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Motor engagement relates to accurate perception
of phonemes and audiovisual words, but not
auditory words
Kelly Michaelis 1,2, Makoto Miyakoshi3, Gina Norato4, Andrei V. Medvedev1 & Peter E. Turkeltaub1,5✉

A longstanding debate has surrounded the role of the motor system in speech perception, but

progress in this area has been limited by tasks that only examine isolated syllables and

conflate decision-making with perception. Using an adaptive task that temporally isolates

perception from decision-making, we examined an EEG signature of motor activity (sen-

sorimotor μ/beta suppression) during the perception of auditory phonemes, auditory words,

audiovisual words, and environmental sounds while holding difficulty constant at two levels

(Easy/Hard). Results revealed left-lateralized sensorimotor μ/beta suppression that was

related to perception of speech but not environmental sounds. Audiovisual word and pho-

neme stimuli showed enhanced left sensorimotor μ/beta suppression for correct relative to

incorrect trials, while auditory word stimuli showed enhanced suppression for incorrect trials.

Our results demonstrate that motor involvement in perception is left-lateralized, is specific to

speech stimuli, and it not simply the result of domain-general processes. These results

provide evidence for an interactive network for speech perception in which dorsal stream

motor areas are dynamically engaged during the perception of speech depending on the

characteristics of the speech signal. Crucially, this motor engagement has different effects on

the perceptual outcome depending on the lexicality and modality of the speech stimulus.

https://doi.org/10.1038/s42003-020-01634-5 OPEN

1 Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC, USA. 2Human Cortical Physiology and Stroke
Neurorehabilitation Section, National Institute for Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA. 3 Swartz
Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, San Diego, CA, USA. 4 Clinical Trials Unit,
National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA. 5 Research Division, Medstar National
Rehabilitation Hospital, Washington, DC, USA. ✉email: turkeltp@georgetown.edu

COMMUNICATIONS BIOLOGY |           (2021) 4:108 | https://doi.org/10.1038/s42003-020-01634-5 | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-020-01634-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-020-01634-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-020-01634-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-020-01634-5&domain=pdf
http://orcid.org/0000-0002-3648-3142
http://orcid.org/0000-0002-3648-3142
http://orcid.org/0000-0002-3648-3142
http://orcid.org/0000-0002-3648-3142
http://orcid.org/0000-0002-3648-3142
mailto:turkeltp@georgetown.edu
www.nature.com/commsbio
www.nature.com/commsbio


While speech perception primarily occurs via temporal
lobe pathways1–4, there is now a wealth of evidence
that frontal lobe motor areas typically responsible for

speech production are also active during speech perception5–8

(see ref. 9 for a review). However, the role of these motor areas in
speech perception remains a matter of controversy, with some
researchers concluding that motor regions play at most a minor
supporting role2,10,11, and others suggesting that these areas are
essential for perception5,12,13. There are several possible expla-
nations for why motor areas activate during speech perception,
and understanding the specific stimulus and task contexts in
which these areas are engaged is a crucial step in evaluating these
competing hypotheses. In the context of the Rauschecker and
Scott dual-stream model1,4,14,15, the present study proposes spe-
cific hypotheses regarding the conditions under which motor
areas are flexibly engaged for speech perception. Using a novel
behavioral task combined with electroencephalography (EEG), we
test these hypotheses while addressing critical gaps in the
literature.

The dominant explanations for motor involvement in speech
perception stress the importance of articulatory motor plans,
suggesting that the motor system helps solve the “lack of invar-
iance” problem in speech perception by using representations of
motor plans to constrain the interpretation of incoming
information9,12,16–19. The idea that representations of speech
sounds in motor areas (including primary motor cortex, pre-
motor cortex, and Broca’s area (BA44/45)) provide a template for
decoding incoming input is especially common in studies inves-
tigating noisy or degraded speech12,16,17,20–23. These motor
modeling theories lead to two predictions: (1) that motor activity
during perception should be specific to speech or other “doable
sounds” that we have practiced articulatory plans for producing,
and (2) that motor involvement depends on the task context and
stimulus features. In contrast to motor modeling explanations,
alternative hypotheses suggest motor activity is not specific to
speech perception but instead reflects more domain-general
processes like attention, decision making, or early covert
rehearsal10,24,25.

In order to adjudicate between these competing hypotheses
and address critical gaps in the literature, we designed a beha-
vioral task that investigates four key stimulus features potentially
influencing motor activity during speech perception: (1) whether
the stimulus is speech or a non-doable, non-speech sound, (2)
whether the speech is lexical or sublexical, (3) whether the speech
is auditory-only or audiovisual, and (4) whether the signal is clear
or challenging to perceive. Importantly, this task also allowed us
to investigate whether motor processing is specific to speech
perception, or if, as alternate hypotheses suggest, it reflects more
domain-general processes10,24,25. Examining these stimulus fea-
tures addresses several unanswered questions. First, as mentioned
above, the dominant explanations for motor activity during
perception rely on modeling of internal speech representations,
suggesting that motor activity should be specific to sounds that
we have articulatory plans for producing. However, few studies
have directly addressed the question of speech specificity, and the
existing results have been inconsistent26,27. Second, prior studies
have almost exclusively examined phoneme or syllable perception
as opposed to whole words, with the few exceptions producing
ambiguous results28,29. In order to understand whether the motor
system participates in perception in real-world scenarios, it is
crucial to examine motor activity during whole word perception.
Third, evidence indicates that the motor modeling processes
thought to aid in auditory speech perception may be especially
engaged during audiovisual speech perception30–34. Given that
motor regions are more engaged in challenging listening
conditions21,22,35, it is possible that visual speech, which increases

