þ2 þ

λ

2

X
i

Zik k2 ð4Þ

Where Y is the weight adjacency matrix and Z is the factor matrix. λ is regular-
ization parameter. E is the edge set, and i and j are edges in E.

The gradient of f with respect to the row i of Z can be given according to Eq. (5).

∂f
∂Zi
¼ �

X
j2N ið Þ

ðYij � <Zi;Zj>ÞZj þ λZi ð5Þ

Where N(i) is the set of neighbors of node i.
For a pair i; jð Þ 2 E this amounts to Eq. (6).

ðYij � <Zi;Zj>ÞZj þ λZi ð6Þ
Stochastic gradient descent is a common way of solving this nonconvex

problem and algorithm is as follows:

Algorithm: Sequential stochastic gradient descent

Require: Matrix Y 2 Rn ´ n , rank r, accuracy ϵ
Ensure: Find a local minimum of equal (4)
(1) Initialize Z0 2 Rn ´ r 2 at random
(2) t 1
(3) repeat
(4) Z0  Z
(5) for all edges i; jð Þ 2 E do
(6) η 1ffiffi

t
p

(7) t t þ 1
(8) Zi  Zi þ η½ðYij � <Zi;Zj>ÞZj þ λZi�
(9) end for
(10) until Z � Z0k k2Frob ≤ ϵ
(11) return Z

Note whenever the representation of the node is embedding via GF, the tested
links are stripped to ensure that the label information is not leaked into the test set.
Given the actual situation such as the new sample problem, etc., the degree of each
node is not guaranteed to be greater than 0 when segmenting the dataset.

Sparse autoencoder. In view of the large quantity and multi-dimension of positive
and negative samples produced, it is not conducive to the model construction.
Sparse Autoencoder (SAE) is mainly utilized for vector reconstruction to unify
dimension. SAE is an unsupervised feature learning algorithm which aims to learn
a high-level structured representation from original feature space. SAE can be
divided into two parts: the encoder that encodes the input data into corresponding
representation h and the decoder that reconstructs an approximation x̂ from the
hidden representation h. In general, the function of SAE is to extract and transform
features by minimizing the error between input and output with backpropagation
algorithm. The cost function of Autoencoder can be defined according to Eq. (7).

J W; bð Þ ¼ 1
m

Xm
i¼1

1
2

x � bxk k2 ð7Þ

where m is the number of training data, which can be defined according to Eq. (8).

bx ¼ o nlð Þ ð8Þ
where nl denotes the number of layers of the network, o(nl) is the output of the nl-
layer, which can be defined according to Eq. (9).

o nlð Þ ¼ f o nl�1ð Þ þ b
� �

ð9Þ

where b is the threshold of neurons and f is the activation. Relu activation function
is chosen to perform this operation, which can be defined according to Eq. (10).

f xð Þ ¼ max 0; xð Þ ð10Þ
The cost function of SAE comprises three terms can be defined according to

Eq. (11).

J W; bð Þ ¼ 1
m

Xm
i¼1

1
2

x � bxk k2 þ α
Xn
j¼1

KL ρ k bρj� �
þ β wk k22 ð11Þ

The first part is to describe the error between input x and output bx, In the
second part, n indicates the number of hidden layer units. The average activity of
hidden neurons can be described by KL divergence and limits the loss function.
The third part is the weight decay term, the purpose of which is to reduce the
magnitude of the weight and prevent over-fitting.

Table 5 MAN-GF was applied to Colon neoplasms to predict
the potential disease-related miRNAs, and 18 of top-20
predicted miRNAs have been confirmed according to recent
experimental literatures.

