
ARTICLE

Restoring drifted electron microscope volumes
using synaptic vesicles at sub-pixel accuracy
Hans Jacob Teglbjærg Stephensen 1, Sune Darkner1 & Jon Sporring 1✉

Imaging ultrastructures in cells using Focused Ion Beam Scanning Electron Microscope (FIB-

SEM) yields section-by-section images at nano-resolution. Unfortunately, we observe that

FIB-SEM often introduces sub-pixel drifts between sections, in the order of 2.5 nm. The

accumulation of these drifts significantly skews distance measures and geometric structures,

which standard image registration techniques fail to correct. We demonstrate that regis-

tration techniques based on mutual information and sum-of-squared-distances significantly

underestimate the drift since they are agnostic to image content. For neuronal data at nano-

resolution, we discovered that vesicles serve as a statistically simple geometric structure,

making them well-suited for estimating the drift with sub-pixel accuracy. Here, we develop a

statistical model of vesicle shapes for drift correction, demonstrate its superiority, and pro-

vide a self-contained freely available application for estimating and correcting drifted datasets

with vesicles.
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In three-dimensional (3D) scanning methods, such as focused
ion beam scanning electron microscope (FIB-SEM), serial
block-face imaging (SBF-SEM) and serial section transmission

electron microscopy (SS-TEM), the scanning method alternates
between forming a two-dimensional (2D) image and removing a
layer of material. For 3D geometrical analysis, the sequence of 2D
images must be recombined into a single, 3D image, which,
unfortunately, is non-trivial. Sectioning of the tissue, as well as the
subsequent imaging by electrons, often introduces a sideways
sub-pixel translation between sections known as drift. In FIB-
SEM, the drift may arise from a variety of practically
uncontrollable factors, such as bending of the electron beam due
to a charge gradient in the material and physical movement of the
entire sample. Uncorrected drifts skew 3D distances, thus intro-
ducing errors in subsequent statistical and geometric 3D analyses,
and in turn, on possible biological conclusions. Figure 1 shows an
example of an ultrastructure brain region from a healthy adult
rodent with easily noticeable drift when the dataset is viewed
across multiple image planes. Datasets such as this have been and
are still used actively1–3 with no apparent mention of the cor-
rection for potential drift. In these works, it is unclear what effect
such misalignment may have had on the presented results. In
other works4–8, the correction has been performed using the
ImageJ plug-in TurboReg (www.epf.ch/thevenaz/turboreg/),
StackReg (http://bigwww.epfl.ch/thevenaz/stackreg/), Matlab, or a
similar. These tools support both manual registration, where the
user specifies corresponding landmark points, and automatic
registration methods, e.g., pyramidal least-squares minimization
of the image intensities9, maximizing mutual information10, and
normalized mutual information11,12.

In FIB-SEM, large, pseudo-linear structures at an angle to the
sectioning direction will appear to move spatially perpendicular
to the sectioning direction when viewing the sections in sequence.
This will misdirect typical automatic registration methods since
they are unable to distinguish translations caused by drift and
apparent translation caused by structures at an angle. Manual
landmark annotations risk similar defects. An example of the
problem can be seen in Fig. 2a, b, where a simple synthetic 3D
FIB-SEM image has been generated with two spherical vesicles
and a single membrane-like structure at an angle to the sectioning
direction. Even though no drift is imposed here, a standard
registration approach translates each image to force the mem-
brane to be perpendicular to the image section direction,

stretching the vesicles in the process. (Fig. 2c, d), shows a similar
effect on real data. The reason is that the membrane-like structure
dominates the dissimilarity measure since its volume is much
larger than that of the vesicles.

A problem with many registration methods is that they are
agnostic to the image content. For example, real neuronal tissue
contains small and large structures, and standard registration
methods perform well when the angles of these structures are
evenly distributed with respect to the sectioning direction.
However, we have observed that this is not the case for the FIB-
SEM images, we have analyzed. Firstly, for small regions of
interests dominating pseudo-linear structures often appear, and at
larger regions of interest, neuron processes have a tendency to be
similarly oriented, resulting in inaccurate drift estimates. Thus,
registration methods relying on global measures or landmark
points will be less than optimal for such sections.

