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Mash-based analyses of Escherichia coli genomes
reveal 14 distinct phylogroups
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In this study, more than one hundred thousand Escherichia coli and Shigella genomes were

examined and classified. This is, to our knowledge, the largest E. coli genome dataset analyzed

to date. A Mash-based analysis of a cleaned set of 10,667 E. coli genomes from GenBank

revealed 14 distinct phylogroups. A representative genome or medoid identified for each

phylogroup was used as a proxy to classify 95,525 unassembled genomes from the Sequence

Read Archive (SRA). We find that most of the sequenced E. coli genomes belong to four

phylogroups (A, C, B1 and E2(O157)). Authenticity of the 14 phylogroups is supported by

several different lines of evidence: phylogroup-specific core genes, a phylogenetic tree

constructed with 2613 single copy core genes, and differences in the rates of gene gain/loss/

duplication. The methodology used in this work is able to reproduce known phylogroups, as

well as to identify previously uncharacterized phylogroups in E. coli species.
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E scherichia coli is a common inhabitant of the gastro-
intestinal tract of warm-blooded organisms and can also be
found in soil and freshwater environments1. The species

comprised both commensal and pathogenic strains, which can
cause disease in a wide variety of hosts2. For historical and
medical reasons “Shigella” strains have kept a separate genus
name, even though it has been well established for many years,
based on a variety of methods, that Shigella are effectively a
subspecies of E. coli3. In humans, pathogenic E. coli strains are a
leading cause of diarrhea-associated hospitalizations4. Some of
the reasons why E. coli is intensely studied are as follows: rapid
growth rate in the presence of oxygen, easy adaptation to envir-
onmental changes, and the relative ease with which it can be
genetically manipulated5. Genomic diversity of the species, to
which the genus Shigella has been proposed to be included6,7, is
reflected by the existence of several phylogenetic groups (phy-
logroups) that have been identified using a variety of different
methods8–10.

Historically, four phylogroups have been recognized as
detectable by triplex PCR: A, B1, B2, and D8,10, and three more
were added later11: phylogroups C (closest relative to B1), F (as a
sister group of phylogroup B2), and E to which many D members
were reassigned. Some studies have further subdivided these
phylogroups with subdivisions of F and D, and separate phy-
logroups for Shigella species12. Recently, Clermont et al.13 char-
acterized phylotype G using multiplex PCR as an intermediate
phylogroup between B2 and F. These phylogroups are thought to
be monophyletic10,12 and partially coincide with different ecolo-
gical niches and lifestyles. Moreover, phylogroups differ in
metabolic characteristics, the presence of virulence genes, and
also in antibiotic resistance profiles10,14–16.

As bacterial genome sequencing is becoming easier, faster, and
less expensive, several methods have been developed for whole-
genome comparison. Thus, the phylogroups originally char-
acterized by PCR and multilocus sequencing typing (MLST) and
multilocus enzyme electrophoresis (MLEE) appear to be distinct
phylogenetic clades, reproduced consistently from a variety of
different whole-genome-based methods12,17–19.

Here we describe a comprehensive analysis of over 100,000
publicly available genome sequences, consisting of 12,602
assembled genomic sequences from GenBank and over 125,000
unassembled genome sequences from the Sequence Read
Archive (SRA). This study combines whole-genome sequences
(WGS) and SRA unassembled genomes using high-
performance computing resources, to conduct, to our knowl-
edge, the largest analysis to date of the population structure of
E. coli. We have assessed the genomic similarities and differ-
ences between phylogroups to characterize the genetic hetero-
geneity of these different phylogenetic lineages. We have also
identified 14 “medoid”20 genomes that can be considered as the
genetic “center” of each of the phylogroups in our dataset and
can be used as a representative sequence for the associated
phylogroup. Furthermore, this study has application to the
fields of public health and medical science, as it provides
detailed information about the existing diversity of the E. coli
species enabling public health researchers to identify patho-
genic strains that belong to the same genetic lineage appearing
in outbreaks at different temporal and geographical locations.

Results
Dataset description. A set of 12,602 genome sequences, labeled
either Escherichia or Shigella, were downloaded from GenBank
and cleaned to obtain an informative and diverse set of 10,667 E.
coli and Shigella genomes (Supplementary Data 1). In addition to
the GenBank genomes, a total of 125,771 unassembled read sets

labeled as either E. coli or Shigella were downloaded from the SRA
database (see “Methods”).

Mash analysis of E. coli genomic sequences reveals 14 phy-
logroups. We utilized Mash21, a program that approximates
similarity between two genomes in nucleotide content, and an in-
house Python script to create a matrix of distances for all 10,667
genomes. This matrix was then clustered using hierarchical
clustering to produce a heatmap, which illustrates the population
structure of these genomes (Fig. 1). This methodology differ-
entiated 14 different phylogroups, consisting of 12 E. coli groups:
G, B2-1, B2-2, F, D1, D2, D3, E2(O157), E1, A, C, and B1, and 2
Shigella groups: Shig1 and Shig2 (ordered as shown in Fig. 1).
These groups were determined by using a cutoff, allowing the
most recently accepted phylogroup in the literature (Phylogroup
C) to split off. All genomes within each of these individual
phylogroups share a lower intragroup distance (meaning they
display a higher genetic similarity) than they do to any other
genome within the rest of the dataset. The phylogroups Shig1 and
Shig2 exclusively contained Shigella species, but Shigella sp.
genomes were also found in phylogroups A, B1, B2-2, D2, D3, E1,
and F (Supplementary Fig. 1). In addition, the genetic relatedness
between any phylogroup and the rest of the species is graphically
shown. For example, phylogroups A, B1, and C are more
genetically similar to each other than any one of these phy-
logroups are to B2-1 or B2-2, as illustrated by lower Mash dis-
tances between phylogroups A, B1, and C compared to B2-1 or
B2-2. Figure 1 also illustrates the phylogroup substructure or
intragroup genetic relatedness. E2(O157), Shig1, and Shig2 are
the most homogeneous, which can be seen by the limited range of
Mash distances within these phylogroups (Supplementary Fig. 2).
This suggests that these phylogroups contain relatively large
fractions of clonally related genomes. On the other hand, B1 and
B2-2 are more heterogeneous as shown by numerous smaller dark
teal squares that correspond to clusters of genomes that have a
lower Mash distance between them compared to the rest of the
genomes in that phylogroup. The relative abundance of phy-
logroup sequences can also be compared in Fig. 1. Phylogroup G
has the smallest number of sequenced genomes and B1 has the
largest number of sequenced genomes in the assembled dataset.