the intelligibility of auditory speech, could have variable effects on
motor engagement depending on the ambiguity of the overall
audiovisual signal34,36–41. Fourth, while there is ample evidence
to support the idea that the motor system is preferentially
engaged when speech input is noisy or ambiguous12,21,35,42, other
results indicate that noise may not be necessary for motor
engagement7,8,28,43,44, and it is unclear how the effects of ambi-
guity interact with the content of the signal (i.e. auditory words/
phonemes vs. audiovisual words vs. non-speech). Finally, these
same motor regions are also involved in more domain-general
processes10,45–47, and most prior studies have been unable to
disambiguate between motor modeling and domain-general
hypotheses because they used tasks in which participants
choose from a small set of speech tokens on every trial20,27,48.
Small stimulus sets allow for rehearsal or preparation of any
perceptuo-motor templates ahead of the upcoming stimulus,
meaning that motor modeling can precede stimulus presentation
and decision making can begin almost simultaneously with per-
ception. Thus, factors like attention and decision making can
potentially influence the degree of motor engagement. The pre-
sent study addresses these issues in the following ways: (1)
comparing perception of speech and non-speech environmental
sounds, (2) comparing phonemes and whole words, (3) com-
paring auditory-only words and audiovisual words, (4) employing
adaptive staircase procedures to hold difficulty (ambiguity) con-
stant at two levels (Easy and Hard) and controlling for difficulty
across stimulus types, and (5) focusing on perception (as opposed
to decision making) by using large sets of stimuli and temporally
separating stimulus perception from answer choice presentation
and response. To accomplish this, we use a four-alternative
forced-choice (4AFC) task and examine EEG signatures of motor
activity (µ/beta rhythm event-related spectral perturbations
(ERSPs)). Mu/beta (8–30 Hz) power suppression, also known as
event-related desynchronization (ERD) and measured as a
decrease in EEG power relative to baseline, has been shown to
reflect increased motor system activity27,49–52 including the
production of single syllables and words53.

Using the Rauschecker and Scott dual stream model, we
hypothesize that stimulus features and task demands should
dynamically determine the recruitment of the dorsal and ventral
streams (Fig. 1). Specifically, we hypothesize that perception of
relatively unambiguous speech at the word level primarily relies
on the ventral stream, without the need for motor involvement.
The dorsal stream (motor system) becomes engaged for per-
ception of speech or other auditory signals derived from
“doable” actions, contributes to correct perception, and is
engaged preferentially under three conditions: (1) when ventral
stream processing is insufficient or inefficient because the signal
does not contain lexical information, and thus does not match
any stored auditory word forms, (2) when ambiguity in the
auditory signal creates uncertainty in the selection of a stored
auditory word form in the ventral stream, or (3) when the
presence of an additional signal or context, such as visual
speech, activates motor speech representations. In the first two
conditions, ventral stream processors, which rely on mapping
the incoming stimulus to auditory templates, are insufficient due
to either failure to identify a word (e.g., during perception of
phonemes or VCV tokens), or uncertainty in the identity of the
word (e.g., under high-noise conditions). Under these condi-
tions, the dorsal stream auditory-motor mapping pathway
provides a mechanism to either construct a novel form that
matches the auditory signal, or disambiguate the identity of the
item. In the third condition, we propose that while motor
activity is not necessary for accurate perception, it may be
engaged obligatorily in some conditions, for instance when
seeing another speaker produce the word.
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By systematically comparing auditory word perception with
the other stimulus types (auditory phonemes, audiovisual words,
and meaningful non-speech sounds), controlling for difficulty
across conditions, and focusing on a precise stimulus perception
widow, the present study demonstrates how specific stimulus
features influence the engagement of the motor system during
perception. Our results show left hemisphere µ/beta power sup-
pression (enhanced motor activity) during the perception of
speech stimuli, but not non-speech environmental sounds. Fur-
thermore, the magnitude of this activity depends on the char-
acteristics of the speech stimulus: audiovisual word and phoneme
stimuli showed greater motor activity for correct relative to
incorrect trials, while auditory word stimuli showed greater

motor activity for incorrect trials. These findings demonstrate
that motor activity is not simply the result of domain-general
processes and support a model in which the motor system is
flexibly engaged to aid perception depending on the nature of the
speech stimuli. Crucially, motor engagement has different effects
on the perceptual outcome depending on the lexicality and
modality of the speech stimulus.

Results
Behavioral results. The behavioral task is illustrated in Fig. 2. The
adaptive staircase procedures controlled for difficulty across sti-
mulus types and maintained performance at roughly 80% and
50% correct for the Easy and Hard levels (Fig. 3). While there

Fig. 1 Hypothesized dynamic, flexible engagement of the dorsal and ventral streams. The ventral stream is represented in light blue and the dorsal
stream in white. a Unambiguous lexical speech relies primarily on the ventral stream (black arrow). Ventral stream processing is insufficient or inefficient
for the processing of b sublexical tokens (yellow X) and c ambiguous/noisy lexical items (green X), and processing these items engages the dorsal stream
(yellow/green arrows). d While ventral stream processing may be sufficient for audiovisual items, the presence of visual input stimulates obligatory motor
modeling and dorsal stream engagement (blue arrows). Brain image taken from open source repository freeimages.com.

Fig. 2 Task conditions and trial schematic. A The eight experimental conditions. The level of noise remains the same, while the intensity of the stimulus is
altered to achieve the Easy and Hard SNRs. B Trial procedure featuring a sample auditory hard trial. The visual stimulus fades in for 500ms beginning at 1 s,
and remains until offset of the auditory stimulus. Auditory stimulus onset can occur any time after 2000ms, and offset must occur no later than 5000ms.
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were no significant interactions, the mixed-effects model revealed
an effect of difficulty (estimate=−29.09, std. error= 0.63, p=
0.000), indicating that the Easy and Hard levels were significantly
different within stimulus types. The mean accuracy on the lip-
reading task was slightly above chance (28.7% correct; p= 0.004,
one-sample Wilcoxon sign rank test vs. 25%), well below the
AVWord Hard score, demonstrating that participants used both
visual and auditory information to perform in the AVWord Hard
condition. When assessing differences in volume required to
maintain the 80% and 50% correct Easy/Hard thresholds, we
found a significant interaction between condition and difficulty (F
(3,69)= 3.75, p= 0.015), as well as a significant main effect of
difficulty (F(1,23)= 1295, p < 0.001) and a significant main effect
of condition (F(3,69)= 60.91, p < 0.001). Post-hoc pairwise t-tests
(Bonferroni corrected) revealed significant differences in volume
between Easy and Hard within each condition, and significant
differences in volume between each of the pairs of stimulus types

with the exception of AVWords and EnvSounds (SI Fig. 1 and SI
Table 4). Across both difficulty levels, the AudWord stimuli had
the highest mean volume, while the Phoneme stimuli had the
lowest. The difference in the volume required to achieve the same
accuracy level suggests that the stimulus types differed in their
inherent recognizability or difficulty. This further emphasizes the
importance of controlling for difficulty levels when comparing
behavioral and neural responses across stimulus types.