For improved registration, we must include models of the
imaged data, such that the registration method can distinguish
between drift and apparent drift caused by dominating structures
at an angle to the sectioning direction. In images of neuronal
tissue at nano-resolution as, e.g., the publicly available FIB-SEM
dataset of the CA1 Hippocampus region of a healthy adult rodent
(https://cvlab.epfl.ch/data/data-em/, 5 nm3 voxel size, 1065 ×
1536 × 2048 voxels) we observe that vesicles are abundant, small,
and on average spherical. A vesicle has a lipid bilayer shell, which
physically can be modeled as an elastic material with a bending
energy density functional13,14 minimizing the curvature of the
vesicle’s surface. Hence, in equilibrium and without external
forces, a vesicle’s shape is spherical. Vesicles can take a variety of
exotic shapes under special conditions15,16, though their most
probable and most common shapes are spheroids, prolates, and
oblates. In this work, we propose to model the variability of the
vesicle shape as ellipsoids. Since vesicles are numerous near
synapses, since synapses are numerous in our images, and since
vesicles on average are expected to be spherical, we can estimate
the drift as the average, per section deviation from the spherical
shape. We claim that this method is independent of large-scale
structures such as the orientation of neuronal processes.

Our method is summarized as follows: firstly, we annotate the
boundary of the vesicles by manually placing points in the images
(Fig. 3a). Secondly, we fit an ellipsoid to the annotated points of
each vesicle using a least-squares approach (Fig. 3b). Thirdly, we
assume first that the skew of each estimated ellipsoid alone is due

Fig. 1 Drift introduces angles to structure in the sectioning direction, z, and is invisible in a single section. a Small block from the publicly available FIB-
SEM dataset of the CA1 Hippocampus region of a healthy adult rodent (https://cvlab.epfl.ch/data/data-em/) showing a pre-synaptic region with vesicles
displaying significant drift. b The xz-plane in a highlighting the apparent effect of drift. c Artists depiction of a drifted vesicle as they appear in b. d The x–y
plane in a highlighting the lack of drift effects in this plane. e Artists depiction of a drifted vesicle as they appear in d.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0809-4

2 COMMUNICATIONS BIOLOGY |            (2020) 3:81 | https://doi.org/10.1038/s42003-020-0809-4 | www.nature.com/commsbio

http://www.epf.ch/thevenaz/turboreg/
http://bigwww.epfl.ch/thevenaz/stackreg/
https://cvlab.epfl.ch/data/data-em/
https://cvlab.epfl.ch/data/data-em/
www.nature.com/commsbio


Fig. 2 Standard registration methods confuse drift and naturally occurring trends in images. a A synthetic image with two model perfectly spherical
vesicles and a model membrane at an angle to the sectioning direction. b The result of using standard section-by-section registration with Mutual
Information for dissimilarity measure and the implementation found in Matlab. c A FIB-SEM sub-volume with features which influence standard image
measures adversely. d The result of using standard section-by-section registration displays signs of deformation by the vesicles being less spherical. This
sub-volume was registered using ImageJ with StackReg and TurboReg plugins.

Fig. 3 Our drift estimation uses the following four steps. a The boundary of vesicles is manually annotated. b An ellipsoid (blue) is fitted to the annotated
points (orange). The intersection of the fitted ellipsoid with the z–x plane is shown in c. c The skews in the zx- and yz-planes is calculated, here illustrated in
the z–x plane only. d For each image section, the drift is estimated by the average of the drift components in x, y, and z. Diamond marker denotes a z-
location of a vesicle and the bars illustrates their influence in the local average. d left/right shows the effect of varying the user-specified length w on the
drift estimate.
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to drift and calculate a drift component for each of the ellipsoids
(Fig. 3c). Fourthly, we computing the average of the drift-
components by regarding each drift-component estimate as a
point observation at the center of the ellipsoid, and then for each
section i, average all point observations within sections i ±w
where w defines a width of the estimate (Fig. 3d).

Results
To assess the quality of drift estimates, we generated three syn-
thetic datasets. The first two have constant drift across all sec-
tions: (δx, δy)= (0.3 pixels, 0.0 pixels) and (0.1 pixels, 1.0 pixels),
and the third dataset has a drift that varies across sections
(Supplementary Information and Supplementary Fig. 1). Our
synthetic datasets were generated by placing random ellipsoids
with uniformly random axis lengths between 3 and 6 voxels,
uniformly random orientations, and uniformly random positions
in a non-overlapping manner, after which the drift was added.
We annotated a variety of different numbers of vesicles across
image sections to assess the influence on the drift estimate. A total
of 71, 97, and 283 vesicles were manually annotated in the syn-
thetic datasets described above. Annotating the synthetic datasets
took on the order of 7 h in total, which is approximately 1 vesicle
per minute.