Microreact22, a web application developed to dynamically view
genetic trees and associated metadata, was utilized to further
explore the results of the Mash-based analysis, as this provides an
easy medium for researchers to determine the closest genetic
neighbors to any genome in this dataset. To leverage the search
function of Microreact for our dataset, we mapped and displayed
all available metadata found for our dataset from the database
PATRIC23 (downloaded on 20 June 2019). Further, MLST and
comparative analysis leveraging ClermonTyping methods24,25

were also performed and are shown along with Boolean
comparison from the results of ClermonTyping to the results of
our methodology. In addition, due to the inclusion of some
clinically relevant outbreak strains, such as O157:H7, O104:H4,
and O104:H21, basic retroactive genomic surveillance is possible
by identifying strains of known outbreaks and noting their
nearest neighbors. This data is available on Microreact at: https://
microreact.org/project/10667ecoli/c38356ec.

Currently sequenced E. coli and Shigella species can be repre-
sented by 14 medoid genomes. To increase the utility of our
analysis, we tested whether a minimal set of genomes could be
defined to represent the diversity of the 10,667 genomes with-
out suppressing any of the predicted phylogroups. As 14 phy-
logroups were detected, we tested whether one genome from
each of the phylogroups would be enough to accurately classify
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any genome sequence claiming to be E. coli or Shigella using
our methodology. Each of these 14 genomes represents the
medoid18 or the “genomic center” of each phylogroup based on
the 10,667 analyzed assembled genomes. Furthermore, to
investigate whether our clustering results were due to the data
itself and not due to bias in hierarchical clustering methods, we
utilized Cytoscape (version 3.7.1), an open source software
platform for visualizing complex networks26. In this analysis, a
sliding cutoff ranging from 0.04 to 0.0095 with a step size of
0.005 was used to isolate genomes to the medoid that they had
the lowest Mash distance to. Thus, the medoids were used as
anchors to evaluate how the rest of the genomes distributed
amongst the phylogroups according to the relative genetic
distances of the genomes as calculated by raw Mash values. Our
results show high correspondence with the recently proposed
evolutionary scenario for the E. coli species19 (Fig. 2a). The
Cytoscape analysis showed that the two B2 phylogroups are the

most genetically distinct from the remainder of the species as
they separate earliest from the other phylogroups. At the final
Mash value cutoff of 0.0095, the C and B1 phylogroups become
the last two groups to separate. This last split is indicative of the
relatively large shared genomic content between these two
phylogroups. The resultant Cytoscape graphs were collected
into a video available on figshare via https://doi.org/10.6084/
m9.figshare.13105235 and a collection of stills is hosted on
figshare via https://doi.org/10.6084/m9.figshare.11473308. An
overview of the Cytoscape results is shown in Fig. 2b. Between
the initial Cytoscape frame and the final frame, the number of
genomes represented decreased by 43%, whereas the edges
(connections between genomes and medoids) decreased by
96%. As the cutoff decreases, some genomes are no longer
represented in the Cytoscape analysis due to having no Mash
distance equal to or less than the applied cutoff. As expected,
the overall interconnectivity between the different phylogroups

Fig. 1 Heatmap representation of 10,667 genomes using Mash distances. The color bars at the top of the heatmap identify the phylogroups as predicted
from the analysis. The scale to the left of the dendrogram corresponds to the resultant cluster height of the entire dataset obtained from hclust function in
R. The colors in the heatmap are based on the pairwise Mash distances. Shades of teal represent similarity between genomes, with the darkest teal
corresponding to identical genomes reporting a Mash distance of 0. Shades of brown represent low genetic similarity per Mash distance, with the darkest
brown indicating a maximum distance of ~0.039. Genomes of relative median genetic similarity have the lightest color.
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drops significantly with the cutoff, but intraconnectivity within
the phylogroups does not. Upon visualization and inspection of
the data via Cytoscape, we could verify that each of the medoids
is representative of its entire phylogroup. We propose that the
14 medoids are suitable as proxies to decrease visual complexity
without sacrificing accuracy. Information about the 14 found
medoids is available in Supplementary Table 1. A representa-
tion of the division of the phylogroups via raw Mash distances
is shown in the movie available on figshare (https://doi.org/
10.6084/m9.figshare.13105235) and can be found in Fig. 2b.

Most sequenced E. coli genomes belong to four phylogroups.
The vast majority of E. coli genomic sequences are available as
unassembled genomes deposited in the SRA database. To assess
whether our medoids could be utilized to classify the phylogroup
of raw sequence reads, thus expanding the scope of our metho-
dology to unassembled sequences, we added a total of 125,771
read sets labeled as either E. coli or Shigella from the SRA data-
base. This dataset was first filtered by sequence quality (see
“Methods”), which resulted in a set of 95,525 genomes. As a way
to reduce computational load for classifying SRA reads, these
were compared to each medoid of the 14 phylogroups in an

asymmetric matrix. Of the remaining 95,525 read sets, two-thirds
(67%) belong to 4 phylogroups: A (23%), C (15%), B1 (15%), and
E2(O157) (14%) (Fig. 2c). This large disparity in phylogroup
diversity in the SRA dataset most likely reflects the research
interests of the scientific and medical communities. Strains
belonging to phylogroups B1, C, and E2(O157) are often patho-
genic and of interest to medical research and epidemiology,
whereas phylogroup A includes strains frequently used in the
laboratory (e.g., strain K-12) or genetically modified strains (such
as strains BL21 and REL606). A different distribution was
observed for the 10,667 assembled genomes, of which 70% belong
to four phylogroups: B1 (28%), A (21%), B2-2 (13%), and Shig2
(8%). In the assembled genomes dataset, phylogroup C is repre-
sented by 5% and E2(O157) is by 7% of the genomes in that set. It
is somewhat unexpected that the assembled genomes have a
different distribution of genomes than the unassembled dataset;
however, this could be due to the speed and low costs involved to
produce unassembled genome reads, where their utility is suffi-
cient for genomic surveillance of outbreaks. A breakdown of the
results for the SRA analysis including the number of medoid hits
below the cutoff is summarized in Supplementary Data 2. In
addition, a collection of heatmaps with different membership

Fig. 2 Summary of phylogroup differentiation and heatmap representation of sequence reads from the SRA database. a Evolutionary scenario in the
diversification of E. coli adapted from Gonzalez-Alba et al.19, based on their methodology “SP-mPH,” a combination of “stratified phylogeny” and “molecular
polymorphism hallmark.” Each branch reflects SNPs accrued by each phylogroup over time. Branch length is not proportional to the observed evolutionary
distance. b Summary of the Cytoscape analysis. Phylogroups are colored based on the same color scheme in Fig. 1. Phylogroups with more than one
member are gray colored. The Mash distance at which each division occurs at is indicated by numerical value in the gray bar that runs down the side of this
panel. c Clustered heatmap of 91,260 unassembled sequence reads. The heatmap colors are based on the pairwise Mash distance between the SRA read
sets and the 14 medoid genomes, one for each phylogroup, which are presented in the same order as in Fig. 1. To be included, SRA reads sets had to have
three or more medoid comparisons producing a Mash distance equal to or less than 0.04. This removed 4265 SRA read sets from the dataset. The number
of SRA reads mapped to each medoids is given below the heatmap. Additional heatmaps of the SRA data can be found in Supplementary Figs. 3–16.
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cutoffs, ranging from 1 to 14 phylogroups, can be found in
Supplementary Figs. 3–16.