Num miRNA Disease Evidence

1 hsa-mir-10a-5p Colon neoplasms dbDEMC 2.0
2 hsa-let-7b-5p Colon neoplasms HMDD/ dbDEMC 2.0
3 hsa-mir-183-5p Colon neoplasms dbDEMC 2.0
4 hsa-mir-431-5p Colon neoplasms dbDEMC 2.0
5 hsa-mir-136-5p Colon neoplasms dbDEMC 2.0
6 hsa-mir-155-5p Colon neoplasms HMDD/ dbDEMC 2.0
7 hsa-mir-324-5p Colon neoplasms dbDEMC 2.0
8 hsa-mir-454-5p Colon neoplasms dbDEMC 2.0
9 hsa-mir-29b-2-5p Colon neoplasms dbDEMC 2.0
10 hsa-mir-205-5p Colon neoplasms HMDD/ dbDEMC 2.0
11 hsa-mir-1-3p Colon neoplasms HMDD/ dbDEMC 2.0
12 hsa-mir-218-5p Colon neoplasms dbDEMC 2.0
13 hsa-mir-301a-5p Colon neoplasms dbDEMC 2.0
14 hsa-mir-494-5p Colon neoplasms dbDEMC 2.0
15 hsa-mir-376a-5p Colon neoplasms dbDEMC 2.0
16 hsa-mir-149-5p Colon neoplasms dbDEMC 2.0
17 hsa-mir-196a-1-3p Colon neoplasms unconfirmed
18 hsa-mir-4488 Colon neoplasms unconfirmed
19 hsa-mir-199a-5p Colon neoplasms dbDEMC 2.0
20 hsa-mir-335-5p Colon neoplasms dbDEMC 2.0

Table 6 The details of nine kinds of relationships.

Relationship type Database Number of pairs

miRNA-lncRNA lncRNASNP2 8374
miRNA-disease HMDD 16,427
miRNA-protein miRTarBase 4944
lncRNA-disease LncRNADisease lncRNASNP2 1264
lncRNA-protein LncRNA2Target 690
protein-disease DisGeNET 25,087
drug-protein DrugBank 11,107
drug-disease CTD 18,416
protein–protein STRING 19,237

Total MAN 105,546
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Statistics and reproducibility. The collection details of the biomolecule rela-
tionships are described in the material section. After uniform identifiers and de-
redundancy, the whole network is constructed. Data used for analysis are available
on GitHub page: https://github.com/CocoGzh/MAN-1.0. All experiments are
implemented under Python 3.7 and all paraments are set to default value. In
addition, thanks for the python package Numpy 1.16.4, Scikit-learn 0.21.2, Ten-
sorflow 1.14.0, Keras 2.2.5, and Open-NE.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author on request, or the data for analysis can be accessed in GitHub page: https://github.
com/CocoGzh/MAN-1.0

Code availability
The code developed can be accessed in GitHub page: https://github.com/CocoGzh/
MAN-1.0

Received: 24 September 2019; Accepted: 20 February 2020;

References
1. Crick, F. Central dogma of molecular biology. Nature 227, 561 (1970).
2. Ponting, C. P., Oliver, P. L. & Reik, W. Evolution and functions of long

noncoding RNAs. Cell 136, 629–641 (2009).
3. Ambros, V. MicroRNA pathways in flies and worms: growth, death, fat, stress,

and timing. Cell 113, 673–676 (2003).
4. Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA

hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146, 353–358
(2011).

5. Chung, S. et al. Association of a novel long non‐coding RNA in 8q24 with
prostate cancer susceptibility. Cancer Sci. 102, 245–252 (2011).

6. Congrains, A. et al. Genetic variants at the 9p21 locus contribute to
atherosclerosis through modulation of ANRIL and CDKN2A/B.
Atherosclerosis 220, 449–455 (2012).

7. Johnson, R. Long non-coding RNAs in Huntington’s disease
neurodegeneration. Neurobiol. Dis. 46, 245–254 (2012).

8. Huang, Z. et al. HMDD v3. 0: a database for experimentally supported human
microRNA–disease associations. Nucleic Acids Res. 47, D1013–D1017 (2018).