Our experiments on the synthetic datasets demonstrate that
using ellipsoids to estimate the drift is significantly more accurate
than standard approaches on the synthetic datasets with constant
drift. Our method estimates the drift with an absolute average
error of 0.22 × 10–1 ± 0.08 × 10–1 apparently independent on the
drift magnitude. In contrast, the standard registration methods
estimate the drift with the error 1.12 × 10–1 ± 1.48 × 10–1 appar-
ently proportional to the drift magnitude. (Histograms of drift
estimates are shown in Supplementary Figs. 2 and 3). The stan-
dard approaches are biased even though no larger structures like
cell membrane or mitochondria are present, and we suspect that
the bias is caused by subtle imbalances in the statistical dis-
tribution of image content angles in the sectioning direction.

Our synthetic image with varying drift is non-smooth. In the
presence of large drift changes in the sectioning direction, the
estimated drift from ellipsoids estimates are smoothed out across
the change (Fig. 4). This smoothing is due to two factors: firstly,
the vesicles are fitted across multiple sections, which adds some
error. Secondly, the estimate is based on vesicles with the set
distance, w from the section. Reducing w will reduce the

smoothing effect but also increase the effects of noise. Aside from
the regions with large drift changes, we see a significant
improvement over standard approaches (Supplementary Fig. 4).
We note that the standard approaches have some variation from
section to section, whereas our estimates based on ellipsoids are
very stable (Supplementary Fig. 5).

Our drift estimate depends on the number of vesicles anno-
tated, and to assess this dependence, we employ a bootstrapping
approach: We use the total set of fitted ellipsoid drifts and 50000
times sample a subset of 1–200 drift-point estimates. The
resulting average absolute error shows a perfect reciprocal
dependence (Supplementary Fig. 6). Fitting to this bootstrapped
data gives a predicted error function of y= 0.1375x–0.4915, thus
for one vesicle, an estimated error of 0.1375 is obtained, and to
halve the error, your roughly need to annotate four times the
vesicles. For the real FIB-SEM dataset, we manually annotated
961 vesicles. This dataset has 1065 pixels in the sectioning
direction distanced 5 nm apart. Assuming that the average height
of a vesicle is 45 nm this implies that there a vesicle on average
is seen in nine sections. Thus, on average we have annotated
961·9/1065≅ 8.12 vesicles per section, and the estimated error is
0.1375·8.12–0.4915 ≅ 0.049 pixels≅ 0.25 nm for each section.

The drift estimation accuracy also depends on the variation in
radii of the vesicles. Specifically, in the extreme case that the
vesicles are exactly spherical in the without drift, we only need a
single vesicle to estimate a constant drift exactly since the drift-
component will be equal to the drift. We therefore also assessed
the correspondence between both radii variation and drift mag-
nitude on the estimation error. We generate a fourth synthetic
image with 50000 vesicles for a variety of drift magnitudes and
vesicle radii and measure the mean absolute error using ten
vesicles for each estimate (Supplementary Fig. 7). Firstly, the
figure shows a clear dependence on the variation of the radius. If
radius does not vary, and if each vesicle is a sphere, then there is
no error, but the error increases as the variation in radius
increases. Secondly, the figure shows that the estimate is unaf-
fected by the drift magnitude. Thus, estimating a sub-pixel drift
and large drift will give an error of equal size.

For this work, we compare our method with the registration
methods using the sum of squared difference (SSD) and mutual
information (MI), normalized mutual information (NMI), and
normalized cross-correlation (NCC) as dissimilarity measures.
For completeness, we also experimented with correction using
phase correlation17 and compared with built-in registration

Fig. 4 On synthetic images, our local drift estimates are precise for when the drift is constant and show smooth transition when drift varies. a A small
subsection of a drifted synthetic image shown in a side view (zx-plane). b, c The estimated ellipsoid drift in x and y, respectively, as a function of z. Stippled
curve is the ground truth, black curve is the estimate, and orange shows the variation in the per-vesicle estimates. d The same synthetic image corrected in
z–x plane.
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implementations in Matlab. Not reported here, we also experi-
mented with optical flow estimation as implemented in OpenCV
across the pairwise image section using only subregions of the
images with vesicles. Our method is clearly superior to the state-
of-the-art global registration methods on the synthetic images
when compared to the ground-truth drift.