Members of Mash phylogroups possess different genomic fea-
tures. As Mash values provide a measure of similarity via distance
between pairs of genomes, the phylogroups of Fig. 1 are the
consequence of differences/similarities in the genetic content of
each genome with respect to the rest of the genomes included in
the analysis. Differences in genome size and percentage of GC
content between phylogenetic groups were observed for the
10,667 assembled genomes (Supplementary Fig. 17) and statistical
tests were performed by analysis of variance (ANOVA) and
Tukey’s multiple comparison test (see “Methods” and Supple-
mentary Data 3), suggesting that genomes from phylogroups
Shig1, Shig2, A, B1, and B2-1 are significantly smaller in size than
those from phylogroups E2(O157) and C (P < 0.01). The smaller
genome size of the strains from both Shigella phylogroups is
indicative of a reductive evolution of the genomes of these strains
as previously described27, which is mainly driven by their
pathogenic nature. Other enteroinvasive E. coli strains such as
serotypes O124, O152, O135, and O112ac were classified inside
phylogroups A (which also contains engineered, lab, and com-
mensal strains) and B1 (often containing commensal enteric
strains), which are the most heterogeneous phylogroups due to
the diverse nature of their strains in terms of their environmental
niches. This heterogeneity is also reflected in the large ranges of
genome size and GC content of these two phylogroups. However,
reduced genome size is not associated with pathogenicity per se,
as the large genomes of E2(O157) and C phylogroups illustrate.
Larger genome sizes associated with virulence may result from
the accumulation of virulence genes in prophages, pathogenicity
islands, and plasmids28, such as the large genomes of E2(O157)
and C phylogroup members illustrate. Significant genomic dif-
ferences in GC content, with respect to other phylogroups were
only found for the two Shigella phylogroups (P < 0.01), which also
agrees with an ongoing purifying or negative selection occurring
in these genomes27. These characteristics might reflect the dif-
ferent evolutionary strategies and opposite selection pressures as a
consequence of adaptation to diverse niches in which the differ-
ent phylogroups have evolved29.

Level of preservation of homologous genes varies between
phylogroups. To evaluate the existence of functional traits asso-
ciated with each of the phylogroups, we conducted pangenome-
approach based analyses using the proteomes of the 10,667
assembled genomes (translated from the respective genome
sequences under a set of standardized conditions). In addition,
separate pan and core genomes were calculated for the 14 indi-
vidual phylogroups. This approach allowed us to highlight the
unique proteomic cores of each phylogroup, which in turns helps
to define their distinct biology. The total set of genes of the
species (pangenome) is comprised of 135,983 clusters of homo-
logous proteins (Table 1). By testing the cutoffs for core genome
conservation from 90% to 99% of the genomes (Supplementary
Fig. 18), we concluded that, although the traditional cutoff for
core genome calculation of 95% of genomes would suffice, a
cutoff of 97% can minimize erroneous false positive core genes
thus providing a more stringent result. Therefore, we defined the
core genome as homologous genes shared by at least 97% of the
genomes (TOTcore97), which produced a core genome of 2663
clusters, representing only 1.96% of the total pangenome clusters.
The TOTcore97, colored green in Fig. 3a, contains the well-
preserved genes that define the species, and for the shortest
sequenced genomes (e.g. E. coli str. K-12 substr. MDS42, phy-
logroup A), these constitute ~74% of their gene content; in
contrast, for the largest genomes (e.g., E. coli Ec138B_L1, phy-
logroup A), this fraction is only about 32%.

In the same manner, we defined the specific core genome for
each of the phylogroups of the study (PHYcore97) using the same
parameters described above. By defining these phylogroup-specific
core genes, it becomes apparent that large differences exist between
the levels of gene preservation for each of the phylogroups
(Fig. 3a). Predictably, the phylogroup with the largest number of
PHYcore97 gene clusters is E2(O157). Not only do its members
have large genomes, but this phylogroup is also very homogeneous
as it mostly contains E. coli O157:H7 strains that have a clonal
origin30. Relatively large PHYcore97 are also observed for
phylogroups C, harboring strains of clinically relevant non-O157
enterohemorrhagic (EHEC) serotypes such as O111 and O26, and
for phylogroup Shig2. The latter contains relatively short genomes
and it is mainly composed of Shigella sonnei strains, suggesting
that these phylogroups are relatively homogeneous which increases

Table 1 Summary of pangenome analysis results.

Phylogroup Core genome (97%
strains)

Accessory genome Unique Total (Pangenome) Core/
pan (%)

No. of
strains

Clusters Proteins Clusters Proteins Clusters Proteins Clusters Proteins Clusters

All 2663 28,566,052 82,821 22,783,754 50,499 51,099 135,983 51,400,905 1.96 10,667
A 3184 7,142,893 41,769 3,246,591 24,501 24,828 69,454 10,414,312 4.58 2232
B1 3141 9,365,646 44,019 4,887,086 24,590 24,844 71,750 14,277,576 4.38 2960
B2-1 3708 2,016,812 10,990 619,867 7048 7180 21,746 2,643,859 17.05 541
B2-2 3425 4,709,983 22,762 1,819,538 12,566 12,763 38,753 6,542,284 8.84 1367
C 3899 2,132,258 10,413 738,879 5242 5290 19,554 2,876,427 19.94 540
D1 3666 1,006,271 10,012 318,372 7659 7770 21,337 1,332,413 17.18 273
D2 3524 626,693 11,703 221,033 6765 7181 21,992 854,907 16.02 177
D3 3754 668,359 7252 201,292 4814 4936 15,820 874,587 23.73 177
E1 3151 885,018 14,883 471,354 7969 8088 26,003 1,364,460 12.12 279
E2(O157) 4060 3,080,073 6128 743,413 4442 4535 14,630 3,828,021 27.75 750
F 3486 698,031 9465 288,420 5381 5480 18,332 991,931 19.02 199
G 3783 365,756 5716 98,269 4016 4066 13,515 468,091 27.99 96
Shig1 3128 564,868 4903 256,426 2815 2883 10,846 824,177 28.84 177
Shig2 3732 3,383,814 6870 719,247 4751 4799 15,353 4,107,860 24.31 899