9. Szklarczyk, D. et al. The STRING database in 2017: quality-controlled protein-
protein association networks, made broadly accessible. Nucleic Acids Res 45,
D362–D368 (2017).

10. Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database
for 2018. Nucleic Acids Res. 46, D1074–D1082 (2017).

11. Collins, S. R. et al. Toward a comprehensive atlas of the physical interactome
of Saccharomyces cerevisiae. Mol. Cell. Proteom. 6, 439–450 (2007).

12. Huang, Y.-A., You, Z.-H., Chen, X., Chan, K. & Luo, X. Sequence-based
prediction of protein-protein interactions using weighted sparse representation
model combined with global encoding. BMC Bioinforma. 17, 184 (2016).

13. Yi, H.-C. et al. A deep learning framework for robust and accurate prediction
of ncRNA-protein interactions using evolutionary information. Mol. Ther.
Nucleic Acids 11, 337–344 (2018).

14. Guo, Z.-H., You, Z.-H., Wang, Y.-B., Yi, H.-C. & Chen, Z.-H. A learning-
based method for LncRNA-disease association identification combing
similarity information and rotation forest. iScience 19, 786–795 (2019).

15. Li, G. et al. Predicting MicroRNA-disease associations using network
topological similarity based on deepwalk. IEEE Access 5, 24032–24039 (2017).

16. Wang, Y.-B. et al. Predicting protein–protein interactions from protein
sequences by a stacked sparse autoencoder deep neural network. Mol. Biosyst.
13, 1336–1344 (2017).

17. Li, J.-Q., Rong, Z.-H., Chen, X., Yan, G.-Y. & You, Z.-H. MCMDA: matrix
completion for MiRNA-disease association prediction. Oncotarget 8, 21187
(2017).

18. Huang, Y.-A., Chan, K. C. & You, Z.-H. Constructing prediction models from
expression profiles for large scale lncRNA–miRNA interaction profiling.
Bioinformatics 34, 812–819 (2017).

19. Chen, X., Zhang, D.-H. & You, Z.-H. A heterogeneous label propagation
approach to explore the potential associations between miRNA and disease. J.
Transl. Med. 16, 348 (2018).

20. Peng, J. et al. A learning-based framework for miRNA-disease association
prediction using neural networks. Bioinformatics 35, 4364–4371 (2018).

21. Kitano, H. Computational systems biology. Nature 420, 206 (2002).
22. van Laarhoven, T., Nabuurs, S. B. & Marchiori, E. Gaussian interaction profile

kernels for predicting drug–target interaction. Bioinformatics 27, 3036–3043
(2011).

23. Chen, X., Wang, C.-C., Yin, J. & You, Z.-H. Novel human miRNA-disease
association inference based on random forest. Mol. Ther. Nucleic Acids 13,
568–579 (2018).

24. Yang, Z. et al. dbDEMC 2.0: updated database of differentially expressed
miRNAs in human cancers. Nucleic Acids Res. 45, D812–D818 (2016).

25. Miao, Y.-R., Liu, W., Zhang, Q. & Guo, A.-Y. lncRNASNP2: an updated
database of functional SNPs and mutations in human and mouse lncRNAs.
Nucleic Acids Res. 46, D276–D280 (2017).

26. Chou, C.-H. et al. miRTarBase update 2018: a resource for experimentally
validated microRNA-target interactions. Nucleic Acids Res. 46, D296–D302
(2017).

27. Bao, Z. et al. LncRNADisease 2.0: an updated database of long non-coding
RNA-associated diseases. Nucleic Acids Res. 47, D1034–D1037 (2018).

28. Cheng, L. et al. LncRNA2Target v2. 0: a comprehensive database for target
genes of lncRNAs in human and mouse. Nucleic Acids Res. 47, D140–D144
(2018).

29. Piñero, J. et al. DisGeNET: a comprehensive platform integrating information
on human disease-associated genes and variants. Nucleic Acids Res. 45,
D833–D839 (2016).