EEG results
Component clustering results. Independent component (IC)
clustering revealed roughly symmetric IC clusters in right and left
hemisphere sensorimotor regions (Fig. 4). Total number of ICs
per cluster were: left sensorimotor= 1143, right sensorimotor=
1097. As these matched our a priori areas of interest, the analysis
was constrained to these sensorimotor clusters.

Response analysis. In order to confirm the frequency range of the
motor-related ERSPs in this study, we first examined time-
frequency activity at the time of the button press (Fig. 5a). We
found strong bilateral power suppression in the 8–30 Hz range
associated with the button press. Typically, one expects µ/beta
suppression related to a motor movement to begin at the time of
the response ready signal or “go” cue54,55, and as expected, we
observed suppression in the 8–30 Hz range that began to ramp up
before the button press. To confirm that this button press-related
μ/beta activity did not contaminate the activity during the sti-
mulus period, we examined activity time-locked to the pre-
sentation of response options, which in this experiment serves as
the ready cue (Fig. 5b). In the left hemisphere, the µ/beta sup-
pression related to the button press begins after the start of the
silent post-stimulus waiting period at ~800 ms prior to answer
choice onset, which is well after stimulus presentation.

Time-frequency results across condition. Given our hypotheses
about motor involvement in perception, our initial analysis
examined µ/beta activity across all conditions in the left and right

Fig. 4 Independent component clusters in sensorimotor cortices. a Left and b right sensorimotor clusters. Component clusters were visualized using the
EEGLAB plugin std_pop_dipoledensity, with a Gaussian smoothing kernel set to FWHM= 15 mm. The probabilistic labels are determined using a confusion
sphere centered on the dipole density peak. The diameter of the sphere is the mean of the standard deviation of the centroid in MNI space, and the labels
represent the regions with the highest dipole concentration in the cluster, listed first by anatomical label and then by Brodmann area.

Fig. 3 Behavioral scores for each of the eight stimulus types and the
lipreading task. All tasks were 4AFC identification tasks. The dotted line
represents chance-level performance. Box plots are formatted in the
following way: center line is the median; box limits are the upper and lower
quartiles; whiskers are 1.5× interquartile range. (Significance levels: *= p <
0.05, **= p < 0.01, ***= p < 0.001).
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sensorimotor clusters in the 8–30 Hz window identified in the
button press analysis. We found a significant difference in μ/
beta activity between the hemispheres (estimated mean differ-
ence=−0.33, std. error= 0.04, p < 0.001). Within the time-
frequency analysis window (−200 to 1000 ms relative to sti-
mulus onset and from 8–30 Hz), mean EEG activity in the left
sensorimotor cluster (collapsed across all conditions) showed
strong µ/beta suppression relative to baseline that began prior
to stimulus onset, which continued through the epoch window
(estimate=−0.13, std. error= 0.06, p= 0.048, Fig. 6). In
contrast, the right sensorimotor cluster showed no evidence of
suppression, and instead showed increased power (event-rela-
ted synchronization, ERS) in the 8–30 Hz range (estimate=
0.20, std. error= 0.06, p= 0.002; Fig. 6). Given that µ/beta
suppression is indicative of increased motor activity27,49,50,53,56,
this result suggests that motor activity during perception is left-
lateralized. As such, the main analyses focus on the left sen-
sorimotor cluster.

Sensorimotor time-frequency results by stimulus type. Within
the left sensorimotor cluster, we examined effects of stimulus
type and accuracy on motor activity indexed via μ/beta sup-
pression, with greater suppression signifying greater motor
activity27,49,50,53,56. First looking within stimulus type, we find a
pattern of enhanced μ/beta suppression for correct relative to
incorrect trials for the AVWords (estimated difference= 0.29,
std. error= 0.11, p= 0.01), as well as for Phonemes, although for
Phonemes the difference was not significant (estimated difference
= 0.16, std. error= 0.10, p= 0.10; Fig. 7a). In contrast, the
AudWord stimuli showed the opposite pattern: enhanced sup-
pression for incorrect trials relative to correct trials (estimated
difference=−0.33, std. error= 0.11, p= 0.003). EnvSounds did
not show a significant difference between incorrect and correct
trials and the estimated difference was comparatively small
(estimated difference=−0.02, std. error= 0.10, p= 0.80). These
differences between correct and incorrect trials within each sti-
mulus type highlight the significant interaction between stimulus

Fig. 5 EEG activity during motor response. In both hemispheres, the strongest response-associated activity appears within the µ and beta frequency
ranges (8–30 Hz). All plots are baseline corrected at p < 0.001, FDR corrected. a EEG activity time-locked to the button press (dotted line). The button
press occurs at variable latencies, so previous trial events (e.g. answer onset) are smeared across the pre-response period. b EEG activity time-locked to
the onset of the answer choices (dotted line). The start of the silent post-stimulus waiting period occurs at −1000ms (solid line). The stimulus
presentation window stretches from −4000ms to −1000ms, and stimulus onset times vary across this window. In the left hemisphere, motor activity
begins to ramp up −500ms prior to answer choice onset. In the right hemisphere, motor activity does not begin until after answer choice onset.
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Fig. 6 Stimulus-locked EEG activity across all conditions. EEG activity across all conditions in the left and right sensorimotor clusters in the pre- and peri-
stimulus time window, masked for significant differences from the baseline period at p < 0.05, FDR corrected. Stimulus onset occurs at time zero
(dotted line).