Values obtained from the different pangenome analysis using the 14 phylogroups separately and the entire set of assembled genomes (10,667 genomes) using UCLUST47. The same parameters were
used throughout all of the analysis.
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the size of the core genome and decreases the fraction of accessory
genes. At the other end of the spectrum, the phylogroup with the
smallest core genome is Shig1 followed by phylogroups B1, E1, and
A (Table 1). The small core genome of Shig1 is related to its small
genome size, whereas more numerous phylogroups A, E1, and B1
contain more diverse members, resulting in a larger fraction of
accessory genes and a smaller phylogroup-specific core. This
observation concurs with the tendency of environmental species

that usually present open pangenomes with higher ratios of
accessory and unique genes31,32. Nevertheless, although Shig1
phylogroup has the smallest number of core genes, this number
represents almost 29% of the total clusters found in this
phylogroup (Table 1), which is the highest ratio of core gene
clusters per phylogroup-specific pangenome of the analysis.
Phylogroups with fewer members can also produce larger core
genome fractions with respect to their pangenome due to sampling

Fig. 3 Pangenome representations of E. coli and Shigella. a Each bar length of the circular bar plot represents the total number of proteins of a single
genome, grouped by phylogroup. The proteins belonging to the TOTcore97 genome are shown in green. Additional proteins shared in each PHYcore97
genome are shown in blue, whereas purple is reserved for accessory proteins. b Principal Coordinate Analysis plot of 135,983 protein families of 10,667
assembled genomes. Phylogroups are indicated by the same color scheme used in Figs. 1 and 2. c Core genome matrix of 6719 phylogroup core clusters
and 10,667 assembled genomes. Clusters are sorted such that the core for the species is placed first, then the phylogroup core genes are placed, sorted by
their overall abundance in the species for each phylogroup in the same order as Fig. 1; finally, the remaining clusters are placed by overall abundance.
Phylogroup unique core genes are indicated by purple blocks which do not appear in other phylogroups.
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biases, as exemplified by phylogroup G. This phylogroup was
recently described as a multidrug-resistant extra‐intestinal patho-
genic (ExPEC) phylogroup13. G strains are closely related to strains
from the B2 complex, and are commonly isolated from poultry
and poultry meat products, which coincides with our analyses and
available metadata. Although phylogroup G has the fewest number
of strains in our dataset, we believe that the high core/pan ratio of
this phylogroup is due to the overabundance of the sequence type
ST117 (79% of the strains), which makes this phylogroup quite
homogeneous. Based on these observations, we propose that
although the relative ratio of PHYcore97 to the total phylogroup
pangenome clusters is a measure of the intragroup diversity. This
must be interpreted with care, due to the uneven representation of
genomes in the dataset.

To analyze the distribution of the 14 phylogroups in terms of
their shared genetic content, a two-dimensional projection of the
presence or absence of all protein families (complete pangenome)
for the 10,667 assembled genomes is represented by a Principal
Coordinate Analysis (PCoA) as shown in Fig. 3b. Phylogroups
segregating on the left side of the Y axis (B2-1, B2-2, G, F, D1, D2,
D3) comprise phylogroups that contain large numbers of strains
labeled as extra-intestinal E. coli strains (ExPEC)13,15,33. The
observed overlap of B2-1 with the B2-2 phylogroup in Fig. 3b
could be due to their shared evolutionary history. For example, in
silico MLST analyses shows that at least 80% of B2-1 strains
belong to the sequence type ST131, a multidrug-resistant clonal
complex of ExPEC strains that recently emerged from the B2-2
phylogroup34. This explains the high degree of homogeneity of
the B2-1 phylogroup. Moreover, strains characterized as ST131
were not found in other phylogroups in our dataset. It appears
that the rapid and differential acquisition of unique virulence and
mobile genetic elements by ST131 strains35 allows discrimination
between B2-1 (mainly ST131 strains) and B2-2 phylogroups using
WGS approaches such as applied here.

Although most of the phylogroups seem to have a relatively
horizontal distribution within the PCoA plot, phylogroups E2
(O157) and Shig2 show a striking variance in their vertical
distribution compared to the other phylogroups. As commented
above, Shig2 and E2(O157) are relatively homogeneous phy-
logroups, with a large PHYcore97 that contains more than 1000
protein families than the TOTcore97 of the species. These
phylogroup-specific core genes may contain genetic signatures
that are not present in the core genome of the other phylogroups,
resulting in intrinsic and distinguishable traits that are detectable
in the PCoA analysis, and that differentiate them in terms of
genetic content from the rest of the phylogroups.

To represent the existence of unique phylogroup-specific core
genes, we made a comparison only considering the 14 PHYcore97
genes. These were re-clustered using the same parameters as in
the previous pangenome analyses. Figure 3c is a representation of
the sorted resultant clusters, placing clusters from the TOTcore97
first, followed by the PHYcore97 clusters from the rest of
phylogroups. Sorting the clusters in this way highlights clusters
of core genes that are exclusive to the PHYcore97 of a given
phylogroup. As can be observed, phylogroups E2(O157) and
Shig2 possess the highest proportion of unique core genes
(protein family clusters (columns) colored in purple that are not
present in the other phylogroups), followed by C, B2-1, and Shig1
phylogroups. Well-defined phylogroup unique core genes were
also found for D3 (often containing uropathogenic multidrug-
resistant strains, mainly ST405 and ST38) and D1 (containing
uropathogenic multidrug-resistant strains, predominantly ST69).
These phylogroup-specific core genes, along with their associated
functional features, are listed in Supplementary Data 4. Some of
these gene clusters comprise interesting characteristics, of which a
limited selection is worth briefly mentioning here. A unique set of

genes for synthesis of flagella is present in all strains belonging to
the C phylogroup, which differs from flagellar synthesis genes in
the other phylotypes; a complete set of genes for the transport of
iron and ribose is present in all members of phylogroup E2(O157)
but variably present in other phylotypes; and a set of genes for the
synthesis of siderophores is found conserved in B2-1 phylogroup
members (Supplementary Data 4). These mentioned genes may
occasionally be observed in other phylogroups but are part of the
PHYcore97 for the specified phylogroup only. These observations
support the existence of 14 distinguishable phylogroups within
the species that have different gene contents, although these genes
result in phenotypes (motility, iron uptake, etc.), which are found
in most members of all phylogroups. Thus, the phylogroups,
originally identified by MLEE36 and here redefined by MASH
analysis, are distinguishable also by gene content, for traits that
are nevertheless phenotypically widespread within the species.