For real FIB-SEM images, the ground-truth drift values usually
do not exist. Hence, the following conclusions are based on our
experience with synthetic data described above. In the publicly
available FIB-SEM dataset of the CA1 Hippocampus region of a
healthy adult rodent (https://cvlab.epfl.ch/data/data-em/), we
observe a significant non-zero drift signal (Fig. 5). After drift-
correction using our drift-estimates, the vesicles look visually less
ellipsoidal. Qualitatively comparing the drift estimate on the real
with the synthetic images, we find that the estimate on the real
dataset is similarly distinctly different from standard approaches
(Fig. 6 and Supplementary Fig. 8). The estimates by the individual
standard approaches can be seen to be in close agreement with
each other with regards to both the magnitude and direction of
the translation. However, for subregion in the real dataset, we also
see that standard methods are biased with respect to image
content (Fig. 6). Asserting the section-wise drift, we observe rapid
changes in drift estimates similarly to the synthetic image with
varying drift (Supplementary Fig. 9). Hence, we expect some
estimation error and smoothing effects to be present for the real
data as well.

Discussion
To conclude, FIB-SEM images often suffer from sub-pixel drift
often in the order of 0.5 pixels, and this drift accumulates across
several slices resulting in distortion of distance and shape

Fig. 5 Our drift estimates show similar behavior on real data as on the synthetic data. a A small subsection of a drifted FIB-SEM image shown in a side
view (z–x plane). b The estimated ellipsoid drift in x as a function of z. b, c The estimated ellipsoid drift in x and y, respectively, as a function of z. Black
curve is the estimate, and orange shows the variation in the per-vesicle estimates. d The same FIB-SEM image corrected in z–x plane. e Comparison of drift
estimated by our proposed method (green) and using normalized mutual information image measure (blue). f The resulting registration using our
proposed method. g The resulting registration using normalized mutual information. h Pseudo-color overlay of registration results obtained by our
proposed method compared to registration using normalized mutual information.

Fig. 6 Drift estimates for standard registration method are consistent
and most often outside the 95% confidence interval of our method. (Left)
and (right) show the estimates in the x- and y-direction. The stippled curve
shows the result of applying the standard registration method on a
subsection of the image, which is dominated by a large process.
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measures in 3D. Standard registration methods fail to correct this
drift, as these methods cannot distinguish between drift and
naturally occurring slopes in the sectioning direction. We have
discovered that due to the abundance of vesicles in neuronal
tissue and their biomechanical properties, they function well as
statistical markers for drift, and we have presented a simple
method for identifying and correcting the drift. We have com-
pared our method with state-of-the-art registration methods
based on global measures, and our method has proven to be more
accurate. We encourage correction of drift in neuronal tissue
whenever the analysis is of or relies on the geometry of the
structures. Further work should be carried out to assess the effect
of the drift on biological images and to develop less labor-
intensive methods for estimating and correcting this drift.

Methods
Our method consists of the following sequence of steps: (1) Annotating vesicle
boundary using points. (2) obtaining ellipsoids by least squares estimation on the
boundary points. (3) calculate drift parameters for each ellipsoid. (4) Estimate the
average drift locally to each section using the ellipsoids drift parameters in con-
junction with their position. Our method is implemented and available online18.

Choice of ellipsoid representation. Let x, y, z be the axes of an image with x, y the
plane of each image section and z the image sectioning axis. An ellipsoid centered
at the origin can be described implicitly by the quadratic surface equation uTH u=
1, where u= [x, y, z]T, and H is a 3 × 3 symmetric positive definite matrix,

H ¼
A D E

D B F

E F C

2
64

3
75: ð1Þ

We will refer to the elements of H as the parameters of the ellipsoid.

Obtaining ellipsoids from boundary points. We fit an ellipsoid to the vesicle
membrane points of each vesicle in 3D. At least 9 non-degenerate points are
required for a unique fit of an ellipsoid with an arbitrary center, radii, and rotation.
We choose to fit the ellipsoids given as uTHu= 1 using a least-squares approach19

which we implemented in Python. We briefly compared this method to a numeric
gradient decent approach minimizing the squared distance in the Euclidean norm
as it has a slight difference in result compared to the algebraic norm defined by the
ellipsoid equation. Our results showed that the algebraic norm minimization
method produced slightly more accurate drift estimates while being many orders of
magnitude faster than the numeric decent method.