30. Davis, A. P. et al. The comparative toxicogenomics database: Update 2019.
Nucleic Acids Res. 47, D948–D954 (2018).

31. Zhang, W. et al. Predicting drug-disease associations by using similarity
constrained matrix factorization. BMC Bioinforma. 19, 233 (2018).

Fig. 4 The statistics of biomolecules and relationships in the Molecular Associations Network (MAN).MAN is a heterogeneous attribute network which
contains nine kinds of relationships among five types of biomolecules including miRNA, lncRNA, protein, drug, and disease. Figure 4a is the specific number
of 5 biomolecules, and Figure 4b is the specific number of 9 relationships.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0858-8

8 COMMUNICATIONS BIOLOGY |           (2020) 3:118 | https://doi.org/10.1038/s42003-020-0858-8 | www.nature.com/commsbio

https://github.com/CocoGzh/MAN-1.0
https://github.com/CocoGzh/MAN-1.0
https://github.com/CocoGzh/MAN-1.0
https://github.com/CocoGzh/MAN-1.0
https://github.com/CocoGzh/MAN-1.0
www.nature.com/commsbio


32. Ben-Hur, A. & Noble, W. S. Kernel methods for predicting protein–protein
interactions. Bioinformatics 21, i38–i46 (2005).

33. Grover, A. & Leskovec, J. in Proceedings of the 22nd ACM SIGKDD
international conference on Knowledge discovery and data mining. 855-864
(ACM, 2016).

34. Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: from microRNA
sequences to function. Nucleic Acids Res. 47, D155–D162 (2018).

35. Fang, S. et al. NONCODEV5: a comprehensive annotation database for long
non-coding RNAs. Nucleic Acids Res. 46, D308–D314 (2017).

36. Shen, J. et al. Predicting protein–protein interactions based only on sequences
information. Proc. Natl Acad. Sci. USA 104, 4337–4341 (2007).

37. Wang, D., Wang, J., Lu, M., Song, F. & Cui, Q. Inferring the human
microRNA functional similarity and functional network based on microRNA-
associated diseases. Bioinformatics 26, 1644–1650 (2010).

38. Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V. & Smola,
A. J. In Proceedings of the 22nd international conference on World Wide Web
37–48 https://doi.org/10.1145/2488388.2488393 (Association for Computing
Machinery, Rio de Janeiro, Brazil, 2013).

Acknowledgements
This work was supported by the grant of National Key R&D Program of China
(2018YFA0902600), and the grants of the National Science Foundation of China, Nos.
61722212, 61861146002, 61732012 and 61902342.

Author contributions
Z.-H.G. and Z.-H.Y. contributed equally to this work. Z.-H.G. and Z.-H.Y. considered the
algorithms, collected the data, and made analysis. D.-S.H., H.-C.Y., Y.-B.W., and Z.-H.C.
wrote the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s42003-
020-0858-8.

Correspondence and requests for materials should be addressed to Z.-H.Y.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0858-8 ARTICLE

COMMUNICATIONS BIOLOGY |           (2020) 3:118 | https://doi.org/10.1038/s42003-020-0858-8 |www.nature.com/commsbio 9

https://doi.org/10.1145/2488388.2488393
https://doi.org/10.1038/s42003-020-0858-8
https://doi.org/10.1038/s42003-020-0858-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio
www.nature.com/commsbio

	A learning based framework for diverse biomolecule relationship prediction in molecular association network
	Results
	Multi-type relationship prediction under 5-fold Cross-validation
	Feature importance comparison
	Comparison performance based on varying proportion of training set
	Classifier comparison
	Additional evaluation based on miRNA-disease association prediction
	A case study based on miRNA-disease association

	Conclusion
	Methods
	Materials
	Node attribute representation: K-mer, semantic, and fingerprint
	Node behavior representation: Graph Factorization
	Sparse autoencoder
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