However, not all recognized phylogroups harbor clearly
recognizable phylogroup-specific core genes. Phylogroups A and
B1 have the weakest unique core signatures observed (along with
D2 and E1 phylogroups), which could be explained by the
heterogeneous nature of both phylogroups. Although B1
comprised strains mainly isolated from fecal sources, it also
contains enteropathogenic strains (EPEC), EIEC strains, and
most of the Shigella strains, such as Shigella boydii and Shigella
dysenteriae, which were not classified by Mash analysis as Shig1
or Shig2 phylogroups (Supplementary Fig. 1 and Microreact
data). These Shigella strains within B1 form a small group in the
PCoA plot as the B1 small cluster just on top of the Shig1 cluster.
It is interesting to note that, although phylogroups A and B1 are
well-defined and historically described phylogroups, they are also
considered as a sister phylogroups with a shared evolutionary
history9,15,37. This is corroborated by our analysis, e.g., by their
partial overlap observed in Fig. 3b and their late segregation
observed in the movie available via figshare (https://doi.org/
10.6084/m9.figshare.13105235) and Fig. 2b at a Mash distance of
0.0115.

Phylogroups evolve with different gain/loss rates of protein
families. As the medoids were shown to be suitable representative
entities of the 14 phylogroups and the TOTcore97 genome was
established, a robust phylogeny analysis could now be performed
based on the concatenated independent alignment of 2613 TOT-

core97 gene clusters without paralogs using a maximum like-
lihood approach (Fig. 4a). Such an approach would appear to be
difficult, if not almost impossible, with datasets of more than a
thousand genomes, due to computational costs. The obtained
phylogenetic tree, along with a matrix containing the number of
homologous genes per protein family for each representative
genome, were used to measure family sizes and lineage-specific
events applying an optimized gain–loss-duplicated model. Dif-
ferences in gene content between the medoids lead to the
observation that the different phylogroups have evolved with
different gain/loss/duplication rates of protein families (Fig. 4b).
Relatively high ratios of gene expansion were observed for phy-
logroups Shig1, Shig2, C, and B2-1. As expected, due to their
smaller genomes, Shig1 and Shig2 possess the highest ratios of
gene loss, while Shig1, C, and Shig2 have the highest rates of gene
duplication. On the other hand, phylogroups A, B1, D2, D3, and
F have the lowest rates of gene gain, indicating these phylogroups
have undergone limited gene expansion. It is also interesting to
note that phylogroups D2, B1, and G have much lower rates of
gene duplication compared to the other phylogroups. In short, all
phylogroups showed differential gain/loss duplication ratios of
gene families, even those that share a presumed ancestral history,
such as the B2, D, and E phylogroups. Interestingly, differences
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observed in genome size between members of phylogroups E1
and E2(O157) (Supplementary Fig. 17) seems to be due to a
higher ratio of duplication relative to the acquisition of new gene
families. High ratios of gene duplication in EHEC strains and
other E. coli pathotypes has been reported in other studies38. As
stated before, D1 and D3 phylogroups contain many UPEC
strains that are mainly represented by one or two predominant
sequence types. Conversely, D2 strains are typically isolated from
non-human sources with a large variation of sequence types.

Differences in gain/loss/duplication ratios are indeed more evi-
dent in D2 strains with a remarkable ratio of gene loss regarding
the other D phylogroups.

Discussion
Mash-based analysis provides a fast and highly scalable k-mer
based approach that can be used on extremely large sets of
genomes21. The methodology applied here enabled us to classify a

Fig. 4 Phylogenetic representations of E. coli species using the core genome of the 14 medoids. a The tree was built using a set of 2,613 core clusters
with no paralogs using IQ-TREE50. b Summary representation of Count output. The phylogenetic tree presents the different gain/loss/duplication ratios
obtained per each phylogroup as output of Count v.10.04 software51. Dots in branches represent “informative ellipsis” where the length of the undotted
section of the branch multiplied by the inverse ratio of undotted section is equal to the true rate of the branch. For example, assuming the displayed branch
length is 1 and 1/10 of the branch is solid, then the true rate of the branch would be 10. Gain/loss/duplication rates for each branch are shown in the table.
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cleaned set of 10,667 assembled E. coli strains (Fig. 1) and a
filtered set of 95,525 unassembled genomes (Fig. 2c). Based on the
analysis of more than one hundred thousand genomes, the
population structure of E. coli species appears to be more diverse
than currently thought19,24. The described Mash-based clustering
method detected 14 phylogroups with a remarkably unequal
distribution of membership in regards to the number of genomes
per phylogroup, unveiling a bias in raw sequencing data towards
members of phylogroups A, C, B1, and E2(O157). A different bias
was observed for assembled genomes with B1, A, B2-2, and Shig2
being the most populated phylogroups.

Findings based on Mash analysis were supported by differ-
ences found in the genomic content of the 14 phylogroups that
can be broadly defined into two categories: differences in
conserved genes between and within phylogroups and differ-
ences in their phylogenetic profiles. Comparison of the pan-
genomic profiles via PCoA analysis revealed that each of the
phylogroups possess a unique distribution within the space with
the exception of phylogroups that share a recent evolutionary
history such as phylogroups B2-1 and B2-2, or A and B1
(Fig. 3b). Moreover, the 14 phylogroups presented different
levels of preservation of their core genome (Fig. 3a) and dif-
ferent gain/loss rates of protein families (Fig. 4b). It is also
worth mentioning that most of the phylogroups described here
contain unique core genes shared by all the strains of that
phylogroup, but which are not present in the core genome of
the others (Fig. 3c).

Most of the phylogroups identified here that have not pre-
viously been described consist of strains grouped in mainly one or
more clonal complexes, such as ST131 in the case of B2-1 phy-
logroup and O157:H7 in the case of E2(O157). Although it is
widely accepted that the genetic structure of E. coli species is
predominantly clonal10,39, recent analyses have acknowledged
that recombination events between E. coli strains occur at almost
the same frequency as mutations; nevertheless, the ratio and scale
of recombination is not sufficient to avoid the propagation of
clonal lineages40. Further studies have suggested that the fre-
quencies of homologous recombination and mutation rates in E.
coli species can vary considerably and may correlate mainly with
the lifestyle of the investigated isolates. Both kinds of mutational
events are higher in pathogenic than in commensal members of
the species and positively correlate with the number of virulence
genes of each strain40,41 and with physiological conditions related
to the environment42. The ratios of core/pangenome from Table 1
show that the core genome of phylogroups dominated by
pathogenic and multidrug-resistant strains is significantly more
preserved than in those phylogroups characterized by the pre-
sence of commensal (B1) and engineered and lab strains (A). This
is in accordance with previous works that claim that recombi-
nation events seem to occurs more frequently in the core genome
of the commensals strains and are less provable in the core
genome of intestinal pathogens and multidrug-resistant extra-
intestinal pathogenic strains43, which accumulate increasing
levels of variability in their accessory and unique genomes.