Estimating drift from ellipsoid parameters. We define the drift in the image as a
sideways translation of each image section with respect to the previous section. Let
δx, δy be the amount of translation by which some section is translated with respect
to the previous section and let Δz denote the distance between subsequent sections.
We represent the translation as a shear map with shear coefficients sx= δx/Δz, sy=
δy/Δz. If we assume the drift is constant as a function of z, we can represent the
drift as one single mapping S given by

Sx ¼
1 0 sx
0 1 sy
0 0 1

2
64

3
75

x

y

z

2
64

3
75 ¼

x þ sxz

y þ syz

z

2
64

3
75 ¼ u: ð2Þ

The shear mapping is a non-singular linear transformation, and since S−1S is
the identity transformation, the quadratic equation is still solved when

1 ¼ xTHx ¼ xT S�1S
� �T

HS�1Sx ¼ uTS�THS�1u: ð3Þ
Thus, transforming each point on the ellipsoid by S corresponds to a new

quadratic surface defined by the matrix representation Ĥ= S-THS−1, or
equivalently H= STĤS. Since an ellipsoid is a quadratic surface with a closed
surface, and since non-singular linear transformations on closed surfaces cannot
produce open surfaces, we conclude that the result is still a closed surface defined
by a quadratic surface, i.e., an ellipsoid, spheroid or sphere.

Let Ĥ be the shear-transformed ellipsoid estimated from data with elements Â,
B̂, Ĉ, D̂, Ê, and F̂. The values of Ê and F̂ gives the shape of the ellipsoid in the z–x
and the y–z plane, i.e., the tilt of the ellipsoid as a function of z. An untilted
ellipsoid is symmetric across the plane z and has E= F= 0. Defining the untilted
ellipsoid in terms of a shear-transformed tilted ellipsoid H= STĤS, we set E= F=
0 and solve for sx and sy. We get

sx ¼
D̂F̂� B̂Ê

ÂB̂� D̂
2 ; sy ¼

D̂Ê� ÂF̂

ÂB̂� D̂
2 : ð4Þ

Let s= (sx, sy)T represent the shear of some ellipsoid. By assumption, each
ellipsoid is rotated uniformly at random. Thus, it follows that given no drift in the

data, we should have E[s]= 0, since by an argument of symmetry, a tilt in any
direction should be equally likely. Assume now we add some drift k, giving rise to
new shear parameters s′. Since the composition of shear transformations simply
amounts to adding the shear parameters, and by the linearity of expectation, we get

E s0½ � ¼ E sþ k½ � ¼ E s½ � þE k½ � ¼ k: ð5Þ
Thus, given N fitted ellipsoids with si the vector of shear constants for ellipsoid

Ei, 1 ≤ i ≤N, we estimate the drift in the images k by the average drift,

k ¼ 1
N

XN
i¼1

s0ðiÞ ð6Þ

Enumerating the image sections by Ij, 1 ≤ j ≤M such that I1, …, IN are ordered
with increasing z choosing I1 as the reference image, drift correction can be
obtained by transforming Ij by S−(j−1).

Drift correction assuming varying drift. Since drift in images may vary, e.g., due
to manual correction during the scanning operation, movement of the sample, or
charge equalization, it is likely that the amount of drift varies in the sectioning
direction. Given a large enough population of ellipsoids, it is possible to estimate
the drift per image section. To accomplish this, we view the individual estimated
ellipsoid-drifts as a point-estimate at the center of the ellipsoid. Specifying a width
w of the point estimate, we compose a drift estimate for each section by the average
of the ellipsoids with center closer than w to the section. Denoting d(Ei, j) the
perpendicular distance in the section direction from ellipsoid Ei to section j, we can
write the drift estimate kj of section j as

kj ¼
XN
i¼1

1d Ei ;jð Þ<wPN
n¼1 1d En ;jð Þ<w

s0ðiÞ; ð7Þ

where 1 P takes the value 1 when P is true and 0 otherwise. In the absence of visible
vesicles in one or multiple sections, we suggest either interpolating the drift
parameters from nearby known values or assume the drift is zero, depending on the
dataset.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Our synthetic, derived data, and data for producing our figures can be provided upon
request. In this paper, we have discussed the publicly available fib-sem data from https://
cvlab.epfl.ch/data/data-em/.

Code availability
The code for producing our figures can be provided upon request. The drift correction
application is available at (https://doi.org/10.17894/ucph.b61d5ca9-53df-4909-92ee-
f8ee026e39bb). The accompanying source code is available upon request19.
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