Fig. 7 EEG activity in the left sensorimotor cluster. Mean EEG power (10 × log10(µV2/Hz) for a stimulus type and accuracy and b stimulus type and
difficulty level. Plots in c and d show the same mean values as a and b, but with individual data points overlaid. e Left hemisphere sensorimotor cluster
location, created using EEGLAB plugin std_dipoleDensity(), with a Gaussian smoothing kernel set to FWHM = 15 mm. Error bars represent mean ± 1.96 ×
standard error. Significance levels: *= p < 0.05, **= p < 0.01, ***= p < 0.001. Our analysis used a series of mixed-effects models with subject and
independent component (IC) as the random effects. The n for the above plots differs by stimulus type and accuracy/difficulty and is given in SI Table 5. The
average number of ICs per subject per condition is given in SI Table 6.
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type and accuracy (χ2(3)= 17.6, p < 0.001) found in the mixed-
effects model. This interaction was driven by the differences
between the AudWord and AVWord stimuli (estimate= 0.62,
std. error= 0.16, p < 0.001) and between the AudWord and
Phoneme stimuli (estimate= 0.50, std. error= 0.15, p= 0.006).
The difference between correct and incorrect trials was greater for
the AudWords than for the EnvSounds, although this difference
did not reach statistical significance after Bonferroni correction
(estimate= 0.31, std. error= 0.15, p= 0.22).

Next, we examined effects of stimulus type and difficulty level
(using correct trials only) and did not find a significant stimulus
type by difficulty interaction (χ2(3)= 5.0, p < 0.17). Descriptively,
however, we see that the difference between Easy and Hard trials
was greater for the AudWords than the Phonemes or the
AVWords (Fig. 7b). While the lack of a significant interaction
means that any main effects need to be interpreted with caution,
we ran a separate model to investigate whether we saw the same
pattern of responses for the different stimulus types when looking
at the Easy/Hard correct trials. We found a significant main effect
of stimulus type (F= 4.27, p= 0.006). The pattern of µ/beta
suppression showed greater motor activity regardless of difficulty
for AVWord and Phoneme stimuli than for the AudWord stimuli
(AudWord vs AVWord, estimate=−0.29, std. error= 0.10, p=
0.02; AudWord vs Phoneme, estimate=−0.29, std. error= 0.11,
p= 0.04). The AudWord stimuli showed almost no µ/beta
suppression for Easy trials and increased µ/beta power for Hard
trials (Fig. 7b). Again, there was very little modulation of µ/beta
activity for the EnvSound stimuli.

Given that the observed µ/beta ERSPs for the EnvSounds did
not appear to cross the zero axis (thus indicating no reliable
difference from baseline activity) in either the accuracy or
difficulty analyses, we used one-sample tests to investigate whether
any activity in the EnvSound condition was significantly different
from baseline. Mu/beta suppression was not significantly different
from baseline in any of the four EnvSound conditions (EnvSound
Correct, M=−0.049, SD= 0.811, p= 0.448; EnvSound Incorrect,
M=−0.076, SD= 1.086, p= 0.370; EnvSound Easy,M=−0.079,
SD= 0.722, p= 0.322; EnvSound Hard, M=−0.017, SD= 0.898,
p= 0.870, uncorrected). Each of the other stimulus types showed
significant modulation in one or more of the conditions (Aud-
Word Incorrect, M=−0.233, SD= 1.011, p= 0.039; AudWord
Hard, M= 0.238, SD= 0.863, p= 0.037; AVWord Easy, M=
−0.241, SD= 0.810, p= 0.025; Phoneme Correct, M= p= 0.019;
Phoneme Hard, p= 0.013, uncorrected; SI Table 3).

Discussion
Our analysis of µ/beta suppression in sensorimotor regions sug-
gests that motor involvement in perception is left-lateralized.
While the left hemisphere sensorimotor cluster showed increased
motor activity in response to the speech conditions, we observed
no significant modulation of motor activity to non-speech
environmental sounds, suggesting that this motor activity dur-
ing perception is not related to domain-general processing but
rather is specific to speech. Furthermore, we found that motor
engagement relates to correct perception of phonemes and
audiovisual words but incorrect perception of auditory-only
words. In line with our hypotheses, these findings suggest that the
motor system is flexibly engaged to aid perception depending on
the nature of the speech stimuli. More specifically, they suggest
that while motor activity aids in the perception of phonemes and
audiovisual words, processing auditory-only words via this motor
mechanism is ineffective. Other findings did not support our
hypothesis: we did not observe increasing motor engagement with
increasing ambiguity, and motor activity was unexpectedly rela-
ted to incorrect perception of auditory-only words.

In this study, our measure of motor activity was μ/beta sup-
pression (8–30 Hz) in the left sensorimotor cluster. Previous
literature has demonstrated that in sensorimotor areas, suppres-
sion in this 8–30 Hz range is related to increased motor
activity49,56–58, and this relationship between μ/beta suppression
and motor action has also been observed in EEG investigations of
speech perception and production27,53,59. However, it is impor-
tant to note that μ/beta suppression (ERD) has also been asso-
ciated with cognitive functions like the anticipation of an
upcoming response46,60 and cued attention61,62. While the
functional roles of these oscillations are still a matter of debate,
several factors indicate that the sensorimotor µ/beta suppression
observed here is specifically related to speech perception and
cannot be explained by anticipation, attention, other domain-
general or non-perceptual processes. First, all stimulus types were
presented within the same trial structure, meaning that the timing
(and thus anticipation) across types was held constant. Given that
the task structure and difficulty levels were constant across sti-
mulus types, the different patterns of results, both within the
speech stimuli and between the speech and environmental sound
stimuli, suggest that the observed μ/beta suppression is not simply
a reflection of general task demands such as attention, decision
making, cognitive control, or motor preparation for a button-
press. Second, our task was specifically designed to limit the
conflation of attentional processes with speech perception in
several ways: encouraging identification of the stimulus at the
time of presentation, separating perception from decision making
and motor preparation for the button press, and using a large
stimulus set to preclude the pre-loading of perceptual-motor
templates of the response options. Third, the temporal resolution
of EEG and the restriction of our analysis to the pre- and peri-
stimulus period indicates that the observed µ/beta suppression is
likely not a reflection of verbal working memory or early covert
production, which are common criticisms of studies investigating
these mechanisms on an extended time scale (refs. 20,63). Finally,
the pattern of μ/beta suppression observed in our study closely
matches the μ/beta ERD measured from a similar left hemisphere
cluster in a previous investigation of speech production by Jenson
and colleagues53, suggesting that the μ/beta suppression reported
here most likely reflects motor activity.