A comparison of our classification method to Oliver Cler-
mont’s accepted PCR phylogrouping protocol (as implemented in
ClermonTyping, which mimics in vitro PCR assays24) revealed
that 9% of the genomes in our dataset are untypable by in silico
PCR-based methods. In addition, another 7% of the genomes had
discrepancies between ClermonTyping’s PCR-based prediction
and the Mash screen-based prediction implemented in the Cler-
monTyping method. Strikingly, ClermonTyping predictions
conflicted for 47 of the 96 phylogroup G genomes in this study;
PCR-based predictions indicated these strains were in phylogroup
G but the Mash screen-based prediction indicated that these
strains belong to phylogroup F.

The exponential increase in data availability requires new
computational methods utilizing meaningful and balanced
reductions to keep pace with the rate of data generation. For this,
we suggest the use of medoids as representative entities for their
respective phylogroup, the validity of which was demonstrated
here. By utilizing all the assembled genomes to obtain an estimate
of the population structure of E. coli, as currently sequenced, and
reducing the population structure to a single representative for
each subgroup, the computational demand of classifying unas-
sembled reads (meaning the number of comparisons required)
was reduced 762-fold. A reduction of this magnitude can enable
researchers without high-performance computing resources to
perform very large-scale population structure analyses that pre-
viously would have been computationally impractical. In addi-
tion, utilizing a reduction methodology similar to the one
described here to reduce the population structure of a bacterial
species to a 1 : 1 ratio among all subgroups helps reduce the
effects of sequencing bias by ensuring each subgroup has equal
representation in any subsequent analyses using the reduced set
of genomes.

The results presented here indicate that the use of WGS ana-
lytical techniques, such as Mash, enable the detection of traceable
genomic changes that are not detected by more target-restricted
methods such as PCR. The use of WGS analysis techniques also
can enable researchers to rapidly detect the emergence and spread
of new pathogenic and/or antibiotic-resistant clonal complexes.
We therefore conclude that analysis of WGS data using Mash to
assess a bacterial species’ genetic substructure is a useful approach
to increase our understanding of bacterial diversity.

Methods
Data acquisition and cleaning. To conduct the analysis, 12,602 genome sequences
labeled either Escherichia or Shigella were downloaded from GenBank on 26 June
2018 using batch Entrez and the list of GCAs accession numbers from NCBI
Genome database (including plasmid sequences when applicable). This dataset
(Supplementary Data 1) was cleaned to obtain an informative and diverse set of
10,667 E. coli and Shigella genomes that captures the diversity of the species as
sequenced to date. In addition to the GenBank genomes, a total of 125,771 read sets
labeled as either E. coli or Shigella were downloaded from the SRA database. After
cleaning the dataset, we utilized Mash21, a program that approximates similarity
between two genomes in nucleotide content, and an in-house Python script to
create a matrix of distances for all 10,667 genomes. This matrix was then clustered
using hierarchical clustering after converting the Mash distance to a Pearson’s
correlation coefficient distance, to ensure that clustering results were based on a
genome’s overall similarity to the whole species.

To evaluate the quality of the dataset, various sequence quality scores were
calculated as described by Land et al.44. Following the recommended quality score
cutoff value of 0.8, the dataset was filtered to include only genomes with a total
quality score of 0.8 or higher. Applying the same cutoff value to the sequence
quality score alone resulted in an extremely restricted dataset that no longer
addressed the goals of this study. Genome size was restricted to >3Mb and <6.77
Mb, to remove questionably sized genomes, which could be due to contamination
or modified genomes that are not representative of the natural E. coli species. After
applying these two steps, 10,855 genomes remained in the assembled genome
dataset for analysis.

To further clean the dataset, we filtered genomes that were outside the statistical
distribution of Mash distances within the dataset. Assuming that Shigella species
are all members of E. coli, we decided to use type strains for the Escherichia and
Shigella genera (accession numbers GCA_000613265.1 and GCA_002949675.1,
respectively) to quickly filter the set of 10,855 genomes for erroneous or low-quality
genomes that may have slipped through the previous cleaning steps. The Mash
values of the 10,855 genomes compared to each type strain were broken into
percentiles ranging from 10% to 99.995%. A cutoff percentile of 98.5% was
determined to provide sufficient cleaning without risking a large loss of data
(Supplementary Data 1) and was applied to each type strain Mash value set.
Genomes that were found in both sets after filtering were retained to produce the
final dataset of 10,667 genomes.

Microreact analysis. Microreact22 was utilized to visualize the resultant clustering
of the Mash data, as this provides an easy and fast medium to further explore the
results of the analysis. To leverage the search capabilities of Microreact, we mapped
metadata found for our dataset from the database PATRIC23 (downloaded on 20
June 2019). This allows the exploration of our results using a number of shared
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characteristics and queries such as “geographic location” or “serovar,” which,
although outside the scope of the current study, could be used as a topic for future
analyses to increase our understanding of E. coli species. In addition, to enable easy
comparison between established phylogroup predicting methods, we have provided
columns containing the results of the ClermonTyping24 method on our dataset.

Mash and clustering analysis. Genetic distances between all 10,667 genomes were
calculated using “mash dist” with a k-mer size of 21 and a sampling size of 10,000.
The resulting output was converted into a distance matrix with assembly accession
numbers as columns and rows. To improve the clustering results and to provide a
standard metric that allows comparison of different analytical methods, we con-
verted the Mash distance value into a similarity measure via the Pearson’s corre-
lation coefficient45. This returns values ranging from −1 (total negative linear
correlation) to 1 (total positive linear correlation), where 0 is no linear correlation.
As clustering-based methods require a distance measure, the values were subtracted
from 1 to convert them into a distance measure. These distance measures were then
clustered in R using “hclust” and the “ward.D2” method. A clustered heatmap was
generated using the hclust dendrogram to reorder the rows and columns of the
distance matrix within the heatmap, whereas values from the raw distance matrix
of Mash distances were mapped to color. To determine the height to cut the hclust
dendrogram and to accurately predict phylogroups that optimally overlapped with
existing phylogroups, we compared multiple different cutoff values and methods to
obtain cutoff values. Taking the maximum height present in the hclust dendrogram
and multiplying it by 1.25 × 10−2 was found to provide both accurate predictions
and a standard method that scales with the data supplied. The final phylogroups
were detected using a cut-off that split phylogroup C from phylogroup B1. This
implies that the 12 remaining phylogroups exist at a higher level of genetic dif-
ference than the B1/C phylogroups. Therefore, our methodology assumes that C
phylogroup is a true phylogroup rather than a specific genetic lineage of the B1
phylogroup, as it has been previously described by Clermont quadruplex PCR
methodology11. Some detailed results of both the cutoff percentile and hclust
height testing are included for 10,667 genomes in Supplementary Data 1.

Medoid selection for species representation. Using the Mash values for the
entire species, a medoid was defined for each phylogroup. The medoid is the “real”
center of the phylogroup, as it has to exist within the dataset, and was chosen as the
genome that has the lowest average distance to all other genomes in its phylogroup.
We subsequently tested if one genome from each of the phylogroups would be
enough to accurately classify any given genome sequence claimed to be E. coli or
Shigella. The “aggregate” function of R was used to find the mean across each
phylogroup. Isolating each phylogroup, reclustering, and calculating the medoid
did not yield as accurate results as calculating the medoid per phylogroup with
respect to the entire 10,667 genome dataset.

Addition of SRA reads. The keywords “Escherichia coli” and “Shigella” filtered
with “DNA” for biomolecule and “genome” for type was used to retrieve SRA IDs
from the NCBI SRA database on 22 March 2019. For large-scale data transfer, these
SRA genomes were downloaded using the high-throughput file transfer application
Aspera (http://asperasoft.com). To ease computational and organizational load, the
125,771 read sets obtained from the SRA were divided into 5 subsets of different
sequencing technologies: 3 Illumina paired read sets, 1 mixed technology with
paired reads, and 1 mixed technology with single reads. The five sets of reads were
then converted from fastq to fasta format, to be processed by Mash using a python
script, which removed all non-sequence data from the fastq file.

The SRA sequence reads were sketched using Mash (v2.1) and the same k-mer
and sketch sample size as the 10,667 dataset. This version change was due to the
addition of read pooling in the read mode which automatically joins paired reads,
eliminating the need to concatenate or otherwise process paired read sets. All read
sets were sketched individually so that read sets that caused an error when
sketching were dropped from the analysis before sketching. A total of 23,680 raw
reads could not be sketched. The -m setting was set to 2 to decrease noise in the
sketches of the reads. After sketching the reads within the subsets, all sketches were
concatenated into a sketch for that subset using the paste command of Mash. The
concatenated sketch of each subset was then compared to the 14 medoids using
Mash dist. As all five subsets had the same reference, the distance output from each
subset was concatenated to one file. This single SRA distance output file was then
analyzed to evaluate the quality of the SRA dataset. Due to how distances are
calculated, Mash can consistently flag genomes of very low quality, as the major
basis of a Mash value is how many hits are present out of sketches sampled. The
top 5 most numerous distances of the SRA read sets corresponded to 0–4 hits of the
possible 10,000 sketches per genome. This indicates the presence of extremely low-
quality samples within the SRA dataset. A histogram of the SRA Mash distance
results was created to analyze the distribution of Mash distances of the entire
102,091 SRA dataset (results not shown). A final Mash distance cutoff of 0.04 was
chosen based on the maximum Mash value in the 10,667 whole set that was
0.0393524. Although this low cutoff might potentially eliminate useful information,
it insured quality of the SRA dataset. This retained 95,525 reads that had at least
one Mash distance to a phylogroup medoid within the chosen cutoff.

The distance output was transferred into a matrix with reads as columns and
rows containing a phylogroup medoid. For each read, the smallest Mash distance to
a medoid was identified, and the corresponding medoid noted (Supplementary
Data 2). We then created a distance matrix from the Mash distance output of the
95,525 reads that met the above cutoff with reads as rows and medoids as columns.
Due to computational load this distance matrix was loaded into Python 3 instead of
R. A clustered heatmap was made using Seaborn, Matplotlib, and Scipy with the
“clustermap” function. Instead of clustering both rows and columns, columns
(phylogroups) were ordered the same as Fig. 1 and rows were sorted as follows:
number of hits to phylogroups (ascending= True) and Mash distance (ascending
= False). This provided a quick visualization method for the SRA dataset with a
consistent sorting criterion to make comparison between Fig. 2c and the
supplemental heatmaps (Supplementary Figs. 3–16) much easier.

Cytoscape visualization. The Mash distance matrix of the 10,667 genomes was
filtered to include only the 14 medoids along the columns. This filtered matrix was
transformed into a new three column matrix, where the first column contains the
identifier for a genome to be compared to the medoid present in the second
column. The third column contains the Mash value for that pairwise comparison.
A sliding cutoff ranging from 0.04 to 0.0095 with increments of 0.005 was applied
to the Mash value column and rows with values above the sliding cutoff for an
iteration were removed. These data tables were imported into Cytoscape (version
3.7.1) with the first column as the source node and the medoid column as the target
node. The Prefuse Force Directed Weighted layout was then applied to the network
with the Mash distance serving as the weight. Phylogroup membership was
mapped with a metadata table and colors were assigned based on the colors used in
Fig. 1. For each cutoff, the resultant graph was output as a scalable vector graphic
(SVG) image. All SVGs were then compiled into a video to ease visualization of the
Cytoscape graphs.

Statistical analysis of genome sizes and percent GC content. Genome sizes and
percent of GC content was calculated using the “infoseq” package from EMBOSS
suite v6.6.0.0. A data frame with sequence ID, percentage of GC content, genome
size, and phylogroup ID was made. Library “ggplot2” from R was used to plot
genome sizes and GC content. Library “dplyr” from R was used to perform
ANOVA test and Tukey’s honest significant difference (HSD) tests. The homo-
geneity of variances was tested using Levene’s test and the normality assumption of
the data were checked using Shapiro–Wilk test. As some of the groups did not meet
the criteria of the assumption of normality, Kruskal–Wallis test was performed and
non-parametric alternative to one-way ANOVA as well. Kruskal–Wallis test
rejected both null hypothesis (means of genome size or percent of GC content are
similar between the different phylogroups), with p-value < 2.2e−16 in both cases.
Raw results from these tests are available in Supplementary Data 3.