Our results indicate that increased activity in left hemisphere
motor regions may support the processing of specific types of
speech stimuli, possibly through internal modeling of speech
representations or a similar phoneme-level perception mechan-
ism. Furthermore, these results suggest an interactive network for
speech perception in which the dorsal and ventral streams are
flexibly engaged, and indicate that the degree to which the two
streams are engaged has different effects on perceptual accuracy
depending on stimulus type. Below we outline a number of pieces
of evidence that support this claim.

The strongest support for the idea that motor activity reflects
speech perception processes, and in particular, the modeling of
internal representations, comes from the observed differences
between the speech and environmental sound stimuli. Each of the
three speech stimulus types was accompanied by modulations in
µ/beta activity in the left hemisphere sensorimotor cluster. In
contrast, there was no significant modulation of µ/beta activity for
the environmental sounds, which aligns with prior literature
showing that non-speech sounds like tone-sweeps do not sig-
nificantly engage motor areas during perception27,64. Our results
demonstrate that in contrast to speech stimuli (both words with
semantic content and sub-lexical phonemes), the motor system is
not significantly modulated by semantically relevant, complex
sounds, thus providing further evidence for the hypothesis that
motor activity during perception is specific to speech and may
represent the modeling of articulatory representations.
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The strong left-lateralization of the observed µ/beta suppres-
sion provides further support for the hypothesis that this activity
relates to speech perception. Both the time course of the µ/beta
activity and the differences between conditions suggest that this
lateralization does not simply reflect preparation for a right-
handed response. First, during stimulus perception the left and
right hemispheres show opposite patterns of µ/beta activity
(Fig. 6), while during the button press there is strong bilateral µ/
beta suppression (Fig. 5) as is typical during a motor response65.
In our task, the button press did not occur until more than 1 s
after stimulus offset, and we found that, consistent with prior
literature, response-related increases in µ/beta suppression in
both hemispheres began at answer choice onset, and were tem-
porally centered around response onset54,55. Second, the button
press was constant across conditions, and it is unlikely that motor
response preparation could account for the different patterns of
µ/beta activity during perception of the different stimulus types.
Thus, our data suggest that during perception there is a functional
specialization of motor activity between hemispheres. Prior lit-
erature has shown that speech processing is strongly left-later-
alized, especially in dorsal stream regions3,4,66. In addition to
neuroimaging experiments showing a strong leftward-bias during
speech processing67, lesion studies demonstrate that unilateral left
frontal strokes are accompanied by lasting severe speech pro-
duction deficits68–71. We suggest that the left–right division in µ/
beta activity provides additional support that the observed left
hemisphere motor processing is specific to speech.

In contrast to the µ/beta suppression in the left hemisphere, the
right hemisphere exhibited a pattern of increased power centered
on the µ frequency. Event-related increases in alpha power have
been shown to reflect inhibition of task-irrelevant or distracting
information72,73, and both alpha/µ and beta rhythms have been
described as “idling rhythms” that display greater power at rest
and in which power suppression indicates release from
inhibition56,72. Research suggests that inhibitory processing is
right-lateralized74, and increased µ/beta power in right hemi-
sphere frontal regions has been related to inhibition of irrelevant
stimuli in a tactile detection task75. Most closely related to the
current study, Strauß et al. demonstrated that increased alpha
power may reflect auditory selective inhibition of noise during
listening to noise-masked speech76. Given that we find increased
µ power in the right hemisphere across all conditions, our results
are consistent with the notion that the right hemisphere may help
suppress task-irrelevant information.

Returning to the left hemisphere and examining the speech
perception conditions, we found opposite patterns of motor
activity for the AVWord and Phoneme conditions relative to the
AudWord condition. For both audiovisual words and auditory-
only phonemes, greater motor activity during perception was
related to correct perception. This result aligns with our hypo-
thesized role for the motor system in processing sublexical and
audiovisual stimuli. Taken in the context of prior literature
showing that motor regions display category-specific responses
during phoneme perception35,77,78, our results support the idea
that motor activity reflects the modeling of internal phoneme
representations. The fact that this activity is greater for correct
trials supports the idea that these representations help to decode
sublexical speech input. Importantly, the results of this study
replicate findings from several prior studies showing that motor
activity relates to correct phoneme perception in noise27,35,53, and
extends these findings by showing that this same pattern of
activity is not present during the perception of auditory-only
words. In fact, we show that greater motor activity (µ/beta power
suppression) is related to incorrect perception of auditory-only
words, and that correct perception is instead related to increased
µ/beta power. As mentioned above, increased power in the µ/beta

band has been shown to reflect inhibitory processing72,73,76.
Therefore, our results suggest that relying on the motor system to
process lexical stimuli is ineffective, and perhaps that inhibiting
motor system processing may even be helpful when perceiving
auditory-only words. Alternatively, it could be that, as hypothe-
sized, ventral route processing is normally sufficient for auditory-
only words, but during these incorrect auditory-only word trials,
ventral route processing is insufficient and the dorsal stream is
recruited in an unsuccessful effort to compensate and salvage
perception. This could explain the greater motor engagement
seen for incorrect auditory-only words and the lack of motor
activity for correct auditory-only words. By either interpretation,
motor activity does not contribute to successful perception of
auditory words.