Pangenome analyses and clustering. All 10,667 genomes were reannotated using
Prokka46 v1.13, with parameters: --rnammer --kingdom Bacteria --genus Escher-
ichia –species coli --gcode 11. All protein-coding sequences (n= 51,400,905) were
clustered using UCLUST from USEARCH47 v.10.0.240 into protein families using
cutoff values of 80% of protein sequence similarity, 80% of query sequence cov-
erage, e-value ≤ 0.0001 (parameters -evalue 0.0001 -id 0.8 -query_cov 0.8, with
maxaccepts 1 and maxrejects 8). For the core genome, various inclusion percen-
tages were compared, as we included draft genomes existing in multiple contigs.
The optimum was defined that allowed 3% omissions, giving a species core genome
defined as those genes present in 97% of the genome collection. Therefore, protein
families with presence in at least 97% of the total set strains were considered part of
the core genome of E. coli species.

The pan- and core genome for each of the 14 phylogroups were then separately
clustered using the same cut-off parameters as the entire set at species level.

MLST analysis. The sequence type for all 10,667 assembled genomes was assessed
using the program “mlst” version 2.18.0 from Seemann T, Github: https://github.
com/tseemann/mlst, using both the Achtman and Pasteur MLST schemas for E.
coli from PubMLST website (https://pubmlst.org/) developed48 by Keith Jolley.
Results were collected and are accessible in our microreact database: https://
microreact.org/project/10667ecoli/b4431cf8.

Core genome matrix creation and visualization. Core genome clusters for the 14
phylogroups obtained using UCLUST v.10.0.240 in the previous analysis were used
again with UCLUST v.10.0.240 using the same parameters to find the intersection
of core genes between the core clusters of the 14 phylogroups. A binary matrix with
cluster ID as column labels, genome IDs as row names, and the number of genes
belonging to that cluster as the cell value was constructed using the main output
from UCLUST. This matrix was then supplied to an “in-house” python script that
sorts the pangenome matrix such that the gene clusters found in all phylogroups
are placed first (species’ core genome). Then groups are sorted by abundance per
phylogroup to isolate phylogroup core genes. All leftover gene groups are sorted by
phylogroup and abundance, and added to the end of the sorted gene cluster list.
The Mash tree obtained earlier for the 10,667 dataset was then loaded and used to
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sort the order of the organisms within the sorted matrix. Finally, Matplotlib was
used to visualize the sorted matrix.

Phylogenetic analysis of core gene families. The set of core gene clusters of the
14 medoids was extracted from the core genome clusters of the entire species and
from them single copy ortholog groups were identified to construct a phyloge-
nomic tree. In total a set of 2,613 single gene (clusters without paralogs paralogs)
ortholog groups were aligned using MAFFT49 v.7.110. The model of evolution for
each of the 2,613 protein clusters was calculated using IQ-TREE50 v.1.6.10 with
parameters -m TESTONLY -nt AUTO. Once the best model of evolution was
obtained for each of the core protein families, those clusters that shared model of
evolution were sent together to IQ-TREE for a better estimation of the substitution
model parameters using -m MF+MERGE, -nt AUTO and selecting the final
model of evolution with mset parameter. In the last step, all partitions obtained
with their corresponding model of evolution were sent again to IQ-TREE for final
estimation of the phylogenetic tree for the 14 medoids using ultrafast bootstraping
approach (-bb 1000). The resulted core genome tree was re-rooted using the B2-1,
B2-2, and G phylogroups branch, according to the results obtained from the Mash
analysis and the literature19.

The pangenome matrix needed as input for Count51 v10.04 for the 14 medoids
was constructed using UCLUST (with same parameters for pangenome calculation
as in previous analyses). A pivot table was built using the main output from
UCLUST and pandas library in a Python 3 script using the function “pivot_table”
with agglomeration function=sum. Count v10.04 program was used for gene
family expansion/contraction analysis, using an optimized gain–loss-duplicated
model52,53 using Poisson family size distribution, four gamma categories for each
calculation across families (Edge length, Loss rate, Gain rate, and Duplication rate),
and different lineage-specific variation for gain–loss ratio and duplication–loss
ratio between lineages. Measurements were done using 1000 optimization rounds
(reaching convergence before the last iteration) and 0.01 convergence threshold on
the likelihood.

Principal coordinate analysis. The PCoA plot in Fig. 3b was created using R, the
entire pangenome matrix for the 10,667 assembled genomes, and the libraries
“ade4” version 1.7-13 and “labdsv” version 2.0-1. A Jaccard distance matrix of the
pangenome matrix was created using the ‘dist.binary’ function from “ade4.” To
create the PCoA data, the Jaccard distance matrix was used in the ‘“pco” function
of “labdsv” with k= 10,666 (allowing each genome to be a unique dimension). The
resultant PCoA data were then graphically rendered using R “plot” and colors were
added by genome classification as shown in Fig. 1.

Statistics and reproducibility. Library “dplyr” from R was used to perform
ANOVA test and Tukey’s HSD tests. The homogeneity of variances was tested
using Levene’s test and the normality assumption of the data were checked using
Shapiro–Wilk test. As some of the groups did not meet the criteria of the
assumption of normality, Kruskal–Wallis test was performed and non-parametric
alternative to one-way ANOVA as well. Kruskal–Wallis test rejected both null
hypothesis (means of genome size or percent of GC content are similar between the
different phylogroups), with p-value < 2.2e−16 in both cases. Raw results from these
tests are available in Supplementary Data 3. Information regarding the genomes
utilized in this study are available in Supplementary Data 1 (10,667 assembled
genomes) and Supplementary Data 2 (95,525 unassembled genomes). The Mash
sketches utilized in this study are available upon request.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available in this article,
its Supplementary Information files, or on the Zenodo54 entry associated with this
project. GenBank assembly accession codes for all assembled genomes used in this study
can be found in Supplementary Data 1. Sequence Read Archive accessions for all
unassembled genomes used in this study can be found in Supplementary Data 2. Source
data for all manuscript figures can be found on Zenodo via https://doi.org/10.5281/
zenodo.4091750. Each file in the Zenodo54 collection is labeled corresponding to the
figure it is associated with. The code needed to reproduce all plots are also available on
Zenodo54. It is noteworthy that the code in Zenodo54 replicates all parts of the analysis
and thus the names may not be the same between the code and the underlying data. For
each figure, the code that reproduces the figure is identified in the Description section of
the Zenodo54 entry. An animated video with all the Cytoscape graphs is available on
figshare via https://doi.org/10.6084/m9.figshare.1310523555. The images used as frames
for the animated video are available on figshare via https://doi.org/10.6084/m9.
figshare.1147330856.

Code availability
Code for this study is available on Zenodo54 via https://doi.org/10.5281/zenodo.4091750.
Software versions utilized in this study include the following: Mash v2.1, R v3.5.1, Python

v3.6.8, Cytoscape v3.7.1, EMBOSS v6.6.0.0, USEARCH/UCLUST v10.0.240, MAFFT
v7.110, IQ-TREE v1.6.10, and Count v10.04.
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