Despite this finding for auditory-only lexical items, we find that
when lexical stimuli are accompanied by the corresponding visual
speech stimulus (talking face), we again see that increased motor
activity is related to correct perception. This indicates that while
engaging the motor system for auditory-only lexical stimuli may
be ineffective, these motor mechanisms aid in the perception of
audiovisual lexical stimuli. Visual speech has been shown to
engage the same frontal motor regions active during the pro-
duction or silent rehearsal of speech30,34,79. Given the shared
pattern of activity for the AVWords and Phonemes, perhaps the
presence of visual speech information biases processing toward or
facilitates access to sublexical motor modeling that can further aid
the decoding of auditory input during audiovisual perception.
Prior literature demonstrates that the presence of visual speech
makes auditory speech easier to understand by providing addi-
tional information to constrain the interpretation of auditory
input36, and our results suggest that the motor system provides
the neural basis for this process.

Why would this motor mechanism be ineffective without the
presence of visual speech information? Previous research indi-
cates that auditory lexical stimuli are processed rather efficiently
in the ventral stream14, and that the presence of visual speech can
speed neural responses to auditory speech32,80. Perhaps during
auditory-only lexical perception, motor-generated sublexical
template representations are less efficient than relying on ventral
stream processing alone, but the addition of visual speech allows
for earlier access to these templates and therefore a more bene-
ficial use of the modeling mechanism. It is worth noting that we
do not find a difference in the magnitude of motor activity during
the perception of phonemes and audiovisual words. It is possible
that both motor system processing of phonemes and audiovisual
words involves the same perceptuo-motor models, or that these
two stimulus types engage separate cognitive processes within
motor areas. Future studies using multivariate classification
methods may be able to address this question. More detailed
information regarding the onset and duration of the µ/beta
suppression for the different stimulus types would also be useful;
however, the variability of the stimuli in this study makes it
poorly suited to assessing differences in temporal characteristics
between stimulus types. Thus, further investigation is needed to
more fully characterize the different neural processes underlying
the perception of auditory words, audiovisual words, and pho-
nemes and to better understand why motor activity appears to be
beneficial for some stimulus types but not others.

As mentioned above, there is ample support for the idea that
motor activity may be preferentially engaged when the stimuli are
noisy or degraded16,17,21,23,35,48, however, our data do not sup-
port this claim. It may be that in our task, the Easy condition
already contained sufficient noise to evoke motor activity, and
that this lowered our ability to detect differences between Easy
and Hard trials. A second possibility is that there is a non-linear
relationship between difficulty and motor activity such that too
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little ambiguity does not evoke motor activity, but too much
makes the signal unintelligible and also results in less motor
activity. If this is the case, perhaps our Easy and Hard conditions
fell at points on this inverted u-shaped curve that did not allow us
to detect effects of difficulty. Finally, almost all the prior studies
investigating the effects of ambiguity on motor activity have used
limited stimulus sets, which may allow participants to prepare
motor templates of the response options prior to stimulus pre-
sentation, thus conflating perception with decision-related pro-
cessing. If the previously observed relationship between motor
activity and ambiguity was related to decision-making processes,
perhaps by addressing this confound in our study we removed the
effect of difficulty, thus focusing on an independent, perception-
specific aspect of motor processing.

While the results of the current study provide evidence that left
hemisphere motor regions may be beneficial for processing for
certain types of speech stimuli, there are several important lim-
itations to consider. First, the data presented here are correla-
tional, and do not reflect causal evidence. It is worth noting that a
prior study found that disruption of PMC impaired phoneme
perception but not word-level perception, lending causal support
for the dissociation between auditory words and phonemes
reported here29. However, in order to understand the exact
mechanisms and their functional relevance, more studies invol-
ving causal methods are needed. The second limitation of this
research is the spatial resolution of EEG source localization
techniques. Even with the most precise EEG source localization
techniques, the spatial resolution is such that we cannot separate
the relative contribution of nearby motor areas (e.g. ventral PMC
and M1). Future investigations of this question would benefit
from combining techniques like EEG and fMRI to resolve both
the time course and exact spatial locations of these processes
within cortical motor regions.

In conclusion, motor processing appears to be selectively
related to the perception of speech stimuli and is not simply a
result of domain-general processes like attention or decision
making. Furthermore, we demonstrate that activity in left hemi-
sphere motor regions aids in the correct perception of auditory
phonemes and audiovisual words, but is ineffective for processing
auditory-only words. These results provide evidence for an
interactive network for speech perception in which dorsal stream
motor areas are dynamically engaged during the perception of
speech stimuli. Crucially, this motor engagement has different
effects on perceptual outcome depending on the type of stimulus.

Methods
Participants. Participants were 24 healthy, right-handed adults (mean 23.9 yrs,
range= 21–31 yrs, 16 females) with no history of neurologic, psychiatric, or
learning disorder, normal hearing, normal or corrected to normal vision. Hand-
edness was assessed using the Edinburgh Handedness inventory81, and all parti-
cipants were native English speakers. Participants were recruited from Georgetown
University and the surrounding community, provided informed consent, and were
compensated as approved by the Georgetown University Institutional Review
Board. While 34 participants completed both sessions of the experiment, one was
excluded due to late age of English acquisition, two due to equipment errors, two
due to not having the minimum number of ICs (see SI Note 4) and five due to
overall noisy data. In addition to these local participants, an additional 288 par-
ticipants were recruited for a stimulus norming procedure conducted through
Amazon Mechanical Turk82. Online participants were also provided informed
consent and compensated in accordance with the Georgetown IRB.

Stimuli. We used a 4AFC task in which a stimulus was presented, and then
following a delay, the four options appeared as written words. We created four
types of stimuli: auditory-only words (AudWords), audiovisual words (AVWords),
auditory-only phonemes (Phonemes), and non-speech, auditory-only environ-
mental sounds (EnvSounds). Stimulus types were constructed so that each differed
from the AudWords by one feature: AVWords differed in the addition of visual
input, Phonemes differed in the lexical status of the stimuli, and EnvSounds were
semantically meaningful but were not speech. The AudWord condition served as
the reference point for comparison with the other conditions. All stimuli had a

mean duration of 1139 ms (SD= 239 ms, range 499–1935 ms). See SI Note 1,
Stimulus Details for further details on the content of each stimulus category. A full
list of the words, phonemes, and environmental sounds used in each condition of
the experiment can be found in Supplementary Data 1.

Task and procedure. The behavioral task was administered using a custom script
in the PsychoPy platform83. In order to manipulate the difficulty level of the task,
the auditory file for each stimulus was masked using pink noise and SNR was
manipulated by changing the volume of the stimulus, such that the level of noise
remained constant in all trials. Because the noise remained constant, and thus the
first 1.5 s of each trial were identical, a difficulty cue was presented at the beginning
of each trial to set the participant’s expectation and allow for effects in the pres-
timulus period (Fig. 2). Participants were seated in a dark room and instructed to
keep their eyes open and fixated at the center of the screen for the duration of the
experiment. They were told to listen carefully and select the answer that best
matched what they heard. Reponses were made by using the right hand to press
one of the four arrow keys on a keyboard. We choose to control for response-
related activity by separating the response from stimulus presentation by a mini-
mum of 1000 ms, and we performed a separate analysis (see Methods section
“Statistical analysis of EEG data”) to ensure that response-related motor activity
did not contaminate the stimulus perception window. Stimulus conditions were
presented in five blocks of 20 trials each, with the Easy/Hard trials alternating
within a block. Thus, each participant completed 100 trials per stimulus type/
difficulty combination, for a total of 800 trials in the entire experiment, which was
split across two sessions (SI Fig. 2). The AVWord and AudWord conditions were
presented in one session, with the Phoneme and EnvSound conditions in a separate
session. Sessions were separated by at least 1 day and no more than 2 weeks. Each
trial began with the difficulty cue, followed by the onset of the pink noise and a
1000-ms prestimulus period in which participants heard only the noise and viewed
a fixation cross. Following the prestimulus period, visual stimulation (morphed
image or still frame of the video) was faded in for all conditions. Stimulus onset was
jittered, and could occur within a 3000-ms window. In the AVWord condition, the
still frame of the video began moving with stimulus onset. Response options were
shown after a 1000-ms waiting period in order to ensure that decision making and
button press response preparation were separated from stimulus identification. The
delay also encouraged identification of the item rather than reliance on echoic
memory during the response period, and prevented the preparation of a
perceptual-motor model of the response options prior to stimulus onset. The task
used adaptive staircase procedures (PsychoPy MultiStairHandler) to achieve an
overall accuracy of 80% in each of the four Easy conditions and 50% in each of the
four Hard conditions. We chose to present the Easy stimuli in noise to avoid ceiling
effects and match input in the prestimulus period. Also note that for a 4AFC task,
80% is still quite easy and 50% is above chance. For more information on stimulus
recording and preparation, see SI Note 2.

EEG recording. EEG data were collected using a 128-channel HydroCel Geodesic
sensor net (Electrical Geodesic, Inc., Eugene, OR) and digitized at a sampling rate
of 500 Hz. Halfway through each experiment session, the behavioral task was
paused and the sensor impedances were checked and adjusted if necessary such
that impedances were kept below 70 kΩ for the duration of the experiment. All
channels were referenced to the vertex, and a bandpass hardware filter (0.1–100
Hz) was applied. All other EEG preprocessing was performed offline.

Behavioral analysis. All analyses were conducted in R Studio84. To assess dif-
ferences in accuracy between conditions, we conducted a 4 × 2 mixed-effects model
analysis using the lmer package with stimulus type and difficulty as fixed effects and
subject as a random effect (model = lmer (Score ~ Condition + Difficulty + (1|
SubID), data = Data). We also tested for correlations between each stimulus type/
difficulty level as well as correlations with the lipreading scores. Finally, since the
adaptive staircase procedure (SI Note 3) set a custom volume for each stimulus
type/difficulty level for each participant, we assess differences in the average
volume (dB) using a 4 × 2 repeated measures ANOVA using the anova_test
package (res.aov <- anova_test(data = Data, dv = Volume, wid = SubID, within =
c(Difficulty, Condition))).

EEG analysis
Preprocessing. EEG analyses were conducted in EEGLAB85. The data were first low-
pass filtered (FIR, Hamming window, filter order 330, cutoff frequency 57.5 Hz),
then down-sampled to 250 Hz, and finally high-pass filtered (FIR, Hamming
window, filter order 660, cutoff frequency 2 Hz). The data were subjected to a
combination of manual and automatic cleaning and artifact rejection procedures,
including adaptive mixture independent component analysis (AMICA), which
identifies stationary brain and non-brain (i.e. artifactual) source activities (see SI
Note 4, EEG Preprocessing). Following data cleaning and rejection, continuous
EEG data were epoched from −2 to 1.5 s relative to the onset of the stimulus sound
and subjected to a final round of quality control measures in channel space, and the
final average number of trials per condition per subject is shown in SI Table 2.
Performance was held at 80% correct for the Easy level, meaning the Easy Incorrect
category necessarily had a small number of trials. Given this low trial number,
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statistical analysis of the EEG data examined the effect of accuracy by collapsing
across difficulty, thereby ensuring a sufficient number of trials in each condition
(Correct (Easy+Hard) vs. Incorrect (Easy+Hard)). See section “Statistical ana-
lysis of EEG data” below for more detail on statistical analyses. Equivalent current
dipoles were estimated for each IC, and going forward all analyses were performed
at the IC (source) level rather than on channel data.

Time-frequency analysis and component clustering. All datasets were again loaded
into the EEGLAB STUDY structure, and time-frequency analysis (group-level
ERSP) was performed using a blend of Morlet-based Wavelet Transform (WT) and
short-term Fourier transform (STFT). An 836ms sliding window was used to
generate time-frequency data from −1 to 1.46 s (10 ms step) relative to stimulus
sound onset and from 4 to 55 Hz (log-scaled, 50 bins) while linearly increasing the
number of cycles from 3 cycles at the lowest frequency (4 Hz) to 10 cycles at the
highest (55 Hz). Single-trial values were averaged across trials then converted to
decibel (dB) units by dividing the by the mean baseline period power for each
frequency bin. This process automatically achieves cross-frequency normalization,
which addresses the issue arising from blending WT and STFT. The baseline period
was the second half of the prestimulus noise period, before visual stimulus fade-in
(418 to 582 ms relative to the onset of the noise, Fig. 2). This period contains
identical stimulation during all conditions, and using this baseline removes the
effect of listening to noise that is common to all conditions. Given our a priori
hypotheses regarding motor activity during perception, we chose to examine the
time-frequency activity at the source level. To do so, we used the EEGLAB STUDY
framework to perform k-means clustering based on dipole location only (SI Note 5,
Component Clustering). Time-frequency results within a cluster of interest were
compared across conditions. While there are general limitations of EEG source
localization that also apply to our methods, including the use of template channel
location, use of template MNI brain, and imperfect knowledge about electric
conductivity parameters in the forward model, dipole approximation is known to
work well for the EEG sources closer to the surface86. Because our region of interest
includes M1 and premotor areas, the localization error was expected to be minimal.

Statistical analysis of EEG data. We tested the effects of both accuracy and difficulty
level on our measure of motor engagement, µ/beta power suppression. Power
suppression, or ERD, in the µ/beta band has been shown to reflect increased motor
system activity49,50. Previous literature has focused on a range from ~8–30 Hz for
investigations of motor-related EEG oscillations27,51,52, including the production of
single syllables and words53. To confirm that this frequency range was related to
motor activity in our participants, we first examined time-frequency activity across
all conditions during the button press response. Since all responses were made
using a right-handed button press, there was some concern that motor activity
related to the button press may contaminate the stimulus perception period;
therefore, we also examined activity locked to the onset of the answer choices
before proceeding to the main analyses on the stimulus presentation period.

To focus the analysis on stimulus-related processing and limit the potential
influence from post-perceptual subvocal rehearsal of the stimulus, ERSP data from
8–30 Hz and from −200 to 1000 ms relative to stimulus onset were submitted for
final analysis. Previous work has shown that prestimulus EEG activity is related to
perceptual performance, with alpha (or µ) power suppression indicating a release
from inhibition and preparation for an upcoming stimulus87,88, and prestimulus µ/
beta suppression has been shown for correct trials during phoneme perception,
perhaps signaling a ramping up of motor processing20. Thus, we began our analysis
window 200ms prior to stimulus onset in order to incorporate preparatory activity.
Within a given cluster, the mean EEG power within this time-frequency window
was obtained for each IC for all trials within a stimulus/difficulty condition in that
cluster. These ERSP values were then entered into three linear mixed-effects
models using the lmer package (R Studio)84. First, we tested for differences between
the left and right hemisphere sensorimotor component clusters (collapsed across
conditions) with cluster as the fixed effect and subject and IC as random effects.
Next, within the left hemisphere motor cluster, the time-frequency values were
entered into two 4 × 2 mixed-effects models with subject and IC as random effects
and either (1) stimulus type and accuracy as fixed effects, or (2) stimulus type and
difficulty as fixed effects. Following each model, a likelihood ratio test was used to
assess whether the interaction terms significantly improved model fit. The
equations for the two mixed models in R are as follows (where IC refers to
independent component):

Model 1: Accuracy

model1 ¼ lmerðEEGmeans � Condition � Accuracy þ 1jSubjectð Þ þ ð1jIC NamesÞ; data ¼ DataÞ
Model 2: Difficulty

model2 ¼ lmerðWindowmeans � Condition � Difficulty þ 1jSubjectð Þ þ ð1jIC NamesÞ; data ¼ DataCorrectÞ
The total number of ICs per condition in the left sensorimotor cluster are

shown in SI Table 5, and the average number of ICs per subject per condition are
shown in SI Table 6.

Since correct trials represent those during which the participant is engaged in
the task and accurately perceiving the stimulus, the effects of difficulty level (Easy
vs. Hard) on EEG response were examined using correct trials only. Due to the low
number of trials in the Easy Incorrect category, the effects of accuracy (Correct vs.
Incorrect) were assessed by collapsing across difficulty level. Before the mixed-

effects model analysis, an outlier analysis (following Tukey’s rule of outliers) was
performed within each stimulus type/difficulty level combination and values that
were below Q1 − 1.5IQR or above Q3 + 1.5IQR were removed89. In addition to
the 4 × 2 mixed model analyses, we also evaluated whether each stimulus type/
difficulty and stimulus type/accuracy result was significantly different from baseline
using a one-sample t-test (one-sample Wilcoxon signed rank test for non-
normal data).

Statistics and reproducibility. The statistical tests and software packages used for
each analysis are described in detail in the corresponding Methods and Results
sections. As described in the Methods section “Participants”, all behavioral and
EEG analyses included data from 24 participants. For the EEG analyses, we used an
IC clustering procedure to extract EEG activity from the left and right hemisphere
sensorimotor regions. Different subjects contributed a different numbers of ICs (SI
Table 6), which we accounted for by using a linear mixed-effects models with
subject and IC as random effects. The total number of ICs per condition for the
linear mixed-effects models are given in SI Table 5.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
See Supplementary Data 2–4 for data underlying the following figures: Fig. 3
(Supplementary Data 2), Fig. 7 (Supplementary Data 3), and SI Fig. 1 (Supplementary
Data 4). The remaining EEG data that support the findings of this study are available
from the corresponding author upon reasonable request.

Code availability
The custom code used to create our behavioral task is available at Zenodo90: https://doi.
org/10.5281/zenodo.4279601.